
ar
X

iv
:h

ep
-la

t/0
51

00
87

v1
  1

8 
O

ct
 2

00
5

The QCD phase diagram at finite density

BNL-NT-05/38

WUB-05-12

ITP-Budapest 623

Christian Schmidt ∗

Physics Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
E-mail: cschmidt@bnl.gov

Zoltan Fodor
Department of Physics, University of Wuppertal, Wuppertal, Germany
Institute for Theoretical Physics, Eötvös University, Budapest, Hungary
E-mail: fodor@bodri.elte.hu

Sandor Katz
Institute for Theoretical Physics, Eötvös University, Budapest, Hungary
E-mail: katz@bodri.elte.hu

We study the density of states method to explore the phase diagram of the chiral transition on

the tempeature and quark chemical potential plane. Four quark flavours are used in the analy-
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The QCD phase diagram at finite density Christian Schmidt

1. Introduction

To clarify the phase diagram of QCD and thus the nature of matter under extreme conditions
is one of the most interesting and fundamental tasks of high energy physics. Lattice QCD has been
shown to provide important and reliable information from first principals on QCD at zero density.
However, Lattice QCD at finite densities has been harmed by the complex action problem ever
since its inception. Forµ > 0 the determinant of the fermion matrix (detM) becomes complex.
Standard Monte Carlo techniques using importance samplingare thus no longer applicable when
calculating observables in the grand canonical ensemble according to the partition function

ZGC(µ) =
∫

DU detM[U](µ)exp{−SG[U]}. (1.1)

Recently many different methods have been developed to cirumvent the complex action problem
for smallµ/T [1, 2]. For a recent overview see also [3].

2. Formulation of the method

A very general formulation of the DOS method is the following: One exposed parameter (φ )
is fixed. The expectation value of a thermodynamic observable (O), according to the usual grand
canonical partition function (1.1), can be recovered by theintegral

< O>=
∫

dφ 〈O f(U)〉φ ρ(φ)
/

∫

dφ 〈 f (U)〉φ ρ(φ) (2.1)

where the density of states (ρ) is given by the constrained partition function:

ρ(x)≡ Zφ (x) =
∫

DU g(U)δ (φ −x). (2.2)

With 〈 〉φ we denote the expectation value with respect to the constrained partition function. In
addition, the product of the weight functionsf ,g has to give the correct measure ofZGC: f g =

detMexp{−SG}. This idea of reordering the partition functions is rather old and was used in
many different cases [4, 5, 6] The advantages of this additional integration becomes clear, when
choosingφ = P andg(U) = 1. In this caseρ(φ) is independent of all simulation parameters. The
observable can be calculated as a function of all values of the lattice couplingβ . If one has stored
all eigenvalues of the fermion matrix for all configurations, the observable can also be calculated
as a function of quark mass (m) and number of flavors[5] (Nf ). In this work we chose

φ = P and g= |detM|exp{−SG}, f = exp{iθ}. (2.3)

In other words we constrain the plaquette and perform simulations with measureg. In practice,
we replace the delta function in Equation (2.2) by a sharply peaked potential [6]. The constrained
partition function for fixed values of the plaquette expectation value can then be written as

ρ(x)≈
∫

DU g(U)exp{−V(x)} , (2.4)
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where exp{−V(x)} is a Gaussian potential with

V(x) =
1
2

γ (x−P)2 . (2.5)

We obtain the density of states (ρ(x)) by the fluctuations of the actual plaquetteP around the
constraint valuex. The fluctuation dissipation theorem gives

d
dx

lnρ(x) =< x−P>x . (2.6)

Before performing the integrals in Equation (2.1) we compute from an ensemble generated at
(µ0,β0):

〈O f(U)〉x (µ ,β ) = 〈O f(U)R(µ ,µ0,β ,β0)〉x/〈R(µ ,µ0,β ,β0)〉x , (2.7)

〈 f (U)〉x (µ ,β ) = 〈 f (U)R(µ ,µ0,β ,β0)〉x/〈R(µ ,µ0,β ,β0)〉x , (2.8)
d
dx

lnρ(x,µ ,β ) = 〈(x−P)R(µ ,µ0,β ,β0)〉x . (2.9)

HereR is given by the quotient of the measureg at the point(µ ,β ) and at the simulation point
(µ0,β0),

R(µ ,µ0,β ,β0) = g(µ ,β )/g(µ0,β0) =
|det(µ)|
|det(µ0)|

exp{SG(β )−SG(β0)}. (2.10)

Heaving calculated the expressions (2.7)-(2.9), we are able to extrapolate the expectation value
of the observable (2.1) to any point(µ ,β ) in a small region around the simulation point(µ0,β0).
For any evaluation of〈O〉(µ ,β ), we numerically perform the integrals in Equation (2.1). Wealso
combine the data from several simulation points to interpolate between them.

3. Simulations with constrained plaquette

The value we want to constrain is the expectation value of theglobal plaquette, which is given
on every gauge configuration by the sum over all lattice points (y) and directions (µν) of the local
plaquettePµν(y) and its adjointP†

µν(y),

P= ∑
y

∑
1≤µ<ν≤4

1
6

[

TrPµν(y)+TrP†
µν(y)

]

. (3.1)

Since the plaquette is also the main part of the gauge action,

SG =−β ∑
x

∑
1≤µ<ν≤4

{

1
6

[

TrPµν(x)+TrP†
µν(x)

]

−1

}

, (3.2)

the additional potentialV can be easily introduced in the hybrid Monte Carlo update procedure of
the hybrid-R algorithm [7]. After calculating the equationof motion for the link variablesUµ(y),
we find for the gauge part of the force

iḢµ(y) =

[

β
3

Uµ(y)Tµ (y)

(

1+
γ(x−P)

β

)]

TA
. (3.3)

Here the subscript TA indicates the traceless anti-Hermitian part of the matrix. We see that in
each molecular dynamical step the measurement of the plaquette is required. However, the only
modification in the gauge force is the factor in round brackets.
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Figure 1: Results for Simulations atβ = 4.98,µ = 0.3, λ = 0.02,nf = 4, am= 0.05, and number of lattice
points: 44. Shown are: (a) the density of statesρ(x), the phase factor〈cos(θ )〉, and their product, (b) the
Plaquette as a function of the couplingβ , with and without the phase factor, (c) the Susceptibility of the
Plaquette as a function of the couplingβ , with and without the phase factor, and (d) the extrapolation βc(λ )
to λ = 0, with and without the phase factor.

4. The critical line and the determination of a triple-point

Simulations have been performed with staggered fermions and Nf = 4. We chose 9 differed
points in the(β ,µ)-plane for the 44 lattice and 8 points for the 64 lattice. On each of these points we
did simulations with 20-40 constrained plaquette values, all with quark massam= 0.05. Further
simulations has been done with(β ,µ) = (5.1,0.3) on the 63×8 lattice foram= 0.05 andam=

0.03.

Fist of all we check, whether we can reproduce old results with our new method. We show
in Figure 1(a) results from a Simulation atµ = 0.3, β = 4.98 andλ = 0.02. Here we plot the
density of states (ρ) and the real part of the phase factor〈cos(θ)〉 as a function of the constrained
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(a)

90

100

110

120

130

140

150

160

170

0 50 100 150 200 250 300 350 400

µq [MeV]

Τ [MeV] multiparameter reweighting

DOS method, am=0.05

DOS method, am=0.03

(b)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350

nB [fm-3]

µq [MeV]

T=143 MeV

T=124 MeV

T=93 MeV

Figure 2: The phase diagram in physical (a), and the quark number density at constant temperatureT =

143 MeV (44 lattice),T = 124 MeV (64 lattice) andT = 93 MeV (63×8 lattice).

plaquette value. The results have been interpolated inP, in order to obtain a better result for the
necessary integration overP. The distributionρ shows a clear double peak structure, which signals
the transition. The phase factor is smaller in the low temperature phase (P<∼2.8). Hence in the
productρ 〈cos(θ)〉 the low temperature peak is suppressed. Now we perform the integrals

〈P〉=
∫

dx xρ(x)〈cos(θ)〉x ,
〈

P2〉=

∫

dx x2ρ(x)〈cos(θ)〉x . (4.1)

In Figure 1(b) we plot the plaquette expectation value〈P〉 as a function of the couplingβ . The
β -dependence is given by Equations (2.7)-(2.9). We indeed find that including the phase factor
does shift the transition to lower values of the coupling, which also means to lower temperatures.
This can also be seen in a shift of the peak of the susceptibility of the plaquetteχP ≡

〈

P2
〉

−〈P〉2,
which we plot in Figure 1(c). Since theλ parameter introduces a systematic error, which can be
seen by the relative large critical coupling ofβc = 4.976(4) in comparison to the result form multi-
parameter reweightingβc = 4.938(2) [1], we perform the a linear extrapolation ofλ → 0, from
λ = 0.02, λ = 0.015 andλ = 0.01. We show the extrapolation in Figure 1(d). The extrapolated
resultβ = 4.938(4) (including the phase factor) and the result from multi-parameter reweighting
are in very good agreement. From now on we only give results for λ/m= 0.2, theλ dependence
is however expected to be smaller for largerµ .

In the range of 0.4<∼aµ<∼0.5 for the 44 lattice, as well as 0.3<∼aµ<∼0.4 for the 64 lattice we
found two transitions in the plaquette expectation value〈P〉(β ). The two critical couplings result
in two transition lines in the phase diagram. The two transition lines are almost perpendicular in the
(β ,µ)-diagram, and join in a triple-point of the phase diagram. in Figure 2(a) we show the phase
diagram in physical units. The scale was set by the Sommer radius r0, measured on a 103 × 20
lattice. In both cases, the triple point is located aroundµ tri

q ≈ 300 MeV, however its temperature
(T tri) decreases fromT tri ≈ 148MeV on the 44 lattice toT tri ≈ 137MeV on the 64 lattice.

Also shown in Figure 2(a) are points from simulations with quark massam= 0.03. The phase
boundary turned out to be — within our statistical uncertainties — independent of the the mass.
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5. The quark number density

To reveal the properties of the new phase located in the lowerright corner of the phase dia-
gram, we calculated the quark number density, at constant coupling β and at constant temperature
respectively. To obtain the densitynq we perform the following integration

〈

dlndetM
d(aµ)

〉

=

∫

dx

〈

dlndetM
d(aµ)

cos(θ)
〉

x
ρ(x) (5.1)

The thermodynamic quantitynq are given as usual by

nq =
1

a3N3
s Nt

〈

dlndetM
d(aµ)

〉

(5.2)

In Figure 2(b) we show the baryon number density, which is related to the quark number density
by nB = nq/3. The results are plotted in physical units and correspond to a constant temperature of
T ≈ 143 MeV (44 lattice),T ≈ 124 MeV (64 lattice) andT ≈ 93 MeV (64×8 lattice). In order to
divide out the leading order cut-off effect, we multiply we have multiplied the data with the factor
c = SB(Nt)/SB, which is the Stefan-Boltzmann value of a free lattice gas ofquarks at a given
value ofNt , divided by its continuum Stefan-Boltzmann value. At the same value of the chemical
potential where we find also a peak in the susceptibility of the plaquette (µc), we see a sudden rise
in the baryon number density. Thus forµ > µc we enter a phase of dense matter. The transition
occurs at a density of(2−3)×nN, wherenN denotes nuclear matter density. Above the transition,
the density reaches values of(10−20)×nN. Quite similar results have been obtained recently by
simulations in the canonical ensemble [8].
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