
Extracting tag hierarchies
Gergely Tibély1,3, Péter Pollner2,3, Tamás Vicsek1,3 Gergely Palla2,3,∗
1 Dept. of Biological Physics, Eötvös University, Budapest, Hungary
2 MTA-ELTE Statistical and Biological Physics Research Group of
HAS, Budapest, Hungary
3 Eötvös University, Regional Knowledge Centre, Székesfehervár,
Hungary
∗ E-mail: pallag@hal.elte.hu

Abstract

Tagging items with descriptive annotations or keywords is a very natural way
to compress and highlight information about the properties of the given entity.
Over the years several methods have been proposed for extracting a hierarchy
between the tags for systems with a ”flat”, egalitarian organization of the tags,
which is very common when the tags correspond to free words given by numer-
ous independent people. Here we present a complete framework for automated
tag hierarchy extraction based on tag occurrence statistics. Along with propos-
ing new algorithms, we are also introducing different quality measures enabling
the detailed comparison of competing approaches from different aspects. Fur-
thermore, we set up a synthetic, computer generated benchmark providing a
versatile tool for testing, with a couple of tunable parameters capable of gener-
ating a wide range of test beds. Beside the computer generated input we also
use real data in our studies, including a biological example with a pre-defined
hierarchy between the tags. The encouraging similarity between the pre-defined
and reconstructed hierarchy, as well as the seemingly meaningful hierarchies
obtained for other real systems indicate that tag hierarchy extraction is a very
promising direction for further research with a great potential for practical ap-
plications.

Tags have become very prevalent nowadays in various online platforms rang-
ing from blogs through scientific publications to protein databases. Further-
more, tagging systems dedicated for voluntary tagging of photos, films, books,
etc. with free words are also becoming popular. The emerging large collections
of tags associated with different objects are often referred to as folksonomies,
highlighting their collaborative origin and the “flat” organization of the tags
opposed to traditional hierarchical categorization. Adding a tag hierarchy cor-
responding to a given folksonomy can very effectively help narrowing or broad-
ening the scope of search. Moreover, recommendation systems could also benefit
from a tag hierarchy.

Introduction

The appearance of tags in various online contents have become very common,
e.g., tags indicate the topic of news-portal feeds and blog post, the genre of

1

ar
X

iv
:1

40
1.

57
41

v1
 [

cs
.I

R
]

 2
2

Ja
n

20
14

films or music records on file sharing portals, or the kind of goods offered in Web
stores. By summarizing the most important properties of an entity in only a few
words we “compress” information and provide a rough description of the given
entity which can be processed very rapidly, (e.g., the user can decide whether the
given post is of interest or not without actually reading it). The usage of tags,
keywords, categories, etc., for helping the search and browsing amongst a large
number of objects is a general idea that has been around for a long time in, e.g.,
scientific publications, library classification systems and biological classification.
However, in the former examples the tagging (categorization) of the involved
entities is hierarchical, with a set of narrower or broader categories building
up a tree-like structure composed of “is a subcategory of” type relations. In
contrast, the nature of tags appearing in online systems is rather different:
they can usually correspond to any free word relevant to the tagged item, and
they are almost never organized into a pre-defined hierarchy of categories and
sub-categories [1–3]. Moreover, in some cases they originate from extensive
collaboration as, e.g., in tagging systems like Flickr, CiteUlike or Delicious [4–6],
where unlimited number of users can tag photos, Web pages, etc., with free
words. The arising set of free tags and associated objects are usually referred to
as folksonomies, for emphasizing their collaborative nature. Since each tagging
action is forming a new user-tag-object triple in these systems, their natural
representation is given by tri-partite graphs, or in a more general framework
by hypergraphs [5, 7–10], where the hyperedges connect more than two nodes
together.

One of the very interesting challenges related to systems with free tagging is
extracting a hierarchy between the appearing tags. Although most tagging sys-
tems are intrinsically egalitarian, the way users think about objects presumably
has some built in hierarchy, e.g., “poodle” is usually considered as a special case
of “dog”. By revealing this sort of hierarchy from, e.g., tag co-occurrence statis-
tics, we can significantly help broadening or narrowing the scope of search in the
system, give recommendation about yet unvisited objects to the user [11,12], or
help the categorization of newly appearing objects. Beside the high relevance for
practical applications, this problem is interesting also from the theoretical point
of view, as marked by several alternative approaches proposed in the recent
years. P. Heymann and H. Garcia-Molina introduced a tag hierarchy extract-
ing algorithm based on analyzing node centralities in a co-occurrence network
between the tags [13], where connections between tags indicate the appearance
of the tags on the same objects simultaneously and link weights correspond to
the frequency of co-occurrences. Another interesting approach was outlined by
A. Plangprasopchok and K. Lerman [14, 15], which can be applied to systems
where users may define a shallow hierarchy for their own tags, and by agglom-
erating these shallow hierarchies we gain a global hierarchy between the tags.
Further notable algorithms were given by P. Schmitz [16], using a probabilistic
model and C. Van Damme et al. [17], integrating information from as many
sources as possible.

In this paper we introduce a detailed framework for tag hierarchy extrac-
tion. Our intended main contributions to this field here are represented by the

2

development of a synthetic, computer generated benchmark system, and the
introduction of quality measures for extracted hierarchies. The basic idea of the
benchmark system is to simulate the tagging of virtual objects with tags based
on a pre-defined input hierarchy between the tags. When applying a hierarchy
extraction algorithm to the generated data, the obtained tag hierarchy can be
compared to the original tag hierarchy used in the simulation. By changing the
parameters of the simulations we can test various properties of the tag hierar-
chy extracting algorithm in a controlled way. The different quality measures
we introduce can be used to evaluate the results of a tag hierarchy extracting
algorithm when the exact hierarchy between the tags is also known, (as, e.g.,
in case of the synthetic benchmark). Furthermore, we also develop new hierar-
chy extraction methods, which are competitive with the state of the art current
methods.

These methods are tested on both the synthetic benchmark and on a couple
of real systems as well. One of our data set contains proteins tagged with protein
functions, where the extracted tag hierarchy can be compared to the protein
function hierarchy of the Genome Ontology. The other real systems included in
our study are given by tagged photos from the photo sharing platform Flickr
and tagged movies from the Internet Movie Database (IMDb). In these cases,
pre-defined “exact” tag hierarchies are not given, therefore, the outcomes of our
hierarchy extraction algorithm can be evaluated only by visual inspection of
smaller subgraphs in the obtained hierarchies. Luckily, as the tags correspond
to English words in these systems, we can still get a good impression whether
the obtained hierarchies are meaningful or not.

Our tag hierarchy extraction methods are rooted in complex network theory.
In the last 15 years the network approach has become an ubiquitous tool for
analyzing complex systems [18,19]. Networks corresponding to realistic systems
can be highly non-trivial, characterized by a low average distance combined with
a high average clustering coefficient [20], anomalous degree distributions [21,22]
and an intricate modular structure [23–25]. The appearance of node tags is very
common in e.g., biological networks, [26–31], where they usually refer to the bi-
ological function of the units represented by the nodes (proteins, genes, etc.).
Node features are also fundamental ingredients in the so-called co-evolving net-
work models, where the evolution of the network topology affects the node prop-
erties and vice versa [32–37]. Meanwhile, hierarchical organization is yet another
very relevant concept in network theory [38–44]. As networks provide a sort of
“backbone” description for systems in biology, physics, chemistry, sociology,
etc., whenever the related system is hierarchical, naturally, the given network is
likely to preserve this aspect to some degree. This is supported by several recent
studies, focusing on the dominant-subordinate hierarchy among crayfish [45], the
leader-follower network of pigeon flocks [46], the rhesus macaque kingdoms [47],
the structure of the transcriptional regulatory network of Escherichia coli [48],
and on a wide range of social [49–51] and technological networks [41].

The two network based tag hierarchy extraction methods presented in this
paper are both relying on the weighted network between the tags based on
co-occurrence statistics. For the majority of the tags, the direct ancestor in

3

the hierarchy is actually chosen from its neighbors in the network according to
various delicate measures.

Results

Algorithms

The reason for including both algorithm A and algorithm B in the paper is that
algorithm A “wins” on the protein function data set, while algorithm B is better
on the computer generated benchmarks and also seems to produce even more
meaningful results in case of Flickr and IMDb. We made free implementation
of both methods available at (http://hiertags.elte.hu).

Algorithm A

The first stage corresponds to defining weighted links between the tags. Prob-
ably the most natural choice is given by the number of co-occurrences, (the
number of objects tagged simultaneously by the given two tags). Since we are
aiming at a directed network, (in which links are pointing from tags higher in
the hierarchy towards descendants lower in the hierarchy), in this initial stage
we actually assume two separate links pointing in the opposite direction for
every pair of co-occurring tags, (with both links having the same weight).

In the next step we prune the network by throwing away a part of the links.
Instead applying a global threshold, for each tag i we remove incoming links with
a weight smaller than ω fraction of the weight of the strongest incoming link
on i. According to our tests on the protein function data set, the quality of the
results was only slightly effected by changing ω. (Our quality measures and the
description of the data sets are given in forthcoming sections). Nevertheless, an
optimal plateau was observed in the quality as a function of ω between ω = 0.3
and ω = 0.55, as discussed in details Sect.S1.1.2 in the Supporting Information.
Thus, in the rest of the paper we show results obtained at ω = 0.4.

After the complete link removal process has been finished, the direct ancestor
of tag i is chosen from the remaining in-neighbors as follows. We calculate the
z-score for the co-occurrence with each in-neighbor individually, given by the
difference between the number of observed co-occurrences and the number of
expected co-occurrences at random, scaled by the standard deviation, (based
on the tag frequencies, more details on the z-score are given in Methods). The
in-neighbor j with the highest z-score is usually identified as the direct ancestor,
and all other incoming links are deleted on i. However, there is a very important
exception to this rule: in case the i→ j link “survived” when thresholding the
incoming links on j. This means that i happens to be also a candidate for the
ancestor of j, and actually the two tags are more likely to be siblings. In this
scenario we go down the list of remaining in-neighbors of i in the order of the
z-score, until we find a candidate l for which the link i→ l was already deleted,
and identify l as the ancestor of i. In case no such in-neighbor can be found, i
becomes a local root, with temporally no incoming links.

4

http://hiertags.elte.hu

In the last phase of the algorithm we first choose a global root from the
local ones according to the maximum entropy of their incoming link weight
distribution: if the incoming link weights on i are given by wij with

∑
j wij = W ,

then entropy can be written as −
∑
j
wij
W ln

wij
W . The reasoning behind this

choice is that a large entropy usually corresponds to a large number of direct
descendants with more or less uniform weight distribution. After the global
root has been chosen, we go through the list of local roots in the order of
their entropy, and link them under their partner with which they co-occur most
frequently. (To avoid the formation of loops, we choose only from co-occurring
partners located in another subtree).

The result of the algorithm is a directed tree, since we assign one direct
ancestor to every tag during the process, (except the global root), and we do
not allow loops. The complexity of the algorithm can be estimated as O(Q) +
O(M logM), where Q denotes the number of objects, and M stands for the
number of links in the co-occurrence network between the tags. (The details
and the pseudo code of the algorithm are given in Sect.S1.1.1 in the Supporting
Information).

Algorithm B

In case of algorithm B the weight of the links in the network between the tags is
the same as in algorithm A, namely the number of objects the tags co-occurred
on. However, instead of parallel directed links pointing in the opposite direction,
here we consider only single undirected links. Similarly to algorithm A, in the
second phase we remove a part of the links from the network. However, in
this case we use the z-score between connected pairs as a threshold, i.e., if the
z-score is below 10, the given link is thrown away. (The optimal value for the
z-score threshold was set based on experiments on our synthetic benchmark, as
detailed in Sect.S1.2.2 in the Supporting Information.) There is one exception
to the above rule of thresholding: if a tag appears on more than half of the
objects of the other tag, then the corresponding link is kept even if the z-score
is low.

Next, the eigenvector centrality is calculated for the tags based on the
weighted undirected network remaining after the thresholding, and the tags
are sorted according to their centrality value. The hierarchy is built from bot-
tom up: starting from the tag with the lowest eigenvector centrality we choose
the direct ancestor of the given tag from its remaining neighbors according to
a couple of simple rules. First of all, the ancestor must have a higher central-
ity. The reasoning behind this is that the eigenvector centrality is analogous to
PageRank. Thus, the centrality of a tag is high if it is connected to many other
high centrality tags, and therefore, higher centrality values are likely to appear
on more frequent and more general tags.

In case the tag i has more than one remaining neighbor with a higher cen-
trality value, we choose the candidate which is the most related to i and the set
of tags already classified as a descendant of i. This is implemented by aggregat-
ing the z-score between the given candidate and the tags in the branch starting

5

from i, (including i as well), and selecting according to the highest aggregated
z-score value. We note that this is a unique feature of the algorithm: by ag-
gregating over the descendants of i we are using more information compared
to simple similarity measures, and hence, are more likely to choose the most
related candidate as the parent of i.

Since we iterate over the tags in reverse order according to their centrality
value, and ancestors have always higher centralities compared to their descen-
dants, no loops are formed during the procedure. The complexity of the method
can be estimated as O(Q) +O(N · lnN), where Q stands for the number of ob-
jects and N denotes the number of different tags. (The details and the pseudo
code of the algorithm are given in Sect.S1.2.1 in the Supporting Information).

Measuring the quality of the extracted tag hierarchy

Simple quality measures

Before actually discussing the results given by tag hierarchy extracting methods
in different systems, we need to specify a couple of measures for quantifying the
quality of the obtained hierarchies. The natural representation of a hierarchy
is given by a directed acyclic graph (DAG), in which links are pointing from
nodes at higher level in the hierarchy towards related other nodes lower in the
hierarchy. If the exact tag hierarchy is known, the problem is mapped onto
measuring the similarity between the DAG obtained from the tag hierarchy
extraction method, the “reconstructed” graph, Gr and the exact DAG, Ge.

A simple and natural idea is taking the ratio of exactly matching links in Gr,
denoted by rE, as a primary indicator. In case Gr has only a single connected
component, rE is simply given by the number of links also present in Ge, divided
by the total number of links in Gr, denoted by Mr. However, if Gr contains only
a few links with a vast number of isolated nodes, this sort of normalization can
lead to a unrealistically high rE value, in case the links happen to be exactly
matching. Thus, in the general case we normalize the number of exactly match-
ing links by max(N − 1,Mr), where N − 1 corresponds to the number of links
needed for creating a tree between the N tags.

In a more tolerant approach we may also accept links between more distant
ancestor descendant pairs according to the exact hierarchy, (e.g., links pointing
from “grandparents” to “grandchildren”). Beside the ratio of acceptable links,
rA, we can measure the ratio of links between unrelated tags, rU as well, (these
are pairs which are not connected by any directed path in Ge), and also the
ratio of “inverted” links, rI, pointing in the opposite direction compared to Ge,
or connecting more distant ancestor descendant pairs in the wrong direction.
Furthermore, when Mr < N − 1, the ratio of missing links from Gr, denoted
by rM, is another important indicator of the effectiveness of the algorithm. (If
Gr is composed of only a single component, rM is 0 by definition.) Similarly to
rE, all quality indicators introduced so far are normalized by max(N − 1,Mr).
These measures are not completely independent of each other, i.e., the ratio of
acceptable links is always larger than or equal to the ratio of exactly matching

6

links, rA ≥ rE, and also rA + rI + rU + rM = 1.

Normalized mutual information between hierarchies

A somewhat more elaborate approach to measuring the quality of the recon-
structed hierarchy can be given by the normalized mutual information, (NMI),
introduced originally in information theory for measuring the mutual depen-
dence of two random variables [52,53]. (The definition of the NMI in general is
given in Methods). A very important application of the NMI is related to the
problem of comparing different partitioning of the same graph into communi-
ties [54, 55]. The advantage of the NMI approach when comparing hierarchies
is that the resulting similarity measure is sensitive not only to the amount of
non-matching links, but also to the position of these links in the hierarchies. In
other words, the change in the similarity is different for rewiring a link pointing
to a leaf and for rewiring a link higher in the hierarchy.

When judging the similarity between two hierarchies, a natural idea is to
compare the sets of descendants for each tag in the corresponding DAGs. E.g.,
if the set of descendants of tag i is De(i) in the exact hierarchy and Dr(i) in the
reconstructed one, then the number of tags in the intersection of these two sets is
given by |De(i) ∩Dr(i)|. Roughly speaking, the higher the value of this quantity
over all tags, the higher is the similarity between the two hierarchies. To build
a similarity measure from this concept in the spirit of the NMI, first we define
pe(i) = |De(i)| /(N−1) as the probability for picking a tag from the descendants
of i at random in the exact hierarchy, where N denotes the total number of tags
in Ge. (Since the tag i is not included in De(i), the possible maximum value
for |De(i)| is N − 1). Similarly, the probability for choosing a tag from the
descendants of i at random in Gr is given by pr(i) = |Dr(i)| /(N − 1), while
the probability for picking a tag from the intersection between the descendants
of i in the two hierarchies can be written as pr,e(i) = |De(i) ∩Dr(i)| /(N − 1).
Based on this, the NMI between the exact- and reconstructed hierarchies can
be formulated as

Ie,r = −
2
N∑
i=1

pe,r(i) ln
(

pe,r(i)
pe(i)pr(i)

)
N∑
i=1

pe(i) ln pe(i) +
N∑
i=1

pr(i) ln pr(i)

=

2
N∑
i=1

|De(i) ∩Dr(i)| ln
(
|De(i)∩Dr(i)|(N−1)
|De(i)|·|Dr(i)|

)
N∑
i=1

|De(i)| ln
(
|De(i)|
N−1

)
+

N∑
i=1

|Dr(i)| ln
(
|Dr(i)|
N−1

) .
(1)

This measure is 1 if and only Ge and Gr are identical, and is 0 if the intersec-
tions between the corresponding branches in the two hierarchies is of the same
magnitude as we would expect at random, or in other words, if Ge and Gr are
independent. The similarity defined in the above way is very closely related
to the NMI used in community detection [54, 55], the analogy between the two
quantities can be made explicit by an appropriate mapping from the hierar-
chy between the tags to a partitioning of the tags, (further details are given in
Sect.S2.1 in the Supporting Information).

We examined the behavior of the NMI given in (1) by taking a binary tree

7

Figure 1: Using the normalized mutual information (NMI) for mea-
suring the similarity between hierarchies. We tested the behavior of the
NMI by applying (1) to a binary tree of 1,023 nodes, Gb, and its randomized
counter part, Grand, obtained by rewiring the links at random, as shown in the
illustration at the top. The decay of the obtained NMI is shown in the bottom
panel as a function of the fraction of the rewired links, f . The three different
curves correspond to rewiring the links in reverse order according to their po-
sition in the hierarchy (purple circles), rewiring in random order (blue squares)
and rewiring in the order of the position in the hierarchy (green triangles). The
concept of the linearized mutual information (LMI) for the general tag hierar-
chy reconstruction problem is illustrated in red: By projecting the measured
Ie,r value onto the f axis via the blue curve we obtain f∗, giving the fraction of
rewired links in a randomization process with the same NMI value. The LMI is
equal to Ilin = 1− f∗, corresponding to the fraction of unchanged links.

of 1,023 nodes, Gb, and comparing it to its randomized counterpart, Grand,
obtained by rewiring a fraction of f links to a random location. In Fig.1. we
show the measured NMI as a function of f . If we start the rewiring with links
pointing to leafs, and continue according to the reverse order in the hierarchy,
the NMI shows a close to linear decay as a function of f almost in the entire
[0, 1] interval (purple circles). However, if links are chosen in random order,
Ib,rand is decreasing much faster in the small f region, with an overall non-linear
f dependency (blue squares). An even steeper decay can be observed when
links are chosen in the order of their position in the hierarchy (green triangles).
Nevertheless, Ib,rand → 0 when f → 1 in all cases, thus, the similarity defined in
this way is vanishing for a pair of independent DAGs. Meanwhile, the significant
difference between the three curves displayed in Fig.1c shows that the NMI is
sensitive also to the position of the rewired links in the hierarchy: rewiring the
top levels of the hierarchy is accompanied by a drastic drop in the similarity,
while changes at the bottom of the hierarchy cause only a minor decrease, which
is linear in the fraction of rewired links.

This non-trivial feature of the NMI allows the introduction of another in-

8

teresting quality measure for a reconstructed hierarchy. Supposing a similar
randomization procedure on Ge as shown in Fig.1, we may ask what fraction of
links has to be rewired on average for reaching the same NMI as Gr? The formal
definition of this measure is given as follows. Let I(f) denote the average NMI
obtained for a fraction of f randomly rewired links, where the links are chosen
in random order, I(f) ≡ 〈Ie,rand〉f . By projecting the NMI between the exact-
and reconstructed hierarchies, Ie,r, to the f axis using this function as

f∗ = I−1(Ie,r), (2)

we receive the fraction of randomly chosen links to be rewired in Ge for obtaining
a randomized hierarchy with the same NMI as Gr, (see Fig.1 for illustration).
Based on that we define the linearized mutual information, (LMI) as

Ilin = 1− f∗ = 1− I−1(Ie,r). (3)

This quality measure corresponds to the fraction of unchanged links in a random
link rewiring process, resulting in a hierarchy with the same NMI as Gr. (The
reason for calling it “linearized” is that (3) is actually projecting Ie,r to the
linear 1− f curve). By comparing the LMI to the fraction of exactly matching
links, re, we gain further information on the nature of the reconstructed DAG: If
Ilin is significantly larger than re, the reconstructed DAG is presumably better
for the links high in the hierarchy, whereas if Ilin is significantly lower than re,
the reconstructed DAG is more precise for links close to the leafs.

Real tagging systems

Reconstructing the hierarchy of protein functions

Although the primary targets of tag hierarchy extraction methods are given
by tagging systems with no pre-defined hierarchy between the tags, for testing
the quality of the extracted hierarchy we need input data for which the exact
hierarchy is also given. A very important real tag hierarchy is provided by
protein functions as described in the Gene Ontology [56], organizing function
annotations into three separate DAGs corresponding to “biological process”,
“molecular function” and “cellular component” oriented description of proteins.
The corresponding input data for a tag hierarchy extraction algorithm would
be a collection of proteins, each tagged by its function annotations. Luckily,
the Gene Ontology provides also a regularly updated large data set enlisting
proteins and their known functions aggregated from a wide range of sources,
(a more detailed description of the data set we used is given in Materials and
Methods).

In Fig.2a we show a smaller subgraph from the hierarchy between molecular
functions given in the Gene Ontology, Ge, together with the subgraph between
the same tags in the result obtained by running our algorithm A on the tagged
protein data set, Gr, displayed in Fig.2b. The matching between the two sub-
graphs is very good: the majority of the connections are either exactly the same

9

Figure 2: Comparison between the exact hierarchy and the recon-
structed hierarchy obtained from algorithm A. a) A subgraph in the hi-
erarchy of protein functions, (describing molecular functions), according to the
Gene Ontology, treated as the exact hierarchy, Ge. b) The hierarchy between
the same tags obtained from running algorithm A on the tagged protein data
set, (the reconstructed hierarchy, Gr). The exactly matching- and acceptable
links are colored green and orange respectively, the unrelated links are shown
in red, while the missing links are colored gray. c) The list of included protein
functions in panels (a) and (b).

(shown in green), or acceptable (shown in orange), by-passing levels in the hier-
archy and e.g., connecting “grandchildren” to “grandparents”. The appearing
few unrelated– and missing links are colored red and gray, respectively.

The quality measures obtained for the complete reconstructed hierarchy are

10

given in table 1. For comparison we also evaluated the same measures for
algorithm B, the algorithm by P. Heymann and H. Garcia-Molina, and the
algorithm by P. Schmitz. According to the results all 4 methods perform rather
well, however, our algorithm seems to achieve the best scores. Although the
ratio of exactly matching links is rE = 21%, (which is not very high), the ratio
of acceptable links is reaching rA = 66%, which is very promising. The NMI
given by (1) is Ie,r = 35%, however, the LMI according to (3) is Ilin = 78%. (The
corresponding plot showing the decay of the NMI between the Gene Ontology
hierarchy and its randomized counterpart is given in Sect.S2.2 in the Supporting
Information). Thus, the similarity between our reconstructed hierarchy and the
hierarcy from the Gene Ontology is so high that if we would randomize the Gene
Ontology, (by rewirnig the links in random order), the same NMI value would
be reached already after rewiring 22% of the links. The large difference between
Ilin and rE in favour of Ilin indicates that our algorithm is better at predicting
links higher in the hierarchy. E.g., in a randomization with random link rewiring
order keeping only rE = 21% of the links unchanged, the NMI would be around
2% instead of the actualy measured Ie,r = 35%. The reason why Ie,r can stay
relatively high for the reconstructed hierarchy is that the majority of the non-
matching links are low in the hierarchy, therefore, have a smaller effect on the
NMI.

Table 1: Quality measures for the reconstructed hierarchies in case
of the protein function data set

rE rA rI rU rM Ie,r Ilin
algorithm A 21% 66% 2% 32% 0% 35% 78%
algorithm B 20% 52% 3% 44% 1% 30% 75%
P. Heymann & H. Garcia-Molina 19% 51% 3% 46% 0% 30% 75%
P. Schmitz 18% 65% 2% 23% 10% 30% 75%

The quality of the tag hierarchy obtained for the tagged protein data set, Gr,
was evaluated by comparing it to the hierarchy of protein functions in the
Gene Ontology, Ge. The quality measures presented in the different columns
are the following: the ratio of exactly matching links in Gr,denoted by rE, the
ratio of acceptable links, rA, (connecting more distant ancestor-descendant
pairs), the ratio of inverted links, rI, (pointing in the opposite direction), the
ratio of unrelated links, rU, (connecting tags on different branches in Ge), the
ratio of missing links in Ge, denoted by rM, the normalized mutual information
between the two hierarchies, Ie,r, and the linearized mutual information, Ilin,
corresponding to the fraction of exactly matching links remaining after a
random link rewiring process stopped at NMI value given by Ie,r. The
different rows correspond to results obtained from algorithm A (1st row),
algorithm B (2nd row),the method by P. Heymann & H. Garcia-Molina (3d

row), and the algorithm by P. Schmitz (4th row).

11

Hierarchy of Flickr tags

One of the most widely known tagging systems is given by Flickr, an online photo
management and sharing application, where users can tag the uploaded photos
with free words. Since the tags are not organized into a global hierarchy, this
system provides an essential example for the application field of tag hierarchy
extracting algorithms. We have run our algorithm B on a relatively large, filtered
sample of photos, (the details of the construction of our data set are given in
Methods). Although the “exact” hierarchy between the tags is not known in this
case, since the tags correspond to English words, we can still give a qualitative
evaluation of the result just by looking at smaller subgraphs in the extracted
hierarchy.

Figure 3: Subgraph from the hierarchy between Flickr tags. By run-
ning our algorithm B on a filtered sample from Flickr, we obtained a hierarchy
between the tags appearing on the photos in the sample. Since the total number
of tags in our data reached 25,441, here we show only a smaller subgraph from
the result, corresponding to a part of the tags categorized under “reptile”. Stubs
correspond to further direct descendants not shown in the figure, and the size
of the nodes indicate the total number of descendants on a logarithmic scale,
(e.g., “prairie rattlesnake” has none, while “snake” has altogether 110.).

12

An example is given in Fig.3., showing a few descendants of the tag “reptile”
in our reconstruction. Most important direct descendants are “snake”, “lizard”,
“alligator” and “turtle”. The tags under these main categories seem to be
correctly classified, e.g., “alligator snapping turtle” is under “turtle”, (instead of
the also related “alligator”). Interestingly, Latin names (binomial names) from
the taxonomy of “reptilia” form a further individual branch under “reptile”,
however, occasionally we can also see binomial names directly connected to the
corresponding English name of the given species. More examples from our result
on the Flickr data are given in Sect.S3.1 in the Supporting Information, which
taken together with Fig.3 give an overall impression of a meaningful hierarchy,
following the “common sense” by and large. (Furthermore, similar samples from
the hierarchies extracted by the other methods are also given in Sect.S3.2 in the
Supporting Information.)

Hierarchy of IMDb tags

Another widely known online database is given by the IMDb, providing detailed
information related to films, television programs and video games. One of the
features relevant from the point of view of our research is that keywords related
to the genre, content, subject, scenes, and basically any relevant feature of
the movies are also available. These can be treated similarly to the Flickr
tags, i.e., they are corresponding to English words, which are not organized
into a hierarchy. In Fig.4. we show results obtained by running Algorithm
B on a relatively large, filtered sample of tagged movies. (The details of the
construction of the data set are given in Methods). Similarly to the Flickr data,
we display a smaller part of the branch under the tag “murder” in the extracted
hierarchy. Most important direct descendants are corresponding to “death”,
“prison” and “investigation”, with “blood”, “suspect” and “police detective”
appearing on lower levels of the hierarchy. Although the tags appearing in the
different sub-branches are all related to their parents, the quality of the Flickr
hierarchy seemed a bit better. This may be due to the fact that keywords
can pertain to any part of the movies, and hence, the tags on a single movie
can already be very diverse, providing a more difficult input data set for tag
hierarchy extraction. Nevertheless, this result reassures our statement related to
the Flickr data, namely that the hierarchies obtained from our algorithm have
a meaningful overall impression. (Similar samples from the hierarchies obtained
with the other methods are shown in Sect.S3.2 in the Supporting Information.)

Synthetic benchmark based on random walks

Defining the benchmark system

Providing adjustable benchmarks is very important when testing and compar-
ing algorithms. The basic idea of a benchmark in general is given by a system,
where the ground truth about the object of search is also known. However, for
most real systems this sort of information is not available, therefore, synthetic

13

Figure 4: Subgraph from the hierarchy between IMDb tags. The results
were obtained by running Algorithm B on a filtered sample of films from IMDb,
tagged by keywords describing the content of the movies. Here we show only a
smaller subgraph between the descendants of “murder”, where stubs correspond
to further direct descendants not shown in the figure, and the size of the nodes
indicate the total number of descendants on a logarithmic scale.

benchmarks are constructed. E.g., community finding is one of the very inten-
sively studied area of complex network research, with an enormous number of
different community finding algorithms available [25]. Since the ground truth
communities are known only for a couple of small networks, the testing is usually
carried out on the LFR benchmark [57], which is a purely synthetic, computer
generated benchmark: the communities are pre-defined, and the links building
up the network are generated at random, with linking probabilities taking into
account the community structure. The drawback of such synthetic test data is
its artificial nature, however, the benefit on the other side is the freedom of the
choice of the parameters, enabling the variance of the test conditions on a much
larger scale compared to real systems.

Here we propose a similar synthetic benchmark system for testing tag hier-
archy extraction algorithms. The basic idea is to start from a given pre-defined

14

hierarchy, (the “exact” hierarchy), and generate collections of tags at random,
(corresponding to tagged objects in a real system), based on this hierarchy. The
tag hierarchy extraction methods to be tested can be run on these sets of tags,
and the obtained hierarchies, (the ”reconstructed” hierarchies), can be com-
pared to the exact hierarchy used when generating the synthetic data. When
drawing an analogy between this system and the LFR benchmark, our pre-
defined hierarchy is corresponding to the pre-defined community structure in
the LFR benchmark, while the generated collections of tags are corresponding
to the random networks generated according to the communities.

,

,1B

3F

Further tags
by random walk

First tag at
random

0A

1A 1B

2A 2B 2C 2D 2E

3A 3B 3C 3D 3E 3F

Hierarchy Tagged object

Figure 5: Generating tags on virtual objects by random walks on the
hierarchy. The objects in this approach are represented simply by collections
of tags. For a given collection, the first tag is picked at random, (illustrated in
red), while the rest of the tags are obtained by implementing a short undirected
random walk on the DAG, starting from the first tag, (illustrated in purple).

To make the above idea of a synthetic tagging system work in practice, we
have to specify the method for generating the random collections of tags based
on the given pre-defined hierarchy. In general, the basic idea is that tags more
closely related to each other according to the hierarchy should appear together
with a larger probability compared to unrelated tags. To implement this, we
have chosen a random walk approach as suggested in [58]. The first tag in each
collection is chosen at random. For the rest of the tags in the same collection,
with probability pRW we start a short undirected random walk on the hierarchy
starting from the first tag, and choose the endpoint of the random walk, or
with probability 1 − pRW we again choose at random. An illustration of this
process is given in Fig.5, (a brief pseudo-code of the data generation algorithm
is given in Algorithm S4. in the Supporting Information). The parameters of
the benchmark are the following: the pre-defined hierarchy between the tags,
the frequency of the tags when choosing at random, the probability pRW for
generating the second and further tags by random walk, the length of the random
walks, the number of objects and finally, the distribution of the number of
tags per object. Although this is a long list of parameters, the quality of the
reconstructed hierarchy is not equally sensitive to all of them. E.g., according to
our experiments change in the topology of the exact hierarchy, or in the length
of the random walk have only a minor effect, while the distribution of the tag

15

frequencies seems to play a very important role.

Results on synthetic data

In Table 2. we show the tag hierarchy extraction results obtained on synthetic
data generated by using our random walk based benchmark system. In the data
generation process the exact hierarchy was set to a binary tree of 1,023 tags, with
tag frequencies decreasing linearly as a function of the depth in the hierarchy.
We generated an average number of 3 co-occurring tags on altogether 2,000,000
hypothetical objects, with random walk probability of pRW = 0.5 and random
walk lengths chosen from a uniform distribution between 1 and 3. We ran the
same algorithms on the obtained data as in case of the protein data set, and
used the same measures for evaluating the quality of the results. According to
Table 2., the majority of the algorithms perform very well, e.g., algorithm B and
the algorithm by P. Heymann & H. Garcia-Molina are producing almost perfect
reconstructions, thus, this example is an “easy” data set. Interestingly, the
results of the algorithm by Schmitz were very poor on this input. Nevertheless,
this method is still competitive with the others, e.g., it showed a quite good
performance on the protein data set. However, the study of why does this
algorithm behave completely different from the others on our benchmark is out
of the scope of the present work.

Table 2: Quality measures of the reconstructed hierarchies for the
“easy” synthetic data set.

rE rA rI rU rM Ie,r Ilin
algorithm A 67% 100% 0% 0% 0% 91% 99%
algorithm B 100% 100% 0% 0% 0% 100% 100%
P. Heymann & H. Garcia-Molina 99% 100% 0% 0% 0% 93% 99%
P. Schmitz 0% 0% 0% 0% 100% 0% 0%

When generating the data set, the frequency of the initial tags was decreasing
linearly as a function of the level depth in the exact hierarchy. We show the
same quality measures as in Table 1.: the ratio of exactly matching links, rE,
the ratio of acceptable links, rA, the ratio of inverted links, rI, the ratio of
unrelated links, rU, the ratio of missing links, rM, the normalized mutual
information between the exact- and the reconstructed hierarchies, Ie,r, and the
linearized mutual information, Ilin. The different rows correspond to results
obtained from algorithm A, (1st row), algorithm B, (2nd row), the method by
P. Heymann & H. Garcia-Molina (3d row), and the algorithm by P. Schmitz
(4th row).

The “easy” synthetic data discussed above can be turned into a “hard” one
by changing the frequency distribution of the tags. In Table 3. we show the
results obtained when the tag frequencies were independent of the level depth
in the hierarchy, and had a power-law distribution, with the other parameters

16

of the benchmark left unchanged. According to the studied quality measures,
the performance of the involved methods drops down drastically compared to
Table 2. However, algorithm B provides an exception in this case, achieving
pretty good results even for this “hard” test data. E.g., the NMI value is still
Ie,r = 0.83 for our algorithm, while for e.g., the algorithm by P. Heymann &
H. Garcia-Molina it is reduced to Ie,r = 0.29. Moreover, the fraction of exactly
matching links is almost 90% for algorithm B, while it is below 50% for the
algorithm by P. Heymann & H. Garcia-Molina. This shows that algorithm B
can have a significantly better performance compared to other algorithms, as the
quality of its output is less dependent on the correlation between tag frequencies
and level depth in the hierarchy. Another interesting effect in Table 2. is that
the results for the algorithm by Schmitz are slightly better compared to the
“easy” data set. As we mentioned earlier, studies of the reasons for the outlying
behavior of this algorithm on our benchmark compared to the other methods is
left for future work.

Table 3: Quality measures of the reconstructed hierarchies for the
“hard” synthetic data set.

rE rA rI rU rM Ie,r Ilin
algorithm A 31% 35% 18% 47% 0% 18% 66%
algorithm B 89% 91% 6% 3% 0% 83% 97%
P. Heymann & H. Garcia-Molina 48% 54% 29% 17% 0% 29% 76%
P. Schmitz 1% 2% 1% 3% 94% 1% 5%

In this case the frequency of the initial tags was independent of their position
in the exact hierarchy during the benchmark generation, and the frequency
distribution followed a power-law. This change compared to the data set used
in Table 2. results in significant decrease in the quality measures for most of
the involved methods, as shown by the ratio of acceptable links, rA, the ratio
of inverted links, rI, the ratio of unrelated links, rU, the ratio of missing links,
rM, the normalized mutual information between the exact- and the
reconstructed hierarchies, Ie,r, and the linearized mutual information, Ilin. The
different rows correspond to results obtained from algorithm A, (1st row),
algorithm B, (2nd row), the method by P. Heymann & H. Garcia-Molina (3d

row), and the algorithm by P. Schmitz (4th row).

The effects of the modifications in the other parameters of the benchmark are
discussed in Sect.S4.2-S4.3 in the Supporting Information. Nevertheless these
results already show that the provided framework can serve as versatile test tool
for tag hierarchy extraction methods.

17

Methods

z-score

Both algorithms introduced in the paper depend on the z-score related to the
number of co-occurrences between a pair of tags. If the tags are assigned to the
objects completely at random, the distribution of the number of co-occurrences
for a given pair of tags i and j follows the hypergeometric distribution: Assuming
that tag i and j appear altogether on Qi and Qj objects respectively, let us
consider the random assignment of tag i among a total number of Q objects.
This is equivalent to drawing Qi times from the objects without replacement,
where the “successful” draws correspond to objects also having tag j, (and the
total number of such objects is Qj). Based on this, the probability for observing
a given Qij number of co-occurrences between i and j is

P (Qij = k) =

(
Qj
k

)(
Q−Qj
Qi−k

)(
Q
Qi

) , (4)

with the expected number of co-appearances given by

〈Qij〉 =
QiQj
Q

, (5)

and the variance formulated as

σ2(Qij) =
QiQj
Q

Q−Qi
Q

Q−Qj
Q− 1

. (6)

The z-score is defined as the difference between the observed number of co-
occurrences in the data, Qij , and the expected number of co-occurrences at
random as given in (5), scaled by the standard deviation according to (6),

zij =
Qij − 〈Qij〉
σ(Qij)

. (7)

Normalized mutual information

For discrete variables xi and yj with a joint probability distribution given by
P (xi, yj), the mutual information is defined as

I(x, y) ≡
∑
i

∑
j

p(xi, yj) ln

(
p(xi, yj)

p(xi)p(yj)

)
, (8)

where p(xi) and p(yj) denote the (marginal) probability distributions of xi and
yj respectively. If the two variables are independent, p(xi, yj) = p(xi)p(yj),
thus, I(x, y) becomes 0. The above quantity is very closely related to the entropy
of the random variables,

I(x, y) = H(x) +H(y)−H(x, y), (9)

18

where H(x) = −
∑
i p(xi) ln p(xi) and H(y) = −

∑
j p(yj) ln p(yj) correspond

to the entropy of x and y, while H(x, y) = −
∑
ij p(xi, yj) ln p(xi, yj) denotes

the joint entropy. Based on (9), the NMI can be defined as

Inorm(x, y) ≡ 2I(x, y)

H(x) +H(y)
. (10)

This way the NMI is 1 if and only x and y are identical, and 0 if they are
independent.

Data

Protein data

Both the exact DAG describing the hierarchy between protein functions and
the corresponding input data set given by proteins tagged with known function
annotations were taken from the Gene Ontology [56]. The hierarchy of pro-
tein function is composed of three separate DAGs, corresponding to “molecu-
lar function”, “biological process” and “cellular component”. We concentrated
on molecular functions, where the complete DAG has altogether 6,469 tags.
However, a considerable part of these annotations are rather rare, thus, recon-
structing the complete hierarchy would be a very hard task due to the lack of
information. Therefore, we took a smaller subgraph, namely the branch starting
from “catalytic activity”, counting 4,181 tags, most of which are relatively more
frequent.

For the data set of proteins, tagged with their known molecular function
annotations, we took the monthly (quality controlled) release as in 2012.08.01.
For simplicity, we neglected proteins lacking any tags appearing in the exact
hierarchy, and deleted all annotations which are not descendants of “catalytic
activity”. The resulting smaller data set contained 5,913,610 proteins, each
having on average 3.7 tags. This data set, (together with the corresponding
exact DAG) is available at (http://hiertags.elte.hu).

Flickr data

Flickr provides the possibility for searching photos by tags, thus, as a first
step we downloaded photos resulting from search queries over a list of 68,812
English nouns, yielding altogether 2,565,501 photos, (the same photo can appear
multiple times as a result for the different queries). At this stage we stored all
the tags of the photos and the anonymous user id of the photo owners as well.
Next, the set of tags on the photos had to be cleaned: only English nouns
were accepted, and in case of parts of a compound word appeared beside the
compound word on the same photo, the smaller parts were deleted, leaving
only the complete compound word. Since our algorithms rely on the weighted
network of co-appearances, we applied a further filtering: a link was accepted
only if the corresponding tags co-appeared on photos belonging to at least 10
different users. The resulting tag co-appearance network had 25,441 nodes,

19

http://hiertags.elte.hu

encoding information originating from 1,519,030 photos. We made the list of
weighted links between the tags available at (http://hiertags.elte.hu).

IMDb data

We have downloaded the data from the IMDb Web site [59], and used the
“keywords.list.gz” data file, listing the keywords associated with the different
movies. The goal of the keywords is helping the users in searching amongst
the movies, and keywords can pertain to any part, scene, subject, gender, etc.
of the movie. Although keywords can be given only by registered users, there
is no restriction what so ever for registering, and the submitted information is
processed by the ”Database Content Team” of the IMDb site. The version of
the original data we are used here contained 487,356 movie titles and 136,204
different keywords. However, to improve the quality of the data set, we restricted
our studies to keywords appearing on at least a 100 different movies, leaving
336,223 movies and 6,358 different keywords in the data set. This cleaned
version is available at (http://hiertags.elte.hu).

Discussion

We introduced a detailed framework for tag hierarchy extraction in tagging sys-
tems. First, we have defined quality measures for hierarchy extraction methods
based on comparing the obtained results to a pre-defined exact hierarchy. A
part of these quantities were simply given by fractions of links fulfilling some
criteria, (e.g., exactly matching, inverted, etc.). However we also defined the
NMI between the exact- and the reconstructed hierarchies, providing a quality
measure which is sensitive also to the position of the non-matching links in the
hierarchy. This was illustrated by our experiments comparing a hierarchy to
its randomized counterpart, where the NMI showed a significantly faster decay
when the rewiring was started at the top of the hierarchy, compared to the
opposite case of starting from the leafs.

Furthermore, we developed a synthetic, computer generated benchmark sys-
tem for tag hierarchy extraction. This tool provides versatile possibilities for
testing hierarchy extraction algorithms under controlled conditions. The basic
idea of our benchmark is generating collections of tags associated to virtual
objects based on a pre-defined hierarchy between the tags. By running a tag
hierarchy extraction algorithm on the generated synthetic data, the obtained
result can be compared to the pre-defined exact hierarchy used in the data gen-
eration process. According to our experiments on the benchmark, by changing
the parameters during the generation of the synthetic data, we can enhance or
decrease the difficulty of the tag hierarchy reconstruction.

In addition, we developed two novel tag hierarchy extraction algorithms
based on the network approach, and tested them both on real systems and com-
puter generated benchmarks. In case of the tagged protein data the similarity
between the obtained protein function hierarchy and the hierarchy given by the

20

http://hiertags.elte.hu
http://hiertags.elte.hu

Gene Ontology was very encouraging, and the hierarchy between the English
words obtained for the Flickr and IMDb data sets seemed also quite meaningful.
The computer generated benchmark system we have set up provides further pos-
sibilities for testing tag hierarchy extraction algorithms in general. By changing
the parameters during the input generation we can enhance or decrease the
difficulty of the tag hierarchy reconstruction.

Our methods were compared to current state of the art tag hierarchy ex-
traction algorithms by P. Heymann & H. Garcia-Molina and by P. Schmitz.
Interestingly, the rank of the algorithms according to the introduced quality
measures was varying from system to system. In case of the protein data set
algorithm A was slightly ahead of the others, while the rest of the methods
achieved more or less the same quality. In turn, for the easy synthetic test data,
algorithm B and the algorithm by P. Heymann & H. Garcia-Molina reached
almost perfect reconstruction, with algorithm A left slightly behind, and the
algorithm by P. Schmitz achieving very poor marks. However, when changing
to the hard synthetic test data, a large difference was observed between the
quality of the obtained results, as algorithm B significantly outperformed all
other methods.

The different ranking of the algorithms for the included examples indicates
that tag hierarchy extraction is a non-trivial problem where a system can be
challenging for one given approach and easy for another method and vice versa.
Nevertheless the results obtained indicate that tag hierarchy extraction is a
very promising direction for further research with a great potential for practical
applications.

References

[1] Mika P (2005) Ontologies are us: A unified model of social networks and
semantics. In: In International Semantic Web Conference, Vol. 3729. pp.
522–536.

[2] Spyns P, Moor AD, Vandenbussche J, Meersman R (2006) From Folksolo-
gies to Ontologies: How the Twain Meet. In: In Proceedings of OTM
Conferences (1). pp. 738–755.

[3] Voss J (2007) Tagging, folksonomy & Co - renaissance of manual indexing?
ArXiv:cs/0701072v2.

[4] Cattuto C, Loreto V, Pietronero L (2007) Semiotic dynamics and collabo-
rative tagging. Proc Natl Acad Sci USA 104: 1461–1464.

[5] Lambiotte R, Ausloos M (2006) Collaborative tagging as a tripartite net-
work. Lect Notes in Computer Sci 3993: 1114–1117.

[6] Cattuto C, Barrat A, Baldassarri A, Schehr G, Loreto V (2009) Collective
dynamics of social annotation. Proc Natl Acad Sci USA 106: 10511–10515.

21

[7] Ghosal G, Zlatić V, Caldarelli G, Newman MEJ (2009) Random hyper-
graphs and their applications. Phys Rev E 79: 066118.

[8] Zlatić V, Ghosal G, Caldarelli G (2009) Hypergraph topological quantities
for tagged social networks. Phys Rev E 80: 036118.

[9] Floeck F, Putzke J, Steinfels S, Fischbach K, Schoder D (2011) Imitation
and quality of tags in social bookmarking systems - collective intelligence
leading to folksonomies. In: Bastiaens TJ, Baumöl U, Krämer BJ, edi-
tors, On Collective Intelligence, Springer Berlin Heidelberg, volume 76 of
Advances in Intelligent and Soft Computing. pp. 75–91.

[10] Lu L, Medo M, Yeung CH, Zhang YC, Zhang ZK, et al. (2012) Recom-
mender systems. Physics Reports 519: 1–49.

[11] Juszczyszyn K, Kazienko P, Katarzyna M (2010) Personalized ontology-
based recommender systems for multimedia objects. In: Hākansson A,
Hartung R, Nguyen N, editors, Agent and Multi-agent Technology for In-
ternet and Enterprise Systems, Springer Berlin Heidelberg, volume 289 of
Studies in Computational Intelligence. pp. 275–292.

[12] Musia l K, Juszczyszyn K, P PK (2008) Ontology-based recommendation
in multimedia sharing systems. System Science 34: 97–106.

[13] Heymann P, Garcia-Molina H (2006) Collaborative creation of communal
hierarchical taxonomies in social tagging systems. Technical report, Stan-
ford InfoLab. URL http://ilpubs.stanford.edu:8090/775/.

[14] Plangprasopchok A, Lerman K (2009) Constructing folksonomies from
user-specified relations on flickr. In: Proceedings of the World Wide Web
conference. pp. 781–790.

[15] Plangprasopchok A, Lerman K, Getoor L (2011) A probabilistic approach
for learning folksonomies from structured data. In: Fourth ACM Interna-
tional Conference on Web Search and Data Mining (WSDM). pp. 555–564.

[16] Schmitz P (2006) Inducing ontology from flickr tags. In: Proc. of Collabo-
rative Web Tagging Workshop at the 15th Int. Conf. on World Wide Web
(WWW).

[17] Damme CV, Hepp M, Siorpaes K (2007) Folksontology: An integrated
approach for turning folksonomies into ontologies. Social Networks 2: 57–
70.

[18] Albert R, Barabási AL (2002) Statistical mechanics of complex networks.
Rev Mod Phys 74: 47–97.

[19] Mendes JFF, Dorogovtsev SN (2003) Evolution of Networks: From Biolog-
ical Nets to the Internet and WWW. Oxford: Oxford University Press.

22

http://ilpubs.stanford.edu:8090/775/

[20] Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ net-
works. Nature 393: 440–442.

[21] Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships
of the internet topology. Comput Commun Rev 29: 251–262.

[22] Barabási AL, Albert R (1999) Emergence of scaling in random networks.
Science 286: 509–512.

[23] Girvan M, Newman MEJ (2002) Community structure in social and bio-
logical networks. Proc Natl Acad Sci USA 99: 7821–7826.

[24] Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping
community structure of complex networks in nature and society. Nature
435: 814-818.

[25] Fortunato S (2010) Community detection in graphs. Physics Reports 486:
75-174.

[26] Mason O, Verwoerd M (2007) Graph theory and networks in Biology. IET
Systems Biology 1: 89–119.

[27] Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and
principles of biological networks. Genes & Development 21: 1010–1024.

[28] Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing
networks in cell biology. Briefings in Bioinformatics 7: 243–255.

[29] Finocchiaro G, Mancuso FM, Cittaro D, Muller H (2007) Graph-based
identification of cancer signaling pathways from published gene expression
signatures using PubLiME. Nucl Ac Res 35: 2343–2355.

[30] Jonsson PF, Bates PA (2006) Global topological features of cancer proteins
in the human interactome. Bioinformatics 22: 2291–2297.

[31] Jonsson PF, Cavanna T, Zicha D, Bates PA (2006) Cluster analysis of net-
works generated through homology: automatic identification of important
protein communities involved in cancer metastasis. BMC Bioinformatics 7:
2.

[32] Egúıluz VM, Zimmermann MG, Cela-Conde CJ (2005) Cooperation and
the emergence of role differentiation in the dynamics of social networks.
Am J Sociol 110: 977–1008.

[33] Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social net-
work. Science 311: 88–90.

[34] Holme P, Newman MEJ (2006) Nonequilibrium phase transition in the
coevolution of networks and opinions. Phys Rev E 74: 056108.

23

[35] Vazquez F, Egúıluz VM, Miguel MS (2008) Generic absorbing transition in
coevolution dynamics. Phys Rev Lett 100: 108702.

[36] Kozma B, Barrat A (2008) Consensus formation on adaptive networks.
Phys Rev E 77: 016102.

[37] Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social
dynamics. Rev Mod Phys 81: 591–646.

[38] Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hi-
erarchical organization of modularity in metabolic networks. Science 297:
1551 – 1555.

[39] Trusina A, Maslov S, Minnhagen P, Sneppen K (2004) Hierarchy measures
in complex networks. Phys Rev Lett 92: 178702.

[40] Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the
prediction of missing links in networks. Nature 453: 98–101.

[41] Pumain D (2006) Hierarchy in Natural and Social Sciences, volume 3 of
Methodos Series. Dodrecht, The Netherlands: Springer Netherlands.

[42] Corominas-Murtra B, Rodŕıguez-Caso C, Goñi J, Solé R (2011) Measuring
the hierarchy of feedforward networks. Chaos 21: 016108.

[43] Mones E, Vicsek L, Vicsek T (2012) Hierarchy measure for complex net-
works. PLoS ONE 7: e33799.

[44] Corominas-Murtra B, Goñi J, Solé RV, Rodŕıguez-Caso C (2013) Hierarchy
in complex systems: the possible and the actual. ArXiv:1303.2503.

[45] Goessmann C, Hemelrijk C, Huber R (2000) The formation and mainte-
nance of crayfish hierarchies: behavioral and self-structuring properties.
Behavioral Ecology and Sociobiology 48: 418-428.

[46] Nagy M, Akos Z, Biro D, Vicsek T (2010) Hierarchical group dynamics in
pigeon flocks. Nature 464: 890-893.

[47] Fushing H, McAssey MP, Beisner B, McCowan B (2011) Ranking network
of captive rhesus macaque society: A sophisticated corporative kingdom.
PLoS ONE 6: e17817.

[48] Ma HW, Buer J, Zeng AP (2004) Hierarchical sructure and modules in
the escherichia coli transcriptional regulatory network revealed by a new
top-down approach. BMC Bioinformatics 5: 199.

[49] Guimerà R, Danon L, Dı́az-Guilera A, Giralt F, Arenas A (2003) Self-
similar community structure in a network of human interactions. Phys Rev
E 68: 065103.

24

[50] Pollner P, Palla G, Vicsek T (2006) Preferential attachment of communities:
The same principle, but a higher level. Europhys Lett 73: 478–484.

[51] Valverde S, Solé RV (2007) Self-organization versus hierarchy in open-
source social networks. Phys Rev E 76: 046118.

[52] Kuncheva LI, Hadjitodorov ST (2004) Using diversity in cluster ensem-
bles. In: Proc. of IEEE International Conference on Systems, Man and
Cybernetics 2004. pp. 1214–1219.

[53] Fred A, Jain AK (2003) Robust data clustering. In: Proc. of IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition.
pp. 128-133.

[54] Danon L, Dı́az-Guilera A, Duch J, Arenas A (2005) Comparing community
structure identification. J Stat Mech .

[55] Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping
and hierarchical community structure in complex networks. New J Phys
11: 033015.

[56] Consortium TGO (2000) Gene ontology: tool for the unification of biology.
Nature Genetics 25: 25–29.

[57] Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for
testing community detection algorithms. Phys Rev E 78: 046110.

[58] Tibély G, Pollner P, Vicsek T, Palla G (2012) Ontologies and tag-statistics.
New Journal of Physics 14: 053009.

[59] IMDb - movies, tv and celebrities. URL http://www.imdb.com/

interfaces. Accessed 2013 Nov 22.

25

http://www.imdb.com/interfaces
http://www.imdb.com/interfaces

Extracting tag-hierarchies
Supporting Information

S1 Algorithms

S1.1 Algorithm A

S1.1.1 Complexity

The pseudo code of the algorithm would be to long to be displayed in a single
page, thus, we divided it into two parts. The first part, corresponding to the
preparation of the weighted network between the tags and the building of local
hierarchies is given in Algorithm S1. By assuming that the number of tags on

Algorithm S1 Algorithm A, 1st part: building local hierarchies.

1: for all objects: object1 do
2: for all tags appearing on object1: tag1 do
3: for all tags appearing on object1: tag2 do coappear-

ances(tag1,tag2)+=1
4: end for
5: end for
6: end for
7: for all tags: tag1 do
8: max= maximal coappearances(tag1,tag2)
9: for all tags: tag2 do

10: if coappearances(tag1, tag2) >= ω * max then
11: calc zscore(tag1,tag2)
12: strongpartners(tag1, tag2) = zscore(tag1, tag2)
13: end if
14: end for
15: end for
16: for all tags: tag1 do
17: parent = undef
18: for all strongpartners of tag1 sorted to descending order: tag2 do
19: if parent = undef and not exists strongpartners(tag2, tag1) then
20: parent = tag2
21: end if
22: end for
23: end for

one object is O(1), the number of operations needed for generating the weighted
co-occurrence network between the tags can be given by the number of objects,

26

Q, as O(Q). According to our experience, the resulting co-occurrence network
between the tags is usually sparse, thus, the number of links in the network
between the tags, M , and the number of tags, N , are similar in magnitude,
O(M) = O(N), and the average number of links of the tags is O(1). According
to that, the individual thresholding of the network based on the strongest link
on each tag also needs O(N logN) operations. Similarly, the calculation of the
z-score and choosing the in-neighbor with the highest value as a parent need
also O(M logM) operations.

In the next phase, the smaller isolated subgraphs under the local roots have
to be assembled into a single hierarchy, as shown in Algorithm S2. Choosing
the global root of the hierarchy needs O(N) operations, and similarly, choosing
the parent of a local root also needs at most O(N) operations. During this
process we need to detect (and correct) possible newly created loops, requiring
at most O(N) operations. Based on the above, the resulting overall complexity
of algorithm A is O(Q)+O(M logM) = O(Q)+O(N logN), where we assumed
that the co-occurrence network between the tags is sparse, i.e., O(M) = O(N).

S1.1.2 Optimizing the parameter ω

The parameter ω ∈ [0, 1] in algorithm A is corresponding to the local weight
threshold used for throwing away weak connections in the tag co-occurrence
network. In order to find the optimal value for ω, we measured the LMI between
the reconstructed hierarchy and the exact hierarchy as a function of ω in case
of the protein function data set. The results of this experiment are shown in
Fig.S6. Although Ilin is showing only minor changes over the whole range of
possible ω values, a maximal plateau can still be observed between ω = 0.3 and
ω = 0.55. Based on this, throughout the experiments detailed in our paper, we
used algorithm A with ω = 0.4.

S1.2 Algorithm B

S1.2.1 Complexity

The pseudo code for the algorithm is given in Algorithm S3. The preparation
of the tag co-occurrence network is the same as in case of algorithm A, with a
complexity of O(Q), and similarly, the calculation of the z-score needs O(M)
operations. To evaluate the eigenvector centrality, we simply use the power
iteration method on the filtered co-appearance matrix, (see the pseudo code),
which needs O(N) operations, for the typical case of a sparse matrix. The
hierarchy is assembled bottom up, and the calculation of the scores for the
possible parents of a given tag requires O(N · logN) operations, assuming that
the structure of the complete DAG is similar to a tree with a constant branching
number. (In case it is chain-like, this is modified to O(N2), whereas for a star-
like topology, it is only O(N)). The resulting overall complexity of the algorithm
is O(Q) +O(N · logN).

27

I lin

ω

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure S6: Optimizing the parameter ω. We show the LMI as a function
of ω for the protein function data set.

S1.2.2 Optimizing the z-score threshold

The z-score threshold is an important parameter in algorithm B, which is used
for pruning the network of co-occurrences between the tags by throwing away
irrelevant connections. In order to optimize this parameter, we have run tests
on the “hard” synthetic data set, introduced in Section “Results on synthetic
data” in the main paper. The reason for this choice instead of, e.g., the protein
function data set as in Sect.S1.1.2, is that algorithm B showed best performance
on this data set. In Fig.S7. we show the LMI between the reconstructed hierar-
chy and the exact hierarchy as a function of the z-score threshold z∗. Although
the obtained curve is rather flat in most of the examined region, setting the
threshold to z∗ = 10 in general seems as a good choice: below z∗ = 5 the qual-
ity drops down, whereas no significant increase can be observed in Ilin between
z∗ = 10 and z∗ = 20. By choosing z∗ = 10, we ensure good quality, and also
avoid throwing away too many connections.

S2 Normalized mutual information

S2.1 NMI by partitioning of the tags

As mentioned in the main paper, a very important application of the concept
of the NMI is given in community detection, where this measure can be used to
quantify the similarity between partitions of the same network into communities
by two alternative methods [54, 55]. The formula providing the NMI between

28

I lin

z*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Figure S7: Optimizing the z-score threshold. We show the LMI as a
function of the z-score threshold for the “hard” synthetic data set.

R

D

B C E F G

A

G1
R

A D

B E F C G

R

A D

B C E F G

R

A D

B E F C G

G2

α2α1
R

A D

B FE C G

α2

R

A D

B C E F G

G1
R

A D

B E F GC

G2

R

A D

B C E F G

α1

b)a)

Figure S8: Mapping from hierarchies to communities. a) A simple
intuitive mapping from the DAG to a communities of the tags in the DAG is
given by nested sets, as shown here for G1 and G2, resulting in partitions α1

and α2. b) If we use instead communities given by the union of all descendants
from non-leaf tags, (always excluding the given tag itself), the NMI given by
(S11) becomes equivalent to the NMI defined for hierarchies in Eq.(1) in the
main paper.

community partitions α and β can be given as

Iα,β =

−2
Cα∑
i=1

Cβ∑
j=1

Nij ln
(
NijN
NiNj

)
Cα∑
i=1

Ni ln
(
Ni
N

)
+

Cβ∑
j=1

Nj ln
(
Nj
N

) , (S11)

29

where Cα and Cβ denote the number of communities in the two partitions, Ni
and Nj stand for the number of nodes in communities i and j respectively, with
Nij giving the number of common nodes in i and j, and finally, N denoting
the total number of nodes in the network. This measure can be used e.g., when
judging the quality of a community finding method run on a benchmark for
which the ground truth communities are known.

Meanwhile, (S11) is in complete analogy with our definition of the NMI for
a pair of hierarchies, (Eq.(1) in the main paper): if we convert the hierarchies to
be compared into community partitions in an appropriate way, the two measures
become equivalent. Probably the most natural idea for a mapping from a DAG
to communities of the tags in the DAG is turning the original “order” hierarchy
represented by the DAG into a “containment” hierarchy of nested sets, as shown
in Fig.S8a., (with each set corresponding to the union of tags in a given branch
of the DAG). However, by applying (S11) to the partitions obtained in this
way we obtain different results compared to Eq.(1) in the main paper, and the
resulting similarity measure does not approach 0 even for independent random
DAGs. The reason for this effect is that leafs in the DAG provide communities
consisting of single nodes, and due to the relatively large number of leafs in a
general DAG, we always obtain a non vanishing portion of exactly matching
communities.

The mapping from a DAG to communities providing results equivalent to our
NMI definition is obtained by associating with every tag in the DAG the union
of its descendants, excluding the tag itself, (see Fig.S8b for illustration). This
way the leafs appear only in the communities corresponding to their ancestors,
thus, the emergence of a large number of communities with only a single member
is avoided.

S2.2 Gene Ontology DAG

In Fig.1. in the main paper we have examined the behavior of the NMI between
a binary tree and its randomized counterpart as a function of the fraction of
rewired links. Here we show similar results obtained for the exact hierarchy of
our protein data set, obtained from the Gene Ontology [56]. In Fig.S9. the
NMI defined in Eq.(1) of the main paper is shown for the exact hierarchy and
its randomized counterpart as a function of the randomly rewired links, f . The
three different curves correspond to three different orders in which the links were
chosen for the rewiring: in case of the purple curve we started the rewiring with
links pointing to leafs, and continued in reverse order according to the hierarchy,
in case of the blue curve, the links were chosen in random order, while in case
of the green curve, we started the rewiring at the top of the hierarchy, and
continued in the order according to the hierarchy. Similarly to Fig.1. in the
main paper, all three curves decay to 0 as f → 1, thus, the similarity becomes
0 when the compared DAGs become independent. However, the behavior in
the small and medium f regime is rather different: the green curve drops below
IGO,rand = 0.5 already at f = 0.05, while the blue curve shows a moderate
decrease and the purple curve decays even more mildly. Similarly to Fig.1. in

30

= 0.22

= 0.78

IGO,rand

measured NMI:
= 0.35

f *

I lin

I e,r

f

bottom up

random

top down

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure S9: NMI decay for the exact hierarchy of protein tags and
its randomized counterpart. We plotted I as given in Eq.(1) of the main
paper as a function of the randomly rewired links, f . The three different curves
correspond to rewiring the links in reverse order according to their position
in the hierarchy (purple circles), rewiring in random order (blue squares) and
rewiring in the order of the position in the hierarchy (green triangles). The
red lines illustrate the calculation of the linearized mutual information for the
reconstruction result obtained from algorithm A.

the main paper, this justifies our statement that the NMI is sensitive also to
the position of the links in the hierarchy: rewiring links high in the hierarchy
has a larger effect on the similarity compared to rewiring links close to the leafs.
Interesting, in the medium f∗ regime a crossover can be observed between the
green- and the blue curve. The possible explanation for this effect lies in the
non-trivial, nor random, nor regular structure of the original DAG.

The red lines in Fig.S9. demonstrate the calculation of the linearized mutual
information for the results obtained from algorithm A: The obtained NMI value
of Ie,r = 0.37 between the output of the algorithm and the exact DAG is pro-
jected to the f axis using the blue curve, resulting in f∗ = 0.22. The linearized
mutual information, Ilin is given by 1− f∗, resulting Ilin = 0.78.

S3 Further results on Flickr and IMDb

S3.1 Additional samples from the Flickr hierarchy

The exact hierarchy between the tags appearing in Flickr is not known, thus,
the quality of the extracted hierarchy can be judged only by “eye”, i.e., by
looking at smaller subgraphs, whether they make sense or not. In Fig.3. of
the main paper we have already shown a part of the branch under “reptile”

31

in the hierarchy obtained from algorithm B. Here we show further examples in
the same manner. In Fig.S10. we depict a part of the hierarchy under the tag
“winter”, with very reasonable descendants like “snow”, “ski”, “cold”, “ice”,
etc. Similarly, in Fig.S11. we show a part of the descendants of “rodent”,
displaying again a rather meaningful hierarchy.

e s k i m o

pac i f i c
w a l r u s s a m u e l a d e l i e a d e l i e

p e n g u i n

b e a r d e d
sea l

t h a w i n g

e r i g n a t h u s
b a r b a t u s

o d o b e n u s
r o s m a r u s c h i n

s t r a p

s o u t h

p o l e

s a m u e l
t a y l o r

c o l e r i d g e

s p i t z b e r g e n

t h a w
b a f f i n
i s l a n d

k r i l l m a r i n e r

pygosce l i s
ade l i ae

a n t a r c t i c
p e n i n s u l a i n u i t

a n t a r c t i c

a r r o w

s p i t s b e r g e n

p r e s e n t

w a l r u s

g i f t b o w

c h r i s t -
m a s -
t i m e

d e c
t r e e
f a r m

s v a l b a r d

a r c t i c
c i r c le

g r e e n l a n d
i ce

c u b e

n u n a v u t

n o r t h
p o l e

a n t a r c t i c a

i ce -
b r e a k e r

c o l e r i d g e
c a r b o n
d i o x i d e

d r y
i ce

m e l t w h i t e o u t

f e b r u a r y
w i scons in

h o l i d a y
f r o s t c o l d

s n o w

w i n t e r t i m e m i d w i n t e r w a r m e r h i b e r n a t i o n j a n u a r y

s n o w b a l l f r e e z e

s k i

j a c k
f r o s t

h o a r f r o s t

p o g o n i p

c o l d
w e a t h e r

s n o w -
s t o r m s l e d d i n g

s n o w -
s h o e s n o w -

f l a k e

m i n u s

ch i l l f r e e z i n g

i c e

f r o s t b i t e
s h i v e r i n g

w i n t e r

d i a m o n d
d u s t deco -

r a t i o n

ho l i -
d a y
sea-
s o n

d e c e m b e r

c a r o l i n g

c h i l l i n g

c h r i s t -
m a s
t r e e

i c e b e r g
i ce
w a t e r

i g l o o i ce
m a c h i n e

a r c t i c f l a k e b l i z za rd

m e l t i n g
s u b l i m a t i o n

s n o w b o a r d

s k i
p o l e

h o a r

r i m e

w a t e r
s k i

s k i e r
s k i i n g n a t i v i t y x m a s

r i b b o n

s a n t a

c h r i s t m a s

w i

m a d i s o n m i l w a u k e e
f e b j a n

Figure S10: Partial subgraph of the descendants of “winter” in the
hierarchy between Flickr tags obtained from algorithm B. Stubs (in
dashed line) signal further descendants not shown in the figure, and the size of
the nodes indicate the total number of descendants.

S3.2 Samples from the hierarchies extracted with the other
methods

For comparison with Figs.3-4. in the main paper, here in Figs.S12-S17. we show
the corresponding parts from the hierarchies extracted with algorithm A, the
method by P. Heymann & H. Garcia-Molina and the algorithm by P. Schmitz.
Since the overall structure of the hierarchies is varying over the different algo-
rithms, naturally, the set of tags appearing in these figures is somewhat different
compared to Figs.3-4. in the main paper. I.e., tags in direct ancestor-descendant

32

Figure S11: A part of the descendants of “rodent” in the hierarchy
between Flickr tags. Similarly to Fig.S10., the overall hierarchy behind the
subgraph shown here was obtained from algorithm B. Stubs (in dashed line)
signal further descendants not shown in the figure, and the size of the nodes
indicate the total number of descendants.

relation according to algorithm B can be classified into different branches by an
other algorithm or siblings may become unrelated etc. in the output of another
method. Therefore, our strategy when preparing Figs.S12-S17. was to choose
the largest branch, containing the most common tags with Figs.3-4. in the main
paper.

In Figs.S12-S14. we show samples corresponding to Fig.3. in the main paper,
obtained from the hierarchies extracted for the Flickr tags. Interestingly, in
case of algorithm A, (Fig.S12.), the tag “lizard” and “reptile” are classified into
different branches. Meanwhile, in the subgraph obtained from the algorithm by
P. Heymann & H. Garcia-Molina, (Fig.S13), the tag “snake” has been chosen to
be the direct ancestor of “reptile”. Apart from that, the hierarchy of the tags is
rather similar to that shown in Fig.3. in the main paper. In case of the algorithm
by P. Schmitz, the obtained result was actually composed of many distinct small
hierarchies, with the tags given in Fig.3. in the main paper spreading over a large
number of different components. Thus, we included a larger set of these small
hierarchies in Fig.S14. instead of a single larger subgraph as in Figs.S12-S13.

In Figs.S15-S17. we show samples from the hierarchies obtained for the IMDb
tags. In case of algorithm A, (Fig.S15.), we display the branch under “blood”,
as most of its descendants appear also on Fig.4 in the main paper, while the
tag “murder” is missing from the figure, since it was sorted into a different

33

Figure S12: A part of the descendants of “reptile” and “lizard” in
the hierarchy between Flickr tags obtained with algorithm A. Stubs
(in dashed line) signal further descendants not shown in the figure, and the size
of the nodes indicate the total number of descendants.

branch. The subgraph shown for the method by P. Heymann & H. Garcia-
Molina, (Fig.S16.), has similar features compared to Fig.4 in the main paper,
however, the direct ancestor-descendant relation between “murder” and “death”
has been reversed. Finally, the results for the algorithm by P. Schmitz are again
very dispersed, thus, we included more than one small subgraph in Fig.S17.

S4 Synthetic benchmark

S4.1 Pseudo code

In Algorithm S4. we briefly sketch the pseudo code of the preparation of the
synthetic tagged data in our benchmark system. As explained in the main paper,
the basic idea is to use a random walk process on the pre-defined hierarchy for
ensuring the higher frequency of co-occurrences between more closely related
tags. Beside the hierarchy between the tags, the following parameters are also
assumed to be pre-defined: the number of virtual objects to be generated, the
frequency distribution of the tags, the distribution of the number of tags on the
objects and the distribution of the random walk lengths.

S4.2 Further tests based on the “easy” parameter settings

In the main paper we have shown that when the frequency of tags is decreasing
linearly as a function of the depth in the hierarchy, the synthetic benchmark

34

Figure S13: A part of the descendants of “snake” in the hierarchy
between Flickr tags obtained with the method by P. Heymann &
H. Garcia-Molina. Stubs (in dashed line) signal further descendants not
shown in the figure, and the size of the nodes indicate the total number of
descendants.

becomes “easy”, and an almost perfect reconstruction becomes possible. As an
illustration, in Fig.S18a-b we show parts from the exact DAGs, (binary trees
of 1023 tags), used for testing algorithm A and algorithm B, respectively. In
Fig.S18c we display the corresponding subgraph from the hierarchy obtained
from algorithm A. The result is quite good, where the majority of the links
are exactly matching, (colored green), while the rest are acceptable (shown in
orange). However in case of algorithm B the chosen part of the reconstruction
is perfect, as shown in Fig.S18d, with only exactly matching links.

According to the results discussed in the main paper, when the tag fre-
quencies are independent of the position in the hierarchy and have a power-
law distribution, the benchmark becomes hard. Here we examine the effect of
changes in the other parameters of the benchmark. First, our starting point is
the “easy” parameter setting, while the results obtained for the “hard” param-
eter setting are discussed in Sect.S4.3. As mentioned in the main paper, the
most important feature of the “easy” parameter settings is that the frequency
of the tags is decreasing linearly as a function of the level depth in the hierarchy.
The other parameters were set as follows: an average number of 3 co-occurring

35

Figure S14: Samples from the small hierarchies between Flickr tags
obtained with the algorithm by P. Schmitz. Triangular shaped nodes
represent local roots. These were chosen from tags appearing in Fig.3. in the
main paper.

tags were generated on altogether 2,000,000 hypothetical objects, with random
walk probability of pRW = 0.5 and random walk lengths chosen from a uniform
distribution between 1 and 3, (the results are shown in Table 2. in the main
paper). First we study the effect of changing the length of the random walks.
In Table S4. we show the results when we decrease the random walk length to
only a single step: according to the listed measures, the quality of the recon-
struction for Algorithm B, the method by P. Heymann & H. Garcia-Molina and
the algorithm by P. Schmitz remain exactly or almost exactly the same. In case
of Algorithm A the quality indicators are somewhat lower compared to Table 2.
in the main text, however, solely Ie,r is changed significantly. In Table S5. we
show the results when the length of the random walks was chosen from a uniform

36

Figure S15: A part of the descendants of “blood” in the hierarchy
between IMDb tags obtained with algorithm A. Stubs (in dashed line)
signal further descendants not shown in the figure, and the size of the nodes
indicate the total number of descendants.

Table S4: Quality measures of the reconstructed hierarchies with
random walk length of 1 step.

rE rA rI rU rM Ie,r Ilin
algorithm A 68% 95% 0% 5% 0% 47% 86%
algorithm B 100% 100% 0% 0% 0% 100% 100%
P. Heymann & H. Garcia-Molina 99% 99% 1% 0% 0% 92% 99%
P. Schmitz 0% 0% 0% 0% 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the
“easy” synthetic data set discussed in the main paper.

distribution between 1 and 5, and the other parameters of the data set were left
the same. Again, algorithm B, the method by P. Heymann & H. Garcia-Molina
and the algorithm by P. Schmitz produce the same (or almost the same) results
as presented in Table 2. of the main text. The results from algorithm A are
now better compared to the original settings, reaching almost the same quality
as algorithm A. In conclusion, the change in the length of the random walks
has only a negligible effect for three out of the four methods studied here, and
a mild effect on the results from the fourth one.

Next, we examine the effect of reducing the number of generated virtual ob-
jects. In Table S6. we show the results obtained when we generated only 200,000

37

Figure S16: A part of the descendants of “murder” in the hierarchy
between IMDb tags obtained with the method by P. Heymann &
H. Garcia-Molina. Stubs (in dashed line) signal further descendants not
shown in the figure, and the size of the nodes indicate the total number of
descendants.

virtual objects instead of 2,000,000, (and otherwise used the same parameters
as in case of the “easy” synthetic data set). Not surprisingly, the quality of the
methods show a slight decrease, as the hierarchy has to be reconstructed based
on less information. However, the effect is only minor. When reducing the
number of objects further down to 50,000, the drop in the quality measures be-
comes more pronounced, as presented in Table S7. Interestingly, the algorithm

38

Figure S17: Samples from the small hierarchies between IMDb tags
obtained with the algorithm by P. Schmitz Triangular shaped nodes rep-
resent local roots. These were chosen from tags appearing in Fig.4. in the main
paper.

Table S5: Quality measures of the reconstructed hierarchies with
maximum random walk length of 5 step.

rE rA rI rU rM Ie,r Ilin
algorithm A 95% 100% 0% 0% 0% 99% 100%
algorithm B 100% 100% 0% 0% 0% 100% 100%
P. Heymann & H. Garcia-Molina 99% 99% 0% 0% 0% 93% 99%
P. Schmitz 0% 0% 0% 0% 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the
“easy” synthetic data set discussed in the main paper.

Table S6: Quality measures of the reconstructed hierarchies with
200,000 hypothetical objects

rE rA rI rU rM Ie,r Ilin
algorithm A 67% 97% 1% 2% 0% 86% 98%
algorithm B 98% 98% 2% 0% 0% 100% 100%
P. Heymann & H. Garcia-Molina 98% 98% 2% 0% 0% 93% 99%
P. Schmitz 0% 0% 0% 0% 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the
“easy” synthetic data set discussed in the main paper.

39

a)

c)

b)

d)

Figure S18: Comparison between the exact hierarchy and the recon-
structed hierarchy in case of the “easy” computer generated bench-
mark. a) A subgraph from the exact hierarchy for testing algorithm A. b) A
subgraph from the exact hierarchy for testing algorithm B. c) The subgraph
corresponding to a) in the result obtained from algorithm A. Exactly matching
links are shown in green, acceptable links are colored orange. d) The subgraph
corresponding to b) in the result obtained from algorithm B, showing a perfect
match.

Table S7: Quality measures of the reconstructed hierarchies with
50,000 hypothetical objects

rE rA rI rU rM Ie,r Ilin
algorithm A 57% 89% 3% 8% 0% 75% 95%
algorithm B 70% 81% 13% 6% 0% 76% 95%
P. Heymann & H. Garcia-Molina 87% 91% 5% 4% 0% 94% 99%
P. Schmitz 2% 3% 0% 0% 97% 1% 11%

The setting of the other parameters were exactly the same as in case of the
“easy” synthetic data set discussed in the main paper.

by P. Schmitz shows a different behavior, with a slight increase in quality. As
mentioned in the main paper, the study of the reasons for the outlying behavior
of this algorithm on the synthetic data is out of the scope of present work.

Finally, in Table S8. we show the quality measures obtained when the ran-
dom walk probability was reduced from pRW = 0.5 to pRW = 0.1, (and the other

40

Table S8: Quality measures of the reconstructed hierarchies with
random walk probability pRW = 0.1.

rE rA rI rU rM Ie,r Ilin
algorithm A 1% 61% 0% 39% 0% 0% 1%
algorithm B 89% 90% 8% 2% 0% 64% 92%
P. Heymann & H. Garcia-Molina 88% 99% 1% 0% 0% 68% 93%
P. Schmitz 0% 0% 0% 0% 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the
“easy” synthetic data set discussed in the main paper.

parameters were the same as in case of the “easy” synthetic data set). Similarly
to the case of reducing the number of objects, this provides a more difficult task
for the tag hierarchy extracting algorithms, as most of the tags are chosen at
random on the objects. Accordingly, the quality measures are decreased when
compared to the results shown in Table 2. of the main text. This effect is quite
significant in case of algorithm A, while its less pronounced for algorithm B and
the method by P. Heymann and H. Garcia-Molina.

S4.3 Further tests based on the “hard” parameter settings

In similar fashion to Sect.S4.2, here we examine the effects of changing the
parameters when we start from the “hard” parameter setting. As mentioned
in the main paper, the main feature making this choice of parameters “hard”
is that the frequency of tags is independent of the level depth in the hierarchy.
Otherwise, the parameters of the data set discussed in Table 3. of the main text
were the following: an average number of 3 co-occurring tags were generated
on altogether 2,000,000 hypothetical objects, with random walk probability of
pRW = 0.5 and random walk lengths chosen from a uniform distribution between
1 and 3. Starting from this parameter setting, in Table S9. we show the results
obtained when the random walk length is reduced to 1. For all 4 methods, we
can observe a slight increase in the quality, however, no significant changes have
occurred when comparing to Table 3. in the main text.

In Table S10. we show the results when the length of the random walks was
chosen from a uniform distribution between 1 and 5, and the other parameters
of the data set were left the same as in case of Table 3. in the main text. Inter-
estingly, this time the quality measures have been lowered slightly, nevertheless,
no significant change can be observed. In a similar fashion to Sect.S4.2, our
conclusion is that the length of the random walk has no significant effect on the
quality of the examined algorithms.

We continue our experiments by changing the number of virtual objects in
the preparation of the data set. In Table S11. we show the results obtained when
we generated only 200,000 virtual objects instead of 2,000,000, (and otherwise
used the same parameters as in case of the “hard” synthetic data set). The

41

Table S9: Quality measures of the reconstructed hierarchies with
random walk length of 1 step.

rE rA rI rU rM Ie,r Ilin
algorithm A 40% 40% 17% 43% 0% 21% 70%
algorithm B 92% 93% 5% 2% 0% 84% 97%
P. Heymann & H. Garcia-Molina 51% 55% 30% 15% 0% 28% 76%
P. Schmitz 4% 4% 0% 5% 91% 2% 18%

The setting of the other parameters were exactly the same as in case of the
“hard” synthetic data discussed in the main paper.

Table S10: Quality measures of the reconstructed hierarchies with
maximum random walk length of 5 step.

rE rA rI rU rM Ie,r Ilin
algorithm A 28% 36% 29% 35% 0% 18% 66%
algorithm B 85% 88% 10% 2% 0% 81% 96%
P. Heymann & H. Garcia-Molina 46% 52% 34% 14% 0% 28% 76%
P. Schmitz 1% 1% 1% 4% 94% 1% 4%

The setting of the other parameters were exactly the same as in case of the
“hard” synthetic data set discussed in the main paper.

quality measures for algorithm A, the method by P. Heymann & H. Garcia-
Molina and the algorithm by P. Schmitz remained almost the same, while the
marks for algorithm B have been slightly reduced, (however, algorithm B is still
far the best method on this data set). In Table S12. we show the results obtained

Table S11: Quality measures of the reconstructed hierarchies with
200,000 hypothetical objects

rE rA rI rU rM Ie,r Ilin
algorithm A 31% 36% 26% 38% 0% 18% 66%
algorithm B 80% 86% 12% 2% 0% 76% 95%
P. Heymann & H. Garcia-Molina 48% 54% 32% 14% 0% 29% 76%
P. Schmitz 1% 2% 0% 4% 94% 1% 5%

The setting of the other parameters were exactly the same as in case of the
“hard” synthetic data set discussed in the main paper.

when the number of hypothetical objects were further reduced to 50,000. In this
case the quality of algorithm A, the method by P. Heymann & H. Garcia-Molina
and the algorithm by P. Schmitz has slightly dropped, when compared to Table
3. in the main paper. The decrease in the quality is more pronounced in case of

42

algorithm B, however, its results are still much better than that of the others.
In conclusion, the lowering of the number of virtual objects affects most the
result from algorithm B, nevertheless its quality was always significantly higher
compared to the other methods.

Table S12: Quality measures of the reconstructed hierarchies with
50,000 hypothetical objects

rE rA rI rU rM Ie,r Ilin
algorithm A 29% 36% 26% 39% 0% 17% 65%
algorithm B 66% 74% 20% 6% 0% 55% 89%
P. Heymann & H. Garcia-Molina 46% 53% 33% 14% 0% 28% 76%
P. Schmitz 1% 2% 0% 5% 93% 1% 6%

The setting of the other parameters were exactly the same as in case of the
“hard” synthetic data set discussed in the main paper.

Finally, in Table S13. we examine the effects of lowering the random walk
probability from pRW = 0.5 to pRW = 0.1,(while keeping the other parameters
the same as in case of the “hard” synthetic data set). As mentioned in Sect.S4.2,
this provides a more difficult task for the tag hierarchy extracting algorithms, as
most of the tags are chosen at random on the objects. Accordingly, the quality
measures are decreased when compared to the results shown in Table 3. of the
main text. However, this effect is quite significant in case of algorithm A, while
it is more mild for the method by P. Heymann & H. Garcia-Molina, and is even
less pronounced in case of algorithm B. Our general conclusion regarding the

Table S13: Quality measures of the reconstructed hierarchies with
random walk probability pRW = 0.1.

rE rA rI rU rM Ie,r Ilin
algorithm A 10% 12% 14% 74% 0% 5% 33%
algorithm B 65% 71% 21% 8% 0% 61% 91%
P. Heymann & H. Garcia-Molina 35% 36% 34% 30% 0% 18% 66%
P. Schmitz 0% 0% 0% 7% 93% 0% 0%

The setting of the other parameters were exactly the same as in case of the
“hard” synthetic data set discussed in the main paper.

robustness of the examined algorithms is that no significant differences could be
observed in our experiments on the synthetic data sets. Algorithm B showed
more sensitivity to the number of virtual objects compared to algorithm A and
the method by P. Heymann & H. Garcia-Molina. In contrast, when reducing the
random walk probability, algorithm B was found to be more robust compared
to the other methods.

43

Algorithm S2 Algorithm A, 2nd part: assembly into a global hierarchy.

1: if there are more components then
2: for all roots: root do
3: h(root) = entropy of root
4: for all tags in the component of root: tag1 do
5: component(tag1) = root
6: end for
7: end for
8: global root = root with highest entropy
9: for all roots except the global: root do

10: suggested parent(root) = undef
11: for all coappearing tags sorted to descending coappearances: tag2

do
12: if suggested parent(root) = undef and component(tag2) is not

root then
13: suggested parent(root) = tag2
14: end if
15: end for
16: end for
17: for all roots appearing in suggested parent: root do
18: tag1 = root
19: empty visited
20: while does not exists visited(tag1) and exists suggested parent(tag1)

do
21: tag1 = component(suggested parent(tag1))
22: visited(tag1) = 1
23: end while
24: if exists visited(tag1) then
25: for all roots in visited: root2 do looped(root2) = 1 delete

suggested parent(root2)
26: end for
27: end if
28: end for
29: for all roots in looped, sorted to descending order of h: root do
30: for all tags coappearing with root: tag1 do
31: if not exists suggested parent(root) then
32: check whether tag1 is below root
33: if tag1 is not below root then suggested parent(root) = tag1
34: end if
35: end if
36: end for
37: if not exists suggested parent(root) then suggested parent(root) =

global root
38: end if
39: end for
40: end if

44

Algorithm S3 Algorithm B

1: for all tags: tag1 do
2: for all tags: tag2 do
3: calc zscore(tag1, tag2)
4: end for
5: end for
6: for all tags: tag1 do
7: for all tags: tag2 do
8: if zscore(tag1, tag2) > threshold B or coappearances(tag1, tag2) >=

0.5 * objects(tag1) or coappearances(tag1, tag2) >= 0.5 * objects(tag2)
then

9: M(tag1, tag2) = coappearances(tag1, tag2)
10: strength(tag1) += coappearances(tag1, tag2)
11: end if
12: end for
13: end for
14: for all tags: tag1 do
15: centrality(tag1) = strength(tag1)
16: end for
17: for i=1, i<=100 do
18: sum = 0
19: for all tags: tag1 do
20: for all tags: tag2 do
21: temp centrality(tag1) = M(tag1, tag2) * centrality(tag2)
22: end for
23: sum += temp centrality(tag1)
24: end for
25: for all tags: tag1 do centrality(tag1) = temp centrality(tag1) / sum
26: end for
27: end for
28: for tags sorted to ascending centralities: tag1 do
29: empty score;
30: for coappearing partners of tag1: tag2 do
31: score(tag2) = zscore(tag1, tag2)
32: end for
33: for descendants of tag1: desc do
34: for coappearing partners of desc: tag2 do
35: if tag2 coappears with tag1 and centrality(tag2) ¿ centrality(tag1)

and (zscore(tag1, tag2) > threshold B or coappearances(tag1, tag2) >=
0.5 * objects(tag1)) and (zscore(desc, tag2) > threshold B or coappear-
ances(desc, tag2) >= 0.5 * objects(desc)) then

36: score(tag2) += zscore(desc, tag2)
37: end if
38: end for
39: end for
40: if score is not empty then
41: parent(tag1) = highest scoring tag
42: end if
43: end for

45

Algorithm S4 Generating synthetic data based on random walk

1: for all virtual objects do
2: draw tag t1 at random according to the tag frequency distribution
3: assign t1 to the virtual object
4: draw number of tags nT at random from the distribution of the number

of tags on the objects
5: for all i=2, i <= nT do
6: if random number r < pRW then
7: draw random walk length lRW at random from the random walk

length distribution
8: set tag ti =t1
9: for all j=1, j <= lRW do

10: random walk on the pre-defined hierarchy, ignoring the link
directions:

11: new tag tj := random neighbor of ti
12: set ti =tj
13: end for
14: assign ti to the virtual object
15: else
16: draw tag ti at random according to the tag frequency distribution
17: assign ti to the virtual object
18: end if
19: end for
20: end for

46

	S1 Algorithms
	S1.1 Algorithm A
	S1.1.1 Complexity
	S1.1.2 Optimizing the parameter

	S1.2 Algorithm B
	S1.2.1 Complexity
	S1.2.2 Optimizing the z-score threshold

	S2 Normalized mutual information
	S2.1 NMI by partitioning of the tags
	S2.2 Gene Ontology DAG

	S3 Further results on Flickr and IMDb
	S3.1 Additional samples from the Flickr hierarchy
	S3.2 Samples from the hierarchies extracted with the other methods

	S4 Synthetic benchmark
	S4.1 Pseudo code
	S4.2 Further tests based on the ``easy'' parameter settings
	S4.3 Further tests based on the ``hard'' parameter settings

