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Abstract. We investigate the recovery chances of highly spinning waveforms immersed in
LIGO S5-like noise by performing a matched filtering with 106 randomly chosen spinning
waveforms generated with the LAL package. While the masses of the compact binary are
reasonably well recovered (slightly overestimated), the same does not hold true for the spins. We
show the best fit matches both in the time-domain and the frequency-domain. These encompass
some of the spinning characteristics of the signal, but far less than what would be required to
identify the astrophysical parameters of the system. An improvement of the matching method
is necessary, though may be difficult due to the noisy signal.

We report on an attempt to recover a gravitational wave signal hinjection immersed in LIGO
S5-like noise by a matched filtering with 106 randomly chosen templates generated with spinning
waveforms [1]. We applied the following process to generate a LIGO S5-like noise sample of N
elements: (i) cut out a stretch of 2N elements from an arbitrary sample of real LIGO S5 noise,
(ii) cut the stretch into half, resulting in two stretches of N elements, (iii) Fourier-transfom both
stretches with an FFT method, resulting in two samples of N complex elements, (iv) combine the
magnitude values of the first spectrum with the phase values of the second spectrum, resulting
in a complex spectrum of N elements, (v) apply an inverse FFT on the combined spectrum, and
use the real part of the resulting array as our LIGO S5-like noise sample. This method has the
advantage of preserving the basic spectral and statistical properties of the original LIGO data,
while discarding any real gravitational wave signatures that might be present within the original
data stretch.

The matched filtering follows the method described in Ref. [2]. Namely, we calculate the
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Figure 1. The injected signal (red) and its spinn-less counterpart (blue).

overlap between the noisy injection hn,i and the spinning templates htemplate as

O [hn,i, htemplate] =
〈hn,i|htemplate〉

√

〈hn,i|hn,i〉 〈htemplate|htemplate〉
, (1)

where

〈h1|h2〉 = 4Re

∫ fmax

fmin

h̃1 (f) h̃
∗
2
(f)

Sn (f)
df , (2)

with h̃i (f) the Fourier transform of hi (t) and Sn (f) the power spectral density of the noise. We
choose fmin = 50Hz and fmax = 600Hz, which lies in the best sensitivity of the LIGO detectors,
also the post-Newtonian prediction for the waveform can be considered reasonably accurate.
The most lengthy templates in this domain were found to last for approximately 3 sec.
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Figure 2. The strain spectral density of the signal (red), noise (grey) and injected signal +
noise (magenta).

On theoretical grounds, an infinitely long data series would be required for exact
determination of the power spectrum. In order to achieve a stability of the power spectrum
of the order of 1%, we would like to have at least 100 periods of all frequencies to be included in
the power spectrum, therefore a minimal length of the templates of 100× (1/50Hz) = 2 sec was
imposed. As we know where the injection commences in the noise time sequence, we simplify



Table 1. The parameters of the injection and 5 best fit templates.
name m1(M⊙) m2(M⊙) χ1 χ2 cos β1 ϕ1 cos β2 ϕ2

injection 3.553 3.358 0.983 0.902 0.984 1.109 0.978 0.957
560884.wave 4.805 3.336 0.230 0.293 −0.599 1.327 −0.621 0.006
467403.wave 4.092 3.405 0.868 0.891 −0.520 1.275 0.363 3.925
313940.wave 3.569 3.540 0.753 0.413 0.306 1.458 −0.092 2.679
93938.wave 5.012 3.152 0.280 0.424 0.947 2.593 0.888 2.340
80521.wave 4.278 4.360 0.736 0.475 −0.620 5.959 0.945 3.290

our analysis by comparing with templates beginning at the same instant t0. Further, we also
assume identical antenna functions of

√
2/2 both for the injection and templates. Moreover, all

parameters of the injection and templates other then the masses mi and spins (given by their
dimensionless magnitude χi, polar and azimuthal angles βi, ϕi, taken in the inertial system with
the line of sight on the z-axis) were kept fixed. These parameters were the distance of the binary
d = 1Mpc, and the polar angle of the orbital angular momentum Θ = 1.4299. The initial phase
ΦS = 0.

We picked up the injection signal as one of the longests available (see Fig 1). The presence of
a high spin induces a strong amplitude modulation, but also a less visible frequency modulation.
For comparison, we have also represented on Fig 1 the corresponding non-spinning signal, with
the same masses, but the spins switched off.
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Figure 3. The injection and the best fit matches from 106 templates. The mass is roughly
recovered, though sligtly overestimated, however the information contained in the spins is not.



The spinning signal is injected in the middle of a finite stretch of LIGO-like data with double
the length of the signal. The noise has the basic statistical characteristics (e.g. amplitude
distribution, spectral compatibility) of the LIGO 4 km detectors during the 5th science run.
The segment to be analyzed is filtered with a zero-phase 50−600 Hz bandpass filter, and a zero-
phase notch filter mitigating the effect of narrow insensitivity peaks of detector spectrum. After
removing one-fourth of the data segment from both ends due to filter transients, this leaves half
the length of the initial noise sequence including the signal for further processing. The strain
spectral density, defined as the square root of the periodogram, computed under MatLab [3], is
represented on Fig 2 for the signal, noise and noisy signal.
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Figure 4. The injected signal and the five best matches. Their serial numbers from among
the 106 randomly generated templates is also indicated.



The overlap between the noisy injection and the injected signal itself was found to be
O [hn,i, hinjection] = 0.83426. Therefore we define an auxiliary quantity

σ =

∣

∣

∣

∣

1− O [hn,i, htemplate]

O [hn,i, hinjection]

∣

∣

∣

∣

(3)

for characterizing the closeness of the overlap of a template with the noisy injection to
O [hn,i, hinjection]. The parameters of a number of > 20 templates with the lowest values of σ
are represented on Fig 3. While it is comforting to realize that (although slightly overestimated)
the masses are reasonably well recovered, the spins are not. There is a considerable scatter in
both their magnitudes and orientations.
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Figure 5. The strain spectral density of the injected signal (red) and its spin-less counterpart
(blue) and the five best matches (green).

We picked up the 5 best fits, showed their parameters in Table 1 and represented the respective
waveforms on Fig 4; also their strain spectral density on Fig 5. For comparison, the injected
signal is also shown.

We conclude that even with all the simplifying assumptions adopted, (a) either the number
of 106 templates employed was still insufficient or (b) the 6 additional parameters introduced by
the spins cause severe degeneracies, which cannot be resolved by this method. In this context
we note that the use of a Markov-chain Monte-Carlo technique [4], [5] may turn useful in the
recovery of spinning signals. We also plan to investigate how the use of Advanced LIGO-like
data would change these conclusions.



Acknowledgements: We acknowledge interactions with Gyula Szabó and István Szapudi in the
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