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Abstract

We report new results on nearly conformal gauge theories with fermions in the fundamental representation of the SU(3) color gauge
group as the number of fermion flavors is varied in the N f = 4 − 16 range. To unambiguously identify the chirally broken phase
below the conformal window we apply a comprehensive lattice tool set in finite volumes which includes the test of Goldstone
pion dynamics, the spectrum of the fermion Dirac operator, and eigenvalue distributions of random matrix theory. We also discuss
the theory inside the conformal window and present our first results on the running of the renormalized gauge coupling and the
renormalization group beta function. The importance of understanding finite volume zero momentum gauge field dynamics inside
the conformal window is illustrated. Staggered lattice fermions are used throughout the calculations.

Key words: lattice simulations, electroweak sector, technicolor, conformal

1. Introduction

The Large Hadron Collider will probe the mechanism of
electroweak symmetry breaking. It is an intriguing possibil-
ity that new physics beyond the Standard Model might take
the form of some new strongly-interacting gauge theory. In
one scenario, the Higgs sector of the electroweak theory is re-
placed by a so-called technicolor theory, whose dynamics pro-
vides the required spontaneous symmetry breaking [1, 2, 3].
These models avoid the fine-tuning problem and may lead to a
heavy composite Higgs particle on the TeV scale. Although
attractive, the challenge is to extend a technicolor theory to
include fermion mass generation, while satisfying the various
constraints of electroweak phenomenology. This idea has lately
been revived by new explorations of the multi-dimensional the-
ory space of nearly conformal gauge theories [4, 5, 6, 7]. The
terminology of technicolor in this report will refer in a generic
sense to these investigations. Exploring the new technicolor
ideas has to be based on nonperturbative studies which are only
becoming feasible now with the advent of new lattice technolo-
gies.

Model building of a strongly interacting electroweak sector
requires the knowledge of the phase diagram of nearly con-
formal gauge theories as the number of colors Nc, number of
fermion flavors N f , and the fermion representation R of the
technicolor group are varied in theory space. For fixed Nc and R
the theory is in the chirally broken phase for low N f and asymp-
totic freedom is maintained with a negative β function. On the
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other hand, if N f is large enough, the β function is positive for
all couplings, and the theory is trivial. If the regulator cut-off is
removed, we are left with a free non-interacting continuum the-
ory. There is some range of N f for which the β function might
have a non-trivial zero, an infrared fixed point, where the the-
ory is in fact conformal [10, 11]. This method has been refined
by estimating the critical value of N f , above which spontaneous
chiral symmetry breaking no longer occurs [12, 13, 14].

Interesting models require the theory to be very close to, but
below, the conformal window, with a running coupling which is
almost constant over a large energy range [15, 16, 17, 18, 19].
The nonperturbative knowledge of the critical Ncrit

f separating
the two phases is essential and this has generated much interest
and many new lattice studies [20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46].

Our goal to unambiguously identify the chirally broken phase
below the conformal window requires the application and test-
ing of a comprehensive lattice tool set in finite volumes which
includes the test of Goldstone pion dynamics, the spectrum of
the fermion Dirac operator, and eigenvalue distributions of Ran-
dom Matrix Theory (RMT). Inside the conformal window we
investigate the running coupling and the β function. We report
new results at N f = 4, 8, 9, 12, 16 for fermions in the fundamen-
tal representation of the SU(3) technicolor gauge group. We
find N f = 4, 8, 9 to be in the chirally broken phase and N f = 16
is consistent with the expected location inside the conformal
window. To resolve the N f = 12 phase from our simulations
will require further analysis.
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2. Chiral symmetry breaking below the conformal window

We will identify in lattice simulations the chirally broken
phases with N f = 4, 8, 9 flavors of staggered fermions in the
fundamental SU(3) color representation using finite volume
analysis. The staggered fermions are deployed with a special
6-step exponential (stout) smearing procedure [47] in the lattice
action to reduce well-known cutoff effects with taste breaking
in the Goldstone spectrum. The presence of taste breaking re-
quires a brief explanation of how staggered chiral perturbation
theory is applied in our analysis. The important work of Lee,
Sharpe, Aubin and Bernard [48, 49, 50] is closely followed in
the discussion.

2.1. Staggered chiral perturbation theory

Starting with the N f = 4 example [48], the spontaneous
breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to
15 Goldstone modes, described by fields φi. These can be orga-
nized into an S U(4) matrix

Σ(x) = exp
(
i
φ
√

2F

)
, φ =

15∑
a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and
the normalization Ta =

{
ξµ, iξµ5, iξµν, ξ5

}
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)
χ =

F2

4
Tr(∂µΣ∂µΣ†) −

1
2

B mq F2Tr(Σ + Σ†) , (2)

with the fundamental parameters F and B measured on the tech-
nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-
panding the chiral Lagrangian in powers of φ one finds 15 de-
generate pions with masses given by

M2
π = 2Bmq

[
1 + O(mq/ΛTC)

]
. (3)

The leading order term is the tree-level result, while the cor-
rections come from loop diagrams and from higher order terms
in the chiral Lagrangian. The addition of a2L

(6)
χ breaks chiral

symmetry and lifts the degeneracy of the Goldstone pions. Cor-
rection terms are added to Eq. (3) which becomes

M2
π = C(Ta) ·a2Λ4

TC +2Bmq

[
1 + O(mq/ΛTC) + O(a2Λ2

TC)
]

(4)

where the representation dependent C(Ta) is a constant of order
unity. Contributions proportional to a2 are due to L(6)

χ , and lead
to massive Goldstone pions even in the mq → 0 chiral limit.
The only exception is the pion with flavor ξ5 which remains
massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)
χ without deriva-

tives, defining the potentialV(6)
χ , is invariant under flavor S O(4)

transformations and gives rise to the a2 term in M2
π. Terms in

L
(6)
χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a2m and a4. The taste breaking potential is given by

−V(6)
χ = C1Tr(ξ5Σξ5Σ†)

+ C2
1
2

[
Tr(Σ2) − Tr(ξ5Σξ5Σ) + h.c.

]
+ C3

1
2

∑
ν

[
Tr(ξνΣξνΣ) + h.c.

]
+ C4

1
2

∑
ν

[
Tr(ξν5Σξ5νΣ) + h.c.

]
+ C5

1
2

∑
ν

[
Tr(ξνΣξνΣ†) − Tr(ξν5Σξ5νΣ

†)
]

+ C6

∑
µ<ν

Tr(ξµνΣξνµΣ†) . (5)

The six unknown coefficients Ci are all of size Λ6
TC.

In the continuum, the pions form a 15-plet of flavor S U(4),
and are degenerate. On the lattice, states are classified by the
symmetries of the transfer matrix and the Goldstone pions fall
into 7 irreducible representations: four 3-dimensional represen-
tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional
representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion
masses are given by

Mπ(Ta)2 = 2Bmq + a2∆(Ta) + O(a2mq) + O(a4) , (6)

with ∆(Ta) ∼ Λ4
TC arising fromV(6)

χ . SinceV(6)
χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
8

F2 (C1 + C2 + C3 + 3C4 + C5 + 3C6) , (8)

∆(ξµ5) =
8

F2 (C1 + C2 + 3C3 + C4 −C5 + 3C6) , (9)

∆(ξµν) =
8

F2 (2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible
representations with flavors ξi and ξ4 are degenerate, those with
flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-
erate as well. No predictions can be made for the ordering or
splittings of the mass shifts. We also cannot predict the sign
of the shifts, although our simulations indicate that they are
all positive with the exponentially smeared staggered action we
use. This makes the existence of an Aoki phase [48] unlikely.

The method of [48] has been generalized in a nontrivial way
to the N f > 4 case [49, 50] which we adopted in our calcula-
tions with help from Bernard and Sharpe. The procedure cannot
be reviewed here but it will be used in the interpretation of our
N f = 8 simulations.

2.2. Finite volume analysis in the p-regime
Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra
and correlators. For a lattice size L3

s × Lt in euclidean space and
in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1
select the the p-regime, in analogy with low momentum count-
ing [51, 52].
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For arbitrary N f , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

[
1 −

M2

8π2N f F2 ln
(
Λ3

M

)]
, (11)

Fπ = F
[
1 +

N f M2

16π2F2 ln
(
Λ4

M

)]
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian, and the small quark mass mq

explicitly breaks the symmetry [53]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [54]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large N f will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ

[
1 +

1
2N f

M2

16π2F2 · g̃1(λ, η)
]
, (13)

Fπ(Ls, η) = Fπ

[
1 −

N f

2
M2

16π2F2 · g̃1(λ, η)
]
, (14)

where g̃1(λ, η) describes the finite volume corrections with λ =

M · Ls and aspect ratio η = Lt/Ls. The form of g̃1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [52]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and ε-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →

0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [55] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the ε-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and ε-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The ε-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the ε-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the ε-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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Figure 3: The first two rows of the composite figure show N f = 4 simulation results in the p-regime. The first row depicts the collapsing pion spectrum and the
techni-rho as the continuum limit is approached. The second row shows the chiral fits to M2

π/mq and Fπ based on Eqs. (11-14). The range mq = 0.008 − 0.025 is
used in the fitting procedure. The approximately linear behavior of the chiral condensate 〈ψψ〉 is also shown in the second row. The third and fourth rows summarize
the simulation results for N f = 8. The third row shows the collapsing pion spectrum and the techni-rho as the continuum limit is approached. The chiral fit to
M2
π/mq is shown based on Eq. (11) only since the Fπ data points are outside the convergence range of the chiral expansion. The range mq = 0.015 − 0.035 is used

in the fitting procedure. The fifth row illustrates our first simulation results for N f = 9. It shows the split pion spectrum, chiral fit to M2
π/mq and the Fπ data points

are outside the convergence range of the chiral expansion. The range mq = 0.02 − 0.04 is used in the fitting procedure.
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matrix were exponentially smeared with six stout steps at N f =

4, 8 and four stout steps at N f = 9. The RHMC algorithm was
deployed in all runs but rooting of the fermion determinant only
affected the N f = 9 simulations. The results shown in Fig. 3 are
from the p-regime of the chirally broken phase with the condi-
tions Mπ · Ls � 1 and Fπ · L ∼ 1 when the chiral condensate
begins to follow the expected behavior of infinite volume chi-
ral perturbation theory from Eqs. (11,12) with calculable finite
volume corrections from Eqs. (13,14).

The N f = 4 simulations work in the p-regime as expected.
The pion spectrum is clearly separated from the technicolor
scale of the ρ-meson whose quadratic fit is just to guide the eye.
Moving towards the continuum limit with increasing β = 6/g2,
we see the split pion spectrum collapsing onto the true Gold-
stone pion. The true Goldstone pion and two additional split
pion states are shown. ∆ is the measure of the small quadratic
pion mass splittings in lattice units. Their origin was discussed
in Section 2 in Eqs. (7-10). The spectrum is parallel and the
gaps appear to be equally spaced consistent with the earlier ob-
servation in QCD where the C4 term seems to dominate taste
breaking accounting for the equally spaced pion levels [48].
The simultaneous chiral fit of M2

π/mq and Fπ based on Eqs. (11-
14) works when the chiral loop term corrects the tree level value
of M2

π/mq = 2B. This is a chirally broken phase and the picture
holds in the mq → 0 limit. The fit to determine the N f = 4
chiral condensate for mq = 0 is shown in the second row on the
right. It sets the scale of electroweak symmetry breaking in the
Higgs mechanism.

As we move to the N f = 8 p-regime simulations summarized
in the third and forth rows of Fig. 3 we observe the weakening
of the chiral condensate and increased difficulties in passing the
chiral tests. The pion spectrum is still clearly separated from
the technicolor scale of the ρ-meson. Moving towards the con-
tinuum limit with increasing β = 6/g2, we see the split pion
spectrum collapsing toward the true Goldstone pion with a new
distinguished feature. The true Goldstone pion and two addi-
tional split pion states are shown with different slopes as mq

increases. Towards mq = 0 the pion spectrum is collapsed at
fixed gauge coupling, indicating that the effects of leading or-
der taste breaking operators, the generalization of those from
N f = 4 to N f = 8 as discussed in Section 2, are smaller than at
N f = 4 in the explored coupling constant range. This is some-
what unexpected and unexplained. Next to leading order taste
breaking operators are responsible for the spread of the slopes
and they seem to dominate. They were identified in Eq. (6)
as the last two terms. It is reassuring to see that this structure
is collapsing as we move toward the continuum limit. We an-
alyzed this pattern within staggered perturbation theory in its
generalized form beyond four flavors [49, 50]. The simultane-
ous chiral fit of M2

π/mq and Fπ based on Eqs. (11-14) cannot
be done at N f = 8 within the reach of the largest lattice sizes
we deploy since the value of aF is too small even at L=24 for
coupling constants where taste breaking drops to an acceptable
level. The chiral fit to M2

π/mq is shown based on Eq. (11) only
since the Fπ data points are outside the convergence range of
the chiral expansion. We would need much bigger lattices to
drop further down in the p-regime with mq to the region where

the simultaneous fit could be made. It is also important to note
that the chiral condensate is very small in the mq → 0 limit in
the region where taste breaking is not large. This is shown in
row four of Fig. 3 on the right side.

The N f = 9 p-regime simulations are summarized in the fifth
row of Fig. 3 where we observe the continued weakening of the
chiral condensate and the increased difficulties in passing the
chiral tests. The pion spectrum is still clearly separated from
the technicolor scale of the ρ-meson. Moving towards the con-
tinuum limit to see the split pion spectrum collapsing toward
the true Goldstone pion is increasingly difficult. The true Gold-
stone pion and two additional split pion states are shown again
with different slopes as mq increases. Forcing the collapse of
the split pion spectrum will require larger lattices with smaller
gauge couplings. The trends and the underlying explanation is
very similar to the N f = 8 case. The chiral fit to M2

π/mq is
shown based on Eq. (11) only since the Fπ data points are out-
side the convergence range of the chiral expansion.

In summary, we have shown that according to p-regime tests
the N f = 4, 8, 9 systems are all in the chirally broken phase
close to the continuum limit. Currently we are investigating
N f = 9, 10, 11, 12 on larger lattices to determine the lower edge
of the conformal window. Lessons from the Dirac spectra and
RMT to complement p-regime tests are discussed in the next
section including comments about the controversial N f = 12
case.

4. Epsilon regime, Dirac spectrum and RMT

If the bare parameters of a gauge theory are tuned to the ε-
regime in the chirally broken phase, the low-lying Dirac spec-
trum follows the predictions of random matrix theory. The cor-
responding random matrix model is only sensitive to the pat-
tern of chiral symmetry breaking, the topological charge and the
rescaled fermion mass once the eigenvalues are also rescaled by
the same factor ΣcondV . This idea has been confirmed in various
settings both in quenched and fully dynamical simulations. The
same method is applied here to nearly conformal gauge models.

The connection between the eigenvalues λ of the Dirac oper-
ator and chiral symmetry breaking is given in the Banks-Casher
relation [56],

Σcond = −〈ΨΨ〉 = lim
λ→0

lim
m→0

lim
V→∞

πρ(λ)
V

,

where Σcond designates the quark condensate normalized to a
single flavor. To generate a non-zero density ρ(0), the small-
est eigenvalues must become densely packed as the volume in-
creases, with an eigenvalue spacing ∆λ ≈ 1/ρ(0) = π/(ΣcondV).
This allows a crude estimate of the quark condensate Σcond. One
can do better by exploring the ε-regime: If chiral symmetry is
spontaneously broken, tune the volume and quark mass such
that 1

Fπ
� L � 1

Mπ
, so that the pion is much lighter than the

physical value, and finite-volume effects are dominant as we
discussed in Section 2. The chiral Lagrangian of Eq. (2) is
dominated by the zero-momentum mode from the mass term
and all kinetic terms are suppressed. In this limit, the distribu-
tions of the lowest eigenvalues are identical to those of random

5



 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10  12  14  16  18  20

λ n

n

Nf = 4
β = 3.60

a mq = 0.001

244

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  2  4  6  8  10  12  14  16  18  20

λ n

n

Nf = 4
β = 3.80

a mq = 0.001

244

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  2  4  6  8  10  12  14  16  18  20

λ n

n

Nf = 4
β = 4.00

a mq = 0.001
244

204

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.004  0.008  0.012  0.016  0.02

in
te

gr
at

ed
 d

is
tr

ib
ut

io
n

a λ

Nf = 4
β = 3.60
a mq = 0.001

244

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

in
te

gr
at

ed
 d

is
tr

ib
ut

io
n

a λ

Nf = 4
β = 3.80
a mq = 0.001

244

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

in
te

gr
at

ed
 d

is
tr

ib
ut

io
n

a λ

Nf = 4
β = 4.00
a mq = 0.001

204

Figure 4: From simulations at N f = 4 the first row shows the approach to quartet degeneracy of the spectrum as β increases. The second row shows the integrated
distribution of the two lowest quartets averaged. The solid line compares this procedure to RMT with N f = 4.

matrix theory, a theory of large matrices obeying certain sym-
metries [57, 58, 59]. To connect with RMT, the eigenvalues
and quark mass are rescaled as z = λΣcondV and µ = mqΣcondV ,
and the eigenvalue distributions also depend on the topological
charge ν and the number of quark flavors N f . RMT is a very
useful tool to calculate analytically all of the eigenvalue dis-
tributions. The eigenvalue distributions in various topological
sectors are measured via lattice simulations, and via compar-
ison with RMT, the value of the condensate Σcond can be ex-
tracted.

After we generate large thermalized ensembles, we calculate
the lowest twenty eigenvalues of the Dirac operator using the
PRIMME package [60]. In the continuum limit, the staggered
eigenvalues form degenerate quartets, with restored taste sym-
metry. The first row of Fig. 4 shows the change in the eigen-
value structure for N f = 4 as the coupling constant is varied. At
β = 3.6 grouping into quartets is not seen, the pions are notice-
ably split, and staggered perturbation theory is just beginning to
kick in. At β = 3.8 doublet pairing appears and at β = 4.0 the
quartets are nearly degenerate. The Dirac spectrum is collapsed
as required by the Banks-Casher relation. In the second row we
show the integrated distributions of the two lowest eigenvalue
quartet averages, ∫ λ

0
pk(λ′)dλ′, k = 1, 2 (15)

which is only justified close to quartet degeneracy. All low
eigenvalues are selected with zero topology. To compare with
RMT, we vary µ = mqΣcondV until we satisfy

〈λ1〉sim

m
=
〈z1〉RMT

µ
, (16)

where 〈λ1〉sim is the lowest quartet average from simulations and

the RMT average 〈z〉RMT depends implicitly on µ and N f . With
this optimal value of µ, we can predict the shapes of pk(λ) and
their integrated distributions, and compare to the simulations.
The agreement with the two lowest integrated RMT eigenvalue
shapes is excellent for the larger β values.
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Figure 5: The solid lines compare the integrated distribution of the two lowest
quartet averages to RMT predictions with N f = 8.

The main qualitative features of the RMT spectrum are very
similar in our N f = 8 simulations as shown in Fig. 5. One
marked quantitative difference is a noticeable slowdown in re-
sponse to change in the coupling constant. As β grows the
recovery of the quartet degeneracy is considerably delayed in
comparison with the onset of p-regime Goldstone dynamics.
Overall, for the N f = 4, 8 models we find consistency between
the p-regime analysis and the RMT tests. Earlier, using Asqtad
fermions at a particular β value, we found agreement with RMT
even at N f = 12 which indicated a chirally broken phase [20].
Strong taste breaking with Asqtad fermion leaves the quartet
averaging in question and the bulk pronounced crossover of the
Asqtad action as β grows is also an issue. Currently we are
investigating the RMT picture for N f = 9, 10, 11, 12 with our
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the N f = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at N f = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the N f = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62, 63, 64]. With S U(3) gauge group, there are twenty
seven degenerate vacuum states, separated by energy barri-
ers which are generated by the integrated effects of the non-
zero momentum components of the gauge field in the Born-
Oppenheimer approximation. The lowest energy excitations of
the gauge field Hamiltonian scale as ∼ g2/3(L)/L evolving into
glueball states and becoming independent of the volume as the
coupling constant grows with L. Nontrivial dynamics evolves
through three stages as L grows. In the first regime, in very
small boxes, tunneling is suppressed between vacua which re-
main isolated. In the second regime, for larger L, tunneling
sets in and electric flux states will not be exponentially sup-
pressed. Both regimes represent small worlds with zero mo-
mentum spectra separated from higher momentum modes of
the theory with energies on the scale of 2π/L. At large enough
L the gauge dynamics overcomes the energy barrier, and wave
functions spread over the vacuum valley. This third regime is
the crossover to confinement where the electric fluxes collapse
into thin string states wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at N f = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta

are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With N f flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

∑
i> j

V(Cb[µ(i)
b − µ

( j)
b ])− N f

∑
i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for N f = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) =

1
2 (1,−1, 0).

The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Im
a
g
in

a
ry

Real

Spatial
Temporal

Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.

main center elements at the new vacuum configurations with
complex values

P j =
1
N

tr
(
exp(iCb

j Tb)
)

=
1
N

∑
n

exp(iµ(n)
b Cb

j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff
= −N f NV(2πl/N + πk). In the case of

anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (P j = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l , 0, so
that P j correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, P j = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simu-
lations in the N f = 16 model near the fixed point g∗2 confirm
this picture. In the weak coupling phase of the conformal win-
dow the time-like Polyakov loop takes the real root, while the
space-like Polyakov loops always take the two other complex
values, as expected on the basis of the above picture. Next we
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will describe our method to probe the running coupling inside
the conformal window. It is a pilot study for more compre-
hensive investigations of weak and strong coupling conformal
dynamics.

5.2. Running coupling and beta function
Consider Wilson loops W(R,T, L), where R and T are the

space-like and time-like extents of the loop, and the lattice vol-
ume is L4 (all dimensionful quantities are expressed in units of
the lattice spacing a). A renormalized coupling can be defined
by

g2(R/L, L) = −
R2

k(R/L)
∂2

∂R∂T
ln〈W(R,T, L)〉 |T=R , (19)

where for convenience the definition will be restricted to Wil-
son loops with T = R, and 〈...〉 is the expectation value of some
quantity over the full path integral. This definition can be moti-
vated by perturbation theory, where the leading term is simply
the bare coupling g2

0. The renormalization scheme is defined by
holding R/L to some fixed value. The quantity k(R/L) is a ge-
ometric factor which can be determined by calculating the Wil-
son loop expectation values in lattice perturbation theory. The
role of lattice simulations will be to measure non-perturbatively
the expectation values. On the lattice, derivatives are replaced
by finite differences, so the renormalized coupling is defined to
be

g2((R + 1/2)/L, L) =
1

k(R/L)
(R + 1/2)2χ(R + 1/2, L) ,

χ(R + 1/2, L) = − ln
[
W(R + 1,T + 1, L)W(R,T, L)
W(R + 1,T, L)W(R,T + 1, L)

]
|T=R ,

where χ is the Creutz ratio [67], and the renormalization
scheme is defined by holding the value of r = (R + 1/2)/L
fixed.

With this definition, the renormalized coupling g2 is a func-
tion of the lattice size L and the fixed value of r. The coupling is
non-perturbatively defined, as the expectation values are calcu-
lated via lattice simulations, which integrate over the full phase
space of the theory. By measuring g2(r, L) non-perturbatively
for fixed r and various L values, the running of the renormal-
ized coupling is mapped out. In a QCD-like theory, g2 increases
with increasing L as we flow in the infrared direction. In a con-
formal theory, g2 flows towards some non-trivial infrared fixed
point as L increases, whereas in a trivial theory, g2 decreases
with L. The advantage of this method is that no other energy
scale is required to find the renormalization group flow. The
renormalized coupling g2 is also a function of the bare cou-
pling g2

0, which is related to the lattice spacing a. Keeping the
lattice spacing fixed, the running of g2(r, L) is affected by the
lattice cut-off. The running has to be calculated in the con-
tinuum limit, extrapolating to zero lattice spacing. A similar
method was developed independently in [68].

One way to measure the running of the renormalized cou-
pling in the continuum limit is via step-scaling. The bare lattice
coupling is defined in the usual way β = 6/g2

0 as it appears
in the lattice action. Some initial value of g2 is picked from
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Figure 3: The measured coupling g2(2L) for 2L = 20, 24, 28 and 32, where βi is tuned such that
g2(L) = 1.44. A linear continuum extrapolation gives g2(2L) = 1.636(23) (statistical error), with
χ2/dof = 0.57/2.
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Figure 8: The running coupling g2(L), combining analytic lattice perturbation theory and the
simulation results, as described in the text. The running starts at the point g2(L0) = 0.825. For
almost all couplings there is excellent agreement with continuum 2-loop running. At the strongest
coupling, the simulation results begin to break away from perturbation theory.

– 20 –

Figure 7: The method and the main test result for pure-gauge theory are
shown in the figure. In the upper figure the extrapolation procedure
picks up the leading a2/L2 cutoff correction term in the step function.
It gives the fit to the continuum limit value of the step function. In
the lower figure, the running coupling g2(L) is shown. The blue points
are from results on Creutz ratios using analytic/numeric Wilson loop
lattice calculations in finite volumes with fixed value of r. In this pro-
cedure we start from the one-loop expansion of Wilson loops in finite
volumes based on the bare coupling [69]. The series is re-expanded
in the boosted coupling constant at the relevant scale of the the Creutz
ratio [70] to obtain realistic estimates of our running coupling with-
out direct simulations. The rest of the procedure for the blue points
follows what we described in the text. The green points are direct sim-
ulation results, following our procedure. The running starts at the point
g2(L0) = 0.825. For almost all couplings there is excellent agreement
with continuum 2-loop running. At the strongest coupling, the simula-
tion results begin to break away from perturbation theory.

which the renormalization group flow is started. On a sequence
of lattice sizes L1, L2, ..., Ln, the bare coupling is tuned on each
lattice so that exactly the same value g2(r, Li, βi) is measured
from simulations. Now a new set of simulations is performed,
on a sequence of lattice sizes 2L1, 2L2, ..., 2Ln, using the corre-
sponding tuned couplings β1, β2, ..., βn. From the simulations,
one measures g2(r, 2Li, βi), which will vary with the bare cou-
pling viz. the lattice spacing. These data can be extrapolated to
the continuum as a function of 1/Li. This gives one blocking
step L→ 2L in the continuum renormalization group flow. The
whole procedure is then iterated. The chain of measurements
gives the flow g2(r, L) → g2(r, 2L) → g2(r, 4L) → g2(r, 8L) →
..., as far as is feasible (Fig. 7). One is free to choose a different
blocking factor, say L → (3/2)L, in which case more blocking
steps are required to cover the same energy range.

We applied the above procedure to the running coupling in-
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β L fermion mass trajectories g2(L)
5 12 0.01 318 2.06(2)

16 0.01 74 1.67(11)
7 12 0.01 317 1.207(5)

12 0.001 116 1.207(12)
16 0.01 198 1.13(1)

12 12 0.01 162 0.590(4)
16 0.01 69 0.577(9)

15 12 0.01 144 0.447(3)
12 0.001 91 0.460(5)
16 0.01 62 0.444(7)

25 12 0.01 190 0.255(1)
16 0.01 156 0.253(2)

Table 1: Running couplings bracketing the conformal fixed point of the
N f = 16 model in the conformal window.

side the conformal window with N f = 16 flavors. The shortcut
of this pilot study ignores the extrapolation to the continuum
limit. The running coupling therefore is still contaminated with
finite cutoff effects. If the linear lattice size L is large enough,
the trend from the volume dependence of g2(L, a2) should indi-
cate the location of the fixed point. For g2(L, a2) > g∗2 we ex-
pect the decrease of the running coupling as L grows although
the cutoff of the flow cannot be removed above the fixed point.
Below the fixed point with g2(L, a2) < g∗2 we expect the run-
ning coupling to grow as L increases and the continuum limit of
the flow could be determined. The first results are summarized
in Table 1. They are consistent with the presented picture. For
example, at bare couplings β = 5, 7, 12 the cutoff dependent
renormalized coupling is larger than 0.5 and decreasing with
growing L. At small bare couplings the renormalized coupling
is flat within errors and the flow direction is not determined.
The independence of the results from the small quark mass of
the simulations is tested in two runs at mq = 0.001. Precise
determination of the conformal fixed point in the contiuum re-
quires further studies.
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