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1 Introdution

In 2 dimensions ertain integrable quantum �eld theories an be restrited to the x ≤ 0 half

line by imposing suitable boundary onditions without destroying their integrability [1℄. In

addition to their theoretial interest, these models have important physial appliations in

various impurity problems (for a review see [2℄).

An example is provided by the sine-Gordon model: as was argued in [1℄, its boundary

version:

S =

∞
∫

−∞

dt

0
∫

−∞

dxLSG −
∞
∫

−∞

dtVB(ΦB), LSG =
1

2
(∂µΦ)

2 − m2

β2
(1− cos(βΦ)), (1.1)

(where Φ(x, t) is a salar �eld, β is a real dimensionless oupling and ΦB(t) = Φ(x, t)|x=0)

preserves the integrability of the bulk if the boundary potential is hosen as

VB(ΦB) = −M0 cos

(

β

2
(ΦB − φ0)

)

,

where M0 and φ0 are free parameters. A novel feature of the boundary sine-Gordon model

(BSG) is the appearane of a ompliated spetrum of boundary bound states (BBS) in addi-

tion to the well known bulk ones [1℄-[4℄, [5℄. The omplete spetrum of these bound states and

a full explanation of all the poles are known only for BSG with Dirihlet boundary onditions

(whih orresponds to taking M0 → ∞, ΦB(t) ≡ φ0) [4℄.

In this paper we investigate the bound state spetrum in sine-Gordon model with Neumann

boundary ondition (SGN). This boundary ondition is in a sense the opposite limit to Dirihlet

(M0 = 0, thus φ0 beoming irrelevant) and has interesting properties as the non onservation

of topologial harge. Furthermore any BSG model, whih is not Dirihlet, behaves in the

ultraviolet limit as if it had Neumann boundary ondition.

We determine the spetrum of boundary bound states by using the bootstrap priniple and

give in fat an indutive self onsistent proof of their existene. We also give the explanation

of all the poles in the various re�etion fators in terms of these bound states and Coleman-

Thun diagrams [6℄. The importane of Coleman-Thun diagrams in the ontext of boundary

bootstrap was �rst emphasized in [7℄. An interesting feature of SGN is that we �nd instanes

when Coleman-Thun diagrams and bound state reation oexist (a similar phenomenon was

previously observed in the ase of boundary Yang-Lee theory [7℄). To disover this one has to

ompute and ompare the residues of Coleman-Thun diagrams and the re�etion fators, thus

one has to go beyond the usual argument that heks only the existene of a diagram with

the required pole.

One we know the spetrum of SGN on the in�nite half line the next step is to inquire

how it is hanging when the model is restrited to a �nite line segment 0 ≤ x ≤ L with

suitable boundary onditions. We develop a transfer matrix formalism and use it to disuss

the desription of boundary bound states in this setting in some detail. Sine the resulting

�nite volume spetra depend on the re�etion fators, they provide an ideal laboratory to

hek these re�etion fators, if we an measure the spetra independently.

To this end we develop the trunated onformal spae approah (TCSA) [8℄ to SGN.

Determining the �nite volume spetra numerially by using TCSA we are able to ompare

them to the theoretial preditions, and the omplete agreement we �nd gives a strong evidene

for the orretness of the various bound states and re�etion fators.
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The paper is organized as follows: in the next setion we desribe some lassial solutions

of SGN and show that the semi-lassial quantization of the boundary breathers explains

a part of the poles in the breathers re�etion fators on non exited boundary. In setion

3, using the bootstrap priniple, we derive the spetrum of boundary bound states and the

assoiated re�etion fators. Setion 4 is devoted to the disussion of �nite size e�ets in a

large volume L, with some non trivial boundary onditions at the ends of L. In setion 5, as

the main step of TCSA, the Hamiltonian of BSG on 0 ≤ x ≤ L is desribed as that of a bulk

and boundary perturbed free boson with appropriate boundary onditions. We ompare in

detail the TCSA data and the theoretial preditions in setion 6. We make our onlusions

in setion 7. The paper is losed by three appendies: in Appendix A we give in details the

proof of the existene of the boundary bound states. In Appendix B we explain the poles of

the soliton and breather re�etion fators. Finally, in Appendix C we review those aspets of

boundary c = 1 theories that are neessary to set up our TCSA.

2 A few lassial solutions and the semilassial spetrum

of boundary breathers in SGN

In boundary sine-Gordon theory with Neumann boundary ondition (SGN) the boundary

potential is absent: M0 = 0. As a result, Φ(x, t) satis�es free boundary ondition at x =
0: ∂xΦ(x, t)|x=0 = 0. This boundary ondition preserves the Φ ↔ −Φ harge onjugation

symmetry (C symmetry) of the bulk theory, but violates the onservation of topologial harge.

This an be seen already on the simplest lassial solution of SGN, desribing the sattering

of a lassial soliton on the boundary. This solution, Φ̃s(x, t), is obtained by restriting to the

x ≤ 0 half line the ΦSA(x, t) soliton anti soliton solution of the bulk theory:

Φ̃s(x, t) ≡ ΦSA(x, t) =
4

β
arctan

[ sinh(umt/
√
1− u2)

u cosh(mx/
√
1− u2)

]

, for −∞ < x ≤ 0. (2.1)

(Sine ∂xΦSA(x, t)|x=0 = 0 it indeed satis�es the Neumann boundary ondition). This solution

exhibits that the inident soliton re�ets as an anti soliton from the Neumann boundary, i.e.

topologial harge hanges by two units in this sattering.

Another observation that plays an important role in the sequel is that the `standing'

breather solution of the bulk SG, osillating with period τ around x = 0:

Φτ (x, t) =
4

β
arctan

[

√

(τ̃ )2 − 1
sin(mt/τ̃ )

cosh(mx
√

1− (τ̃ )−2)

]

, τ̃ =
mτ

2π
, (2.2)

also satis�es ∂xΦτ (x, t)|x=0 = 0. Therefore the lassial breather solution, bound to the wall

at x = 0 is given by

Φ̃τ (x, t) = Φτ (x, t), for −∞ < x ≤ 0. (2.3)

In SGN `boundary dependent' simple poles are found in the re�etion fators of the various

breathers [3℄ that may desribe boundary bound states (BBS). In the re�etion fator of the

n-th breather, Bn
, this pole is loated at the θ = inpπ/2 1

value of the purely imaginary

1

The parameter p is determined by the sine-Gordon oupling onstant as p = β2/(8π − β2).
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rapidity, so that if it really orresponds to a BBS, then the energy of this state above the

ground state is

en − e0 =M sin(npπ). (2.4)

In the form of two lemmas su�ient onditions were given in [4℄ that guarantee that a simple

pole in a re�etion fator annot be explained by the Coleman-Thun mehanism [6℄, i.e. that it

desribes a bound state. However, these onditions are not satis�ed for any of the poles above,

thus the question whether they orrespond to BBS remains open. Furthermore, a Coleman-

Thun explanation of a subset of the poles is given by the solitoni version of diagram () on

Fig.(3.2), when the index n of the breather satis�es n > 1/(2p). (This is disussed in detail in

the next setion). We larify the status of the poles for n < 1/(2p) below by showing that the

energies assoiated to them as hypothetial BBS math exatly with the spetrum of bound

states obtained by semi-lassial quantization from the lassial boundary breather solutions

of SGN (2.2-2.3). We ahieve this by adapting to this problem the semi-lassial derivation of

the breather spetrum in the bulk sine-Gordon theory as given in the lassi paper [9℄.

The semi-lassial (WKB) quantization of any periodi lassial solution, φcl in a �eld

theory an be summarized by the equations:

− ∂

∂τ

[

Scl(φcl) + Sct(φcl)−
∞
∑

i=0

(ni +
1

2
)hνi(φcl)

]

= E, (2.5)

W{ni}(E) = 2Kπ~, K integer, (2.6)

where

W{ni}(E) = Scl(φcl) + Sct(φcl) + Eτ(φcl)−
∞
∑

i=0

(ni +
1

2
)hνi(φcl). (2.7)

Here τ(φcl) denotes the period of the lassial solution, νi(φcl) stand for its stability frequenies

(that haraterize the quasi periodiity ξi(x, t+τ) = eiνiξi(x, t) of the solutions of
[

− ∂2

∂t2
+ ∂2

∂x2 −

(∂
2U

∂φ2 )φcl

]

ξi(x, t) = 0), and ni are a set of non negative integers. Furthermore the subsript

`t' stands for ounter term ontributions, whose e�et is to anel divergenes in the in�nite

sums. Eq.(2.5) piks out the appropriate lassial periodi solution for a given E and a given

set of integers ni. Then those values of E whih satisfy Eq.(2.6-2.7), give the renormalized

bound state energies.

With the Neumann boundary ondition the boundary potential is absent, and as LSG(Φτ )
is symmetri for x 7→ −x, we easily obtain

Scl(Φ̃τ ) =
16π

β2

(

arccos

(

1

τ̃

)

−
√

(τ̃ )2 − 1

)

, (2.8)

whih is just half of the orresponding expression in the bulk theory. The stability frequenies

for Φ̃τ are the same as for Φτ , but the ξ̃(x, t) �utuations must also satisfy ∂xξ̃(x, t)|x=0 = 0.
Therefore only half of the bulk stability �utuations appear in the Neumann problem, namely

those that are even under x 7→ −x, (and the same applies to the �utuations ontributing

to the vauum energy Evac appearing in the ounter term). Thus e�etively we must take

∑

ν̃i =
1
2

∑

νi. To obtain the basi boundary bound states we set all ni = 0, and using the

expliit form of the ounter-terms and the sums over νi as given in [9℄ we �nd �nally

Sct(Φ̃τ )−
∑ 1

2
ν̃i = −β

2

8π
Scl(Φ̃τ ). (2.9)
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Using these results in Eq.(2.5, 2.7) leads to

Ẽ =
m

πp

√

(τ̃)2 − 1

τ̃
, W (Ẽ) =

2

p
arcsin

(

Ẽpπ

m

)

. (2.10)

As a result the quantization ondition, W (ẼK) = 2πK, gives

ẼK =M sin(Kpπ), (2.11)

where M = m
pπ

is the semi-lassial soliton mass. Clearly this reprodues (2.4). Sine τ(ẼK) ∼
1

cos(Kpπ)
the range of K-s where bound states exist (i.e where τ(ẼK) <∞) is K < 1/(2p).

3 Boundary bound state spetrum from bootstrap prini-

ple

In this Setion we determine the spetrum of boundary exitations, the related soliton and

breather re�etion fators and show how their poles an be explained in terms of on-shell dia-

grams. We start with a summary of the bulk sattering properties and then review the result

of Ghoshal and Zamolodhikov onerning the re�etion fators of the soliton and breathers on

the non-exited boundary. From their pole struture and the bootstrap equation we onjeture

the minimal spetrum of the exited boundary states (or with other words boundary bound

states), and prove in Appendix A that they an be reated by suessive soliton absorptions

on the wall at purely imaginary rapidity. Having determined the re�etion fators we explain

all their poles in terms of on-shell diagrams whih orrespond either to some Coleman-Thun

mehanism or reation of boundary bound states. In this study we rely heavily on the ma-

hinery worked out in [4℄ for the Dirihlet ase. However, in ontrast to the Dirihlet ase we

�nd instanes when a Coleman-Thun type diagram happens to give a pole of the same order

as the re�etion amplitude has, but with wrong residue, thus leaving the possibility of exited

boundary state reation at the same time.

3.1 Bulk sattering properties

In the bulk SG model any sattering amplitude among solitons and anti solitons fatorizes

into a produt of two partile sattering amplitudes, of whih the independent ones are [10℄

a(u) = S++
++(u) = S−−

−−(u) = −
∞
∏

l=1

[

Γ(2(l − 1)λ− λu
π
)Γ(2lλ+ 1− λu

π
)

Γ((2l − 1)λ− λu
π
)Γ((2l − 1)λ+ 1− λu

π
)
/(u→ −u)

]

b(u) = S+−
+−(u) = S−+

−+(u) =
sin(λu)

sin(λ(π − u))
a(u) ; λ =

8π

β2
− 1 =

1

p
,

c(u) = S−+
+−(u) = S+−

−+(u) =
sin(λπ)

sin(λ(π − u))
a(u) ; u = −iθ .

Sine we are onentrating on the bound state poles loated at purely imaginary rapidities we

use the variable u instead of θ and refer to it as the rapidity from now on in this Setion. The

other sattering amplitudes an be desribed in terms of the funtions

{y} =

(

y+1
2λ

) (

y−1
2λ

)

(

y+1
2λ

− 1
) (

y−1
2λ

+ 1
) , (x) =

sin
(

u
2
+ xπ

2

)

sin
(

u
2
− xπ

2

) ,
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B

B

B

u

u

n

n+m

m

m

n

(a) Breather fusion

un

Bn

(b) Soliton and anti soliton

fuse to a breather

Figure 3.1: Bulk verties

as follows. For the sattering of the breathers Bn
and Bm

with n ≥ m and relative rapidity u
we have [10℄

Snm(u) = Snm
nm(u) = {n+m− 1}{n+m− 3} . . . {n−m+ 3}{n−m+ 1} ,

while for the sattering of the soliton (anti soliton) and Bn
we have

Sn(u) = S+n
+n(u) = S−n

−n(u) = {n− 1 + λ}{n− 3 + λ} . . .
{

{1 + λ} if n is even

−
√

{λ} if n is odd .

All the poles of the sattering amplitudes in the physial strip originate from virtual proesses

either in the forward or in the ross hannel of the diagrams (a-b) on Fig.(3.1), where the

useful de�nition

un =
nπ

2λ

was also introdued.

2

For eah suh proess a oupling as fn+m
nm or fn

+− an be attributed and

it is known that fn
+− = (−1)nfn

−+.

3.2 Re�etion fators on ground state boundary

The re�etion fator of the soliton on the ground state Neumann boundary was found by

Ghoshal and Zamolodhikov [1℄. For the topologial harge preserving proess, (i.e. when a

soliton (anti soliton) re�ets as soliton (anti soliton)), we have

P (u) = cos(λu)R0(u)σ
(π

2
(λ+ 1), u

)

σ(0, u) ,

where

R0(u) =

∞
∏

l=1

[

Γ(4lλ− 2λu
π
)Γ(4λ(l − 1) + 1− 2λu

π
)

Γ((4l − 3)λ− 2λu
π
)Γ((4l − 1)λ+ 1− 2λu

π
)
/(u→ −u)

]

2

On all the spae-time diagrams time develops from top to bottom. Solitons (or anti solitons) are denoted

by solid lines, while breathers by dashed ones.
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is the boundary ondition independent part and

σ(x, u) =
cosx

cos(x+ λu)

∞
∏

l=1

[

Γ(1
2
+ x

π
+ (2l − 1)λ− λu

π
)Γ(1

2
− x

π
+ (2l − 1)λ− λu

π
)

Γ(1
2
− x

π
+ (2l − 2)λ− λu

π
)Γ(1

2
+ x

π
+ 2lλ− λu

π
)

/(u→ −u)
]

desribes the boundary ondition dependene.

3

The poles of σ(x, u) in the physial strip are

loated at u = x
λ
− u2k+1 or at π − x

λ
+ u2k+1, k ≥ 0 ; and it has no zero there.

For the topologial harge hanging proess, (when the soliton (anti soliton) omes bak

as anti soliton (soliton)), we have

Q(u) =
sin(λu)

sin(λπ
2
)
P (u) .

Note that the topologial harge is hanged by two in this proess, thus the parity of the

soliton number is onserved and we have an odd and an even setor.

The breather re�etion fators share the same struture as the solitoni ones as a onse-

quene of the general expression in [3℄. For Neumann boundary ondition and breather Bn

they have the following form

R(n)(u) = R
(n)
0 (u)S(n)

(π

2
(λ+ 1), u

)

S(n)(0, u)

where

R
(n)
0 (u) =

(

1
2

) (

n
2λ

+ 1
)

(

n
2λ

+ 3
2

)

n−1
∏

l=1

(

l
2λ

) (

l
2λ

+ 1
)

(

l
2λ

+ 3
2

)2 ; S(n)(x, u) =

n−1

2
∏

l= 1−n
2

(

x
λπ

− 1
2
+ l

λ

)

(

x
λπ

+ 1
2
+ l

λ

)

In general R
(n)
0 would desribe the boundary independent properties and the other fators

would give the boundary dependent ones. In the Neumann ase, however, there are oini-

denes among the poles and zeros of the various fators and it is better to rewrite the re�etion

fator as

R(n)(u) = 〈2n−1〉〈2n−3+4λ〉 . . .〈2(n−k)−1+(1−(−1)k)2λ〉 . . .
{

〈1〉 if n is odd

〈1 + 4λ〉 if n is even

,

where

〈y〉 =
(

y+1
4λ

) (

y−1
4λ

)

(

y+1
4λ

− 1
2

) (

y−1
4λ

+ 1
2

)

is the �half-blok� with respet to {y}.

3.2.1 Pole analysis

Now onsider the poles of the soliton re�etion fator P (u).

• There are boundary independent poles in the physial strip due to the fator R0(u).
They are loated at un , n = 1, 2, . . . from whih every odd is aneled by the zero of

cos(λu). The remaining poles an be desribed by diagram (a) on Fig.(3.2). This is

onsistent with the fat that the C symmetri Neumann boundary an emit and absorb

only even breathers with zero momentum.

3

The funtion σ(x, u) has among others the property σ(x, u)σ(x,−u) = cos2 x

cos(x+λu) cos(x−λu) whih orrets

a typo in [1℄ and [3℄.
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son re�etion

e

e

e

u
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−ν

0

1

0

3
1

2

(d)

bound

state

replae-

ment

Figure 3.2: A few boundary diagrams

• The boundary dependent poles in the physial strip are loated at

νn =
π

2
− u2n ; n = 0, 1, . . . ,

[

λ

2

]

The pole at

π
2
is responsible for the emission and absorption of a zero momentum soliton

or anti soliton. For eah of the other poles we assoiate a boundary bound state with

energy

en − e0 =M sin u2n

From now on we put the boundary ground state energy to zero e0 = 0 for simpliity.

Clearly the basially bulk proess (a) on Fig.(3.2) does not exist for the re�etion amplitude

Q(u) and the fator sin(λu) takes are of this. The boundary dependent poles of Q(u) oinide
with and an be explained in the same way as those of P (u).

Now let us fous on the poles of the breather re�etion fators. As a warm-up example

onsider the re�etion fator of the third breather:

R(3)(u) = 〈5〉〈3 + 4λ〉〈1〉

• It has a simple bulk pole at

π
2
− u3 whose explanation depends on the value of the

parameter λ. If B6
is in the spetrum then we an use the `all-breather' version of

diagram (a). On this we mean by replaing eah soliton line by a B3
line having rapidity

π
2
− u3 and B6

is formed at the vertex. Now if B6
is not in the spetrum then the

soliton version of diagram (b) applies. In this ase the breather triangle is turned into a

soliton-anti soliton triangle.

• The pole at

π
2
− u1 is of seond order and an be explained by diagram ().

• The pole at u3 an be explained by the soliton version of diagram () for 3 >
[

λ
2

]

(whih is neessary to guarantee that the soliton in the middle also travels towards the

wall). This diagram gives a seond order pole and the re�etion fator has no zero

at −ν3 = u6 − π
2
. We have an analogous diagram, however, by hanging the amplitude

8



P (u) for Q(u). They di�er by a fator of sin(−λν3)/ sin(λπ2 ) = −(−1)3 but we know that

f 3
+− = (−1)3f 3

−+. This gives the sign di�erene whih is responsible for the Coleman-

Thun type anellation in the sum of the two diagrams. In the 3 ≤
[

λ
2

]

ase we have a

boundary bound state with energy

e3 =M3 cosu3 = 2M sin u3 cosu3 =M sin u6 ,

whih is exatly the same as the boundary bound state reated by the soliton. The

identity of these two boundary bound states an also be on�rmed by showing the

agreement of the other higher spin onserved harges.

• For the other two poles at u1 and u2 we have diagram (b). In the ase of u2 the seond
breather hits the boundary while in the ase of u1 the �rst.

We ould be satis�ed now and turn to the general ase. There is a subtlety, however, sine we

have not omputed the residues. Performing the omputation reveals that the residues of the

re�etion fators and diagrams agree exept for the pole u1 where they have di�erent signs.

Thus we must assume that a boundary bound state exists with energyM3 cosu1 = e1+e2. We

note that in the Neumann ase the bulk pole of R
(3)
0 (u) and a boundary pole of S(3)(π

2
(λ+1), u)

at u1 oinide but a zero in the boundary fator redues the singularity to �rst order. If

we move a bit away from the Neumann point, when the boundary dependent part beomes

S(3)(π
2
(λ + 1) − δλ, u), the two poles split and the bulk pole at u1 an be desribed by the

diagram above, while the pole at u1 − δ orresponds to a boundary bound state. Computing

the residue and taking the δ → 0 limit do not ommute, however, resulting in a sign di�erene.

This sign di�erene persists when the state with energy e2 is not in the spetrum i.e. for u4 >
π
2
.

In this ase we have diagram (d), where B3
is deaying into a soliton and an anti soliton. Then

the soliton reates the state with energy e1 on whih the other anti soliton is re�eting with

rapidity u4 − π
2
. This diagram is naively seond order, however, the same Coleman-Thun

mehanism that we used in the previous example, takes are of the anellation.

From this example we an draw two onlusions. First, breathers and solitons an reate

the same states. Seond, even if a diagram desribes a pole of the same order as the re�etion

fator has, the residues do not always oinide, thus allowing the reation of a boundary bound

state in the same time.

Now we are ready to disuss the general ase. The re�etion fatorR(n)(u) has the following
poles in the physial strip.

• There is a simple pole at

π
2
− un. It an be explained in terms of the breather version of

diagram (a) by forming B2n
or if it is not in the spetrum then by the soliton version of

diagram (b).

• The double poles at

π
2
− un−2k an be explained by diagram ().

• For even breathers there is an extra simple pole at

π
2
. It orresponds to the emission of

a zero momentum even breather.

• The simple pole at un orresponds to the reation of the boundary bound state with

energy en = M sin u2n, if it is in the spetrum. Alternatively, it an be explained in

terms of the solitoni version of diagram () where, just as in the example, a Coleman-

Thun type mehanism ensures the pole to be simple.

9



• If n+k is even then the pole uk is responsible for the reation of a boundary bound state

with energy en+k
2

+ en−k
2

, if en+k
2

is in the spetrum. Alternatively, we have diagram (d)

where the state with energy ek is reated in the middle and the Coleman-Thun argument

has to be used for the sattering.

• If, however, n+k is odd then the pole at uk has its explanation in terms of diagram (b).

3.3 Exited state re�etion fators

We have seen that both the pole of the soliton re�etion fator at νn and the pole of the

re�etion fator of Bn
at un give rise to a state with energy en. The identity of these two states

an be further on�rmed by showing that any re�etion fators on them agree. Computing

these re�etion fators from the solitoni and breather bootstrap equations gives idential

results. Therefore we denote these ommon states by |n〉.
In omputing the soliton exited state re�etion fator we use the

P|n〉(u) = P (u)Sn(u+ un)S
n(u− un)

�soliton-breather� bootstrap equation. The result is

P|n〉(u) = an(u)P (u) ; an(u) = {2n− 1 + λ}{2n− 3 + λ} . . . {1 + λ} .

We have heked that the purely solitoni bootstrap equation gives the same result. Sine

the solitoni re�etion fator has one extra pole at ν0 =
π
2
we an bootstrap on this pole and

obtain P|0〉(u) = P (u). This means that the ground state is non degenerate, so the reation

or annihilation of a soliton or anti soliton does not hange the boundary ground state. (We

have already used this property in the explanation of the ground state breather poles). The

existene of a unique ground state implies that C symmetry is not broken. Note, however,

that this is strikingly di�erent from the ase for Dirihlet boundary ondition at ξ = π
2
(λ+1),

where one has two vaua and the Z2 symmetry is spontaneously broken [11℄.

Repeating the same bootstrap program for the amplitude Q(u) we arrive at

Q|n〉(u) = an(u)Q(u) .

For the breather re�etion fators on the exited state |n〉 the bootstrap equation takes the

form

R
(m)
|n〉 (u) = R(m)(u)Snm(u+ un)S

nm(u− un) .

From here we have expliitly

R
(m)
|n〉 (u) = bmn (u)R

(m)(u)

where

bmn (u) = {m+ 2n− 1}{m+ 2n− 3} . . .

. . . {m+ 2n− 1− 2l} . . .
{

{m− 2n+ 1} if m− 2n+ 1 > 0
{2n−m+ 1} if 2n−m+ 1 > 0

.

Let us fous on the solitoni re�etion fators P|n〉(u). The prefator an(u) has simple poles

at ν0 and νn and double poles at νk , k = 1, 2, . . . , n − 1. The loations of these poles are

the same as that of P (u), thus only the order has inreased for k ≤ n. We onjeture, and

in fat prove in Appendix A, that the other simple poles at νk , k > n, whih do not ome

from an(u), are responsible for the reation of the exited boundary bound states with energy

en + ek whih we denote by |n, k〉.
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Figure 3.3: Various ways of reating the state |n, k〉.

Now it is interesting to use the integrability of the model. Using the fatorizability argu-

ment we an shift the soliton trajetory and obtain the three diagrams on Fig.(3.3).

In the �rst piture the soliton reates the boundary bound states |n〉 at an angle νn then

an other soliton reates |n, k〉 at an angle νk where k > n. They satter on eah other at an

angle u2(k−n) whih is not proper for forming a breather. Now if we move the seond soliton

trajetory up we obtain the piture in the middle. Here the soliton at νk reates the state |k〉
then the other soliton re�ets on it at an angle νn. This re�etion fator has a third order

pole for whih diagram (a) on Fig.(B.3) shown in Appendix B an be assoiated showing

the reation of the state |n, k〉 as it was expeted from onsisteny. In the third piture the

exited boundary |k〉 deays by emitting a soliton. This soliton then satters on the other

soliton forming Bn+k
with rapidity uk−n whih �nally reates the state |n, k〉.

Now we an use any of the proesses above (or their breather versions) to ompute the

re�etion amplitudes. They turn out to be

P|n,k〉(u) = an(u)ak(u)P (u) ; Q|n,k〉(u) = an(u)ak(u)Q(u)

and

R
(m)
|n,k〉(u) = bmn (u)b

m
k (u)R

(m)(u)

From this it is lear how it goes on, so we turn to the desription of the spetrum of the

boundary bound states and their re�etion fators in general.

3.4 The spetrum of the boundary bound states and the assoiated

re�etion fators

From the previous disussion it is lear that a boundary bound state an be labelled by a

sequene of inreasing positive integers and denoted by |n1, n2, . . . , nk〉 where ni > ni−1and

nk <
[

λ
2

]

. Its energy an be written as

m|n1,n2,...,nk〉 =

k
∑

j=1

M sin u2nj
=

k
∑

j=1

enj
.

The �rst task is to prove the existene of these states. Unfortunately the proof of [4℄, whih

uses the breathers to reate the boundary bound states, does not apply. This proof is based
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on a speial property of the breather re�etion fators with Dirihlet b..-s, namely that to

every pole either a bound state or a Coleman-Thun diagram an be assoiated. In ontrast

to the Dirihlet ase we have shown that Coleman-Thun diagrams and boundary bound state

reations may oexist in the Neumann problem. We prove, however, in Appendix A that soli-

tons at re�etion angle νm on the state |n1, n2, . . . , nk〉 an reate the state |n1, n2, . . . , nk, m〉
if m > nk. Now the next step is to ompute the re�etion fators and explain all the poles in

terms of diagrams. The omputation is quite straightforward and the result is

P|n1,n2,...,nk〉(u) = an1
(u)an2

(u) . . . ank
(u)P (u)

Q|n1,n2,...,nk〉(u) = an1
(u)an2

(u) . . . ank
(u)Q(u)

and

R
(m)
|n1,n2,...,nk〉

(u) = bmn1
(u)bmn2

(u) . . . bmnk
(u)R(m)(u).

Using the fatorizability argument leads to the following reation-annihilation rules: For the

soliton with rapidity νm

|n1, . . . , ni, ni+1, . . . , nk〉 −→ |n1, . . . , ni, m, ni+1, . . . , nk〉

if ni < m < ni+1. For B
m
with rapidity u2ni+m we have

|n1, . . . , ni, . . . , nk〉 −→ |n1, . . . , ni +m, . . . , nk〉 ,

while for Bm+l
with rapidity ul−m and l > m the proess is

|n1, . . . , ni, ni+1, . . . , nj, nj+1, . . . , nk〉 −→ |n1, . . . , ni, m, ni+1, . . . , nj , l, nj+1, . . . , nk〉 .

Now the most di�ult problem is to explain all the poles of the re�etion fators in terms of

diagrams. Sine it is quite umbersome we put it in Appendix B.

4 Finite size e�ets in large volume

4.1 Bethe-Yang equations for partiles in �nite volume with bound-

aries

Imagine putting N partiles in �nite volume L, suh that the ith partile Ai has mass Mi

and rapidity θi (whih we hoose nonnegative sine only the absolute value matters, due to

re�etion on the boundaries), plus some additional internal quantum numbers αi (distinguish-

ing it within a multiplet of the same mass Mi). Let us denote the re�etion fator of the

ith partile on the left/right end of the interval by R
(i)
L (θi) and R

(i)
R (θi), respetively and the

sattering matrix of partiles Ai and Aj by S
(i,j)(θi − θj). Obviously in the general ase these

are matries with the following struture

R
(i)
L (θi) =

{

R
(i)
L (θi)

α
′

i
αi

}

,

R
(i)
R (θi) =

{

R
(i)
R (θi)

α
′

i
αi

}

,

S(i,j)(θi − θj) =

{

S(i,j)(θi − θj)
α
′

iα
′

j
αiαj

}

.
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We de�ne a family of transfer matries that ats in V1⊗ . . .⊗VN , where Vi is the internal spae
labelled by the multipliity index αi of the ith partile. The transfer matrix Tk desribes a

unitary transformation on the wave funtion resulting from the sattering of Ak on the other

partiles and the two boundaries when we take the partile around the volume (starting e.g

to the left, re�eting on the left boundary, oming bak to the right, re�eting on the right

boundary and returning to the original position):

T
(1,..., N)
k (θ1, . . . , θN) = R

(k)
R (θk)

∏

j:j 6=k

S(j,k)(θk + θj)R
(k)
L (θk)

∏

j:j 6=k

S(j,k)(θk − θj) .

We omitted the multipliity indies of the matries (these are indiated by the upper indies

in brakets and an be restored easily). The satterings were performed in a partiular order,

due to the equations of fatorized bulk and boundary satterings, the order is eventually

immaterial: performing the satterings in any other way results in the same transfer matrix.

Another onsequene of fatorized sattering is that the matries Tk form a ommuting family

for a given set of rapidities. The wave funtion an be haraterized by a vetor ψα1...αN
living

in the tensor produt spae, and transforming under all suh monodromy operations as:

exp (2iMkL sinh(θk)) T
(1,...,N)
k (θ1, . . . , θN)ψ = ψ , k = 1, . . . , N . (4.1)

The prefator in this equation is the phase aquired by Ak due to its momentum (whose

absolute value is Mk sinh θk). Equations (4.1) are the so-alled Bethe-Yang equations in the

presene of a boundary.

Sine the transfer matries ommute, they an be diagonalized simultaneously. Let us

denote the eigenvalues of the transfer matrix T
(1,...,N)
k (θ1, . . . , θN ) by λ

(s)
k (θ1, . . . , θN), where

s = 1, . . . , DN enumerates the eigenvalues (with multipliities) and DN = dimV1 ⊗ . . .⊗ VN .
The orresponding ommon eigenvetors will be alled ψ(s) (θ1, . . . , θN ).

The solutions to the Bethe-Yang equations (4.1) are given by the wave funtion amplitudes

ψ = ψ(s) (θ1, . . . , θN)

provided that the rapidities solve the equations

4

exp (2iMkL sinh(θk))λ
(s)
k (θ1, . . . , θN) = 1 , k = 1, . . . , N (4.2)

for some (�xed) s. These equations e�etively desribe the quantization of momentum in �nite

volume with boundaries. The total kineti energy of the partiles is then given by

Ekin =

N
∑

j=1

Mj cosh θj ,

whih is the energy di�erene with respet to the state with no partiles in this approximation.

The above alulation supposes that the partiles do not overlap with eah other and the

boundary substantially, i.e. it is valid only when the volume is large enough: MiL≫ 1 for all

i. Note that if the partiles involved in the alulation have no multipliity labels, the transfer

matrix is a salar phase itself and an be diretly substituted into Eqs. (4.2). Taking the

logarithm of Eqs. (4.2) yields

2MkL sinh(θk)− i log λ
(s)
k (θ1, . . . , θN) = 2πIk , k = 1, . . . , N . (4.3)

4

For salar partiles, these equations appeared in [12℄.
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where the Ik are integers that we all Bethe quantum numbers. In this way a given multi-

partile state an be labeled by giving s and a set of integers I1 , . . . , IN and this labeling

is normally unique given a onsistent hoie of the branh of the logarithm. There are some

exeptions when for given s and I1 , . . . , IN Eqs. (4.3) admit more than one solution; suh

ases will be expliitly indiated below.

Note that in these onsiderations we negleted the ontribution of vauum polarization.

Sine, on dimensional grounds, we expet this ontribution to behave as O(exp(−ML)) for

large L-s (with M being some harateristi mass sale), the polynomially dereasing, leading

�nite size orretions are indeed desribed by Eq.(4.3).

4.2 Some partiular ases

Here we write down and analyze Eqs. (4.3) for some simple on�gurations that will play an

important role in the sequel.

4.2.1 States ontaining a single salar partile

For a state ontaining a single salar partile of mass M , Eqs. (4.3) redue to the single

equation

2ML sinh(θ)− i logRL (θ)− i logRR (θ) = 2πI . (4.4)

The energy of the state with respet to the vauum an be written as

E(L)−E0(L) = ER + EL +M cosh θ ,

where ER,L denote the boundary energy of the left and right boundaries with respet to the

boundary ground state (note that the boundary an also be in an exited state). One an

easily express the funtion E(L)− E0(L) in a parametri form using θ.
Our studies show that for ML ≪ 1 Eqn. (4.4) always has a real solution irrespetive of

the hoie of the quantum number I. However this may not be true for larger values of ML.
Let us disuss the partiular ase I = 0 and introdue the notation

ρL,R = i
∂

∂θ
logRL,R(θ)

∣

∣

∣

∣

θ=0

.

It is a generi property of re�etion fators that i logRL,R(θ) has a �nite limit as θ → ±∞;

it also follow from unitarity that they are odd funtions. Therefore the equation

2ML sinh(θ) = i logRL (θ) + i logRR (θ) (4.5)

has a pair of nonzero solutions as long as

2ML < ρL + ρR .

Inreasing L, these two solutions move towards the origin, whih they reah at a �nite volume

L0 =
1

2M
(ρL + ρR) .

The question arises: what happens for volumes L > L0? If ML0 ≫ 1 the Bethe-Yang

equations should give a good approximation of the �nite volume spetrum around this point.

However, eigenvalues annot simply disappear as the Hamiltonian we are onerned with is

Hermitian. In fat, the spetrum is real and every eigenvalue is a ontinuous (even smooth)

funtion of L. This leads us to the desription of boundary bound states.
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4.2.2 Desription of boundary bound states in �nite volume

Quite naturally, the two solutions of Eqn. (4.5) do not disappear, but ontinue their life as

omplex (eventually imaginary) solutions. Substituting θ = iu into Eqn. (4.5) we obtain

2ML sin(u) = logRL (iu) + logRR (iu) . (4.6)

As re�etion fators always take real values on the imaginary axis (as a result of analyti

S-matrix theory) this is a real equation and it has a pair of real solutions for u exatly when

L > L0. The energy orresponding to this solution is

E(L)− E0(L) = ER + EL +M cosu .

This is smaller than ER + EL +M whih means that this state annot orrespond to a real

partile between the two boundaries.

The re�etion fators RL and RR normally have poles on the imaginary axis. Let us denote

the one whih is losest to the origin by u∗ and suppose it ours in RL only

5

. Then one has

u → u∗ as L → ∞

and so

E(L = ∞)− E0(L = ∞) = ER + EL +M cosu∗ .

Suppose also that u∗ orresponds to a boundary bound state |B∗
L〉 in the bootstrap, then the

energy of suh a state is

EL∗ = EL +M cosu∗ .

It is then tempting to interpret the orresponding state as one without partiles but in whih

the left boundary is exited to the state orresponding to the pole at u = u∗. Indeed our

numerial data show omplete onsisteny with this interpretation.

When the left and the right boundary onditions are idential (e.g both are Neumann),

both re�etion fators have a pole at u = u∗. One an then interpret the resulting `�nite size

state' as one in whih one of the boundaries is an exited one. This an be realized with two

wave funtions (as we have two idential boundaries) and we expet that the state desribed

above orresponds to one of them. Note that in the above solution we always have u < u∗.
The other one an be desribed (at least for large enough L) by noting that there is going

to be another solution u′ to Eqn. (4.6) whih satis�es u′ > u∗ and also approahes u∗ for

L → ∞. It is lear, that, for �nite L, the solution with u′ has a lower energy than that of

with u.
When L and R are not idential and the boundary state, |BR〉, is not idential to the

exited |B∗
L〉 either, one again expets two wave funtions for the system with no partiles,

so the two solutions that exist in this ase too an be interpreted one again in this way.

However, when |BR〉 = |B∗
L〉 only one of the solutions an have an interpretation in terms of a

real physial state. This shows that not neessarily all solutions of the Bethe-Yang equations

(4.1) orrespond to physial states. In fat, when u∗ orresponds to a Coleman-Thun pole, we

do not even expet the I = 0 state to appear in the spetrum, sine then we would have some

state for L < L0 that does not have any physial ontinuation to L0 < L.
There is a generalization of this line of thought to other poles that are further away from

the origin in the physial strip 0 < u < π/2 . We annot expet these to be realized in

5

We meet this situation e.g. in sine-Gordon model with φ|R = 0 (speial Dirihlet) and ∂xφ|L = 0
(Neumann) b.-s.
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an analyti ontinuation from a state with real rapidities, sine any suh ontinuation goes

through the origin u = θ = 0 and neessarily runs into the pole losest to 0. However, we

an alulate solutions of Eqn. (4.6) around any suh pole (of ourse one annot go too far

from the given pole sine one then generally runs into the domain of some other singularity of

the re�etion fator). For large enough L, suh a solution exists and generalizing the above

sheme one expets that it an desribe the leading �nite size behaviour of some exited

boundary state in �nite volume if the pole in question partiipates in the bootstrap. One

again, Coleman-Thun poles an have no suh orresponding state in the �nite size spetrum.

A given exited boundary state may arise from di�erent re�etion fators as a pole (e.g. in

SGN the state |n〉 arises from both the soliton and the Bn
re�etions) and therefore a further

possibility is that it an be desribed in �nite volume in more than one ways.

Later in this paper we show that all the above onsiderations are well on�rmed by our

numerial studies. We wish to remark that similar ideas to desribe bound states appeared in

[13℄ for the bulk and in [14℄ for the boundary ase.

4.2.3 States with two salar partiles

In the ase of two salar partiles of mass M1 and M2, the Bethe-Yang equations take the

form

2M1L sinh θ1 − i logR
(1)
L (θ1)−i logR(1)

R (θ1)− i logS(12)(θ1 − θ2)

− i log S(12)(θ1 + θ2) = 2πI1,

2M2L sinh θ2 − i logR
(2)
L (θ2)−i logR(2)

R (θ2)− i logS(12)(θ2 − θ1)

− i log S(12)(θ2 + θ1) = 2πI2

, (4.7)

E(L)− E0(L) = ER + EL +M1 cosh θ1 +M2 cosh θ2 .

In this ase, these equations an only be solved by numerial iteration. One an also ontinue

these equations to imaginary value of one (or both) of the rapidities. Using that the re�etion

fators are real for purely imaginary rapidities together with unitarity and real analytiity of

the bulk S matrix one an show (just as for the one-partile ase) that the resulting equations

are onsistent and the energy of the solutions is always real. Consider e.g. the Bethe Yang

equations for Bn
-Bm

with rapidities iu and θ2 respetively, whih, before taking the logarithm,

an be written as

R
(n)
L (iu)R

(n)
R (iu)|S(n,m)(θ2 + iu)|2e−2mnl sinu =1 , l =ML,

R
(m)
L (θ2)R

(m)
R (θ2)

S(n,m)(θ2 + iu)

S(n,m)(θ2 + iu)∗
ei2mml sinh θ2 =1 , mn,m =

Mn,m

M
.

(4.8)

The �rst is a real equation with real entries, and eah fator on the left hand side of the seond

equation is of unit modulus. Thus, when taking the logarithms, for the omplete system there

is only one quantum number, Im, oming from the seond equation. Two partile states with

one rapidity being imaginary are important, as one an argue that the best way to desribe

one partile states moving between an exited and a ground state boundaries is to use (4.7-4.8)

with ground state re�etion fators and an imaginary rapidity tuned into the viinity of a pole

orresponding to the exited state. When both rapidities are imaginary, the solutions of (4.7)

desribe zero partile states with exited boundaries.
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5 Trunated Conformal Spae Approah (TCSA) for the

boundary sine-Gordon model

Here we desribe the Hamiltonian of boundary sine-Gordon model (BSG) living on the line

segment 0 ≤ x ≤ L as that of a bulk and boundary perturbed free boson with suitable

boundary onditions. This is the starting point of the TCSA analysis.

The basi idea of TCSA is to desribe ertain 2d models as relevant perturbations of their

ultraviolet limiting CFT-s [8℄. If we onsider boundary �eld theories, then the CFT-s in the

ultraviolet are in fat boundary CFT-s. The use of TCSA to investigate boundary theories

was advoated in [14, 15℄.

As the bulk SG an be suessfully desribed as a perturbation of the c = 1 free boson

[16℄, it is natural to expet, that the various BSG models are appropriate perturbations of

c = 1 theories with Neumann or Dirihlet boundary onditions. Therefore we take the strip

0 ≤ x ≤ L and onsider the following perturbations of the models desribed in detail in

Appendix C:

S =

∫ ∞

−∞

∫ L

0

(

1

8π
∂µΦ∂

µΦ + µ cos(βΦ)

)

dxdt+

+

∫ ∞

−∞

(

M0

[

cos

(

β

2
(ΦB − φ0)

)

− 1

]

+ML

[

cos

(

β

2
(ΦB − φL)

)

− 1

])

dt .

Here, for �niteM 's, Neumann boundary onditions are imposed in the underlying c = 1 theory
on the boundaries, while if any of the M -s is in�nite then the orresponding term is absent

and the boundary ondition in the underlying onformal theory on that boundary is Dirihlet.

We an rewrite the Hamiltonian of the system in terms of the variables assoiated to the plane

using the map (x, it) = ξ → z = ei
π
L
ξ
, and by hanging the integration variable we have

H =HCFT +
µ

2

(π

L

)2hβ−1
∫ π

0

(

Vβ(e
iθ, e−iθ) + V−β(e

iθ, e−iθ)
)

dθ+

M0

2

(π

L

)hβ
(

e−iβ
2
φ0Ψβ

2

(1) + ei
β
2
φ0Ψ−β

2

(1)
)

+

ML

2

(π

L

)hβ
(

e−iβ
2
φLΨβ

2

(−1) + ei
β
2
φLΨ−β

2

(−1)
)

.

(5.1)

Now the omputation of the matrix elements of the bulk and boundary vertex operators V±β

and Ψ±β/2 (with onformal dimension hβ) between the vetors of the appropriate onform

Hilbert spaes is straightforward. Also the integrals an be alulated expliitly. Trunating

the Hilbert spae at a ertain onformal energy level Ecut (whih is nothing but the eigenvalue

of the zeroth Virasoro generator) and diagonalizing the Hamiltonian numerially we arrive at

the TCSA method.

The TCSA Hamiltonian for BSG with Neumann boundary onditions at both ends is

obtained from (5.1) by setting M0 = ML = 0 and using (C.5), (C.6) with n = 1, r =
√
4π/β

for HCFT and Vβ, while the TCSA Hamiltonian for BSG with mixed boundary onditions is

obtained by setting M0 = ML = 0 and using (C.9) and (C.10) with the same n and r for

HCFT and Vβ.
We hoose our units in terms of the soliton mass M . The bulk oupling µ is related to M

by

µ = κ(β)M2−2hβ , hβ =
β2

8π
, (5.2)
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where κ(β) is a dimensionless onstant. In the bulk SG, from TBA onsiderations, the exat

form of κ(β) was obtained in [17℄, and we use the same form also here in BSG. One we

expressed µ, the Hamiltonian, (5.1), an be made dimensionless h = H/M , depending only

on the dimensionless volume parameter l =ML and β (in the general ase it also depends on

M0,L/M and φ0,L).

6 TCSA analysis of SGN in �nite volume

In this setion we review the TCSA analysis of the BSG with Neumann boundary ondition.

The aim of this investigation is twofold: �rst we want to verify the various re�etion fators

and the boundary spetrum obtained from the bootstrap proedure, and seond we want to

obtain further information about the �nite volume behaviour of SGN. We onsider in some

detail the questions of the ground state and the assoiated boundary energies, the low lying

one partile states and their re�etions on the ground state wall and �nally the new states

predited by the bootstrap.

In SGN, as C symmetry persists, there are two setors, the C = 1 even and the C = −1
odd ones. The bulk breathers naturally belong to one of them, as the C parity of the n-th
breather is (−1)n. However, sine solitons and anti solitons an re�et into themselves as well

as into their harge onjugate partners, solitoni one partile states (i.e. states, whose energy

and momentum are related by E =
√
P 2 +M2

where M is the soliton mass) are there in both

setors. The ground state is in the even setor, while we expet |1〉 to be of the lowest energy

one in the odd setor (at least for p < 1/2, whih is true for all the ases investigated by us).

If at both ends of the strip Neumann boundary ondition is imposed (NN ase), then

sometimes we have to fae the problem of identifying the TCSA lines (states) orresponding

to the symmetri/antisymmetri ombinations of some idential exited states of the idential

boundaries, as desribed in setion 4. Therefore in the NN ase the �nite volume spetrum and

onsequently the TCSA line sequenes are more omplex than the `naive' one derived by the

bootstrap proedure in setion 3. To avoid this ompliation when `verifying' the Neumann

spetrum we onsider a system, where Dirihlet boundary ondition with φ0 = 0 is imposed

on one of the boundaries, while keeping the Neumann one at the other (DN ase). Sine this

mixed boundary ondition is also C symmetri we do not lose the presene of even and odd

setors on the one hand, while, on the other, we an be sure, that any boundary bound state

(BBS) found in this ase an be attributed to the Neumann end of the strip, as this Dirihlet

boundary ondition has no bound states [4℄.

As harge onjugation ats on the fundamental salar �eld by Φ 7→ −Φ, it is straightforward
to implement the projetion onto the even and odd setors in the onformal Hilbert spaes

used in TCSA. This projetion has two bene�ial e�ets: on the one hand it e�etively halves

the number of states below Ecut, thus it drastially redues the time needed to obtain the

omplete TCSA spetrum, and on the other the separate spetra of the even and odd setors

are less omplex and therefore easier to study than the ombined one.

In our numerial studies Ecut varied between 16 and 25, and this resulted in 4.5 × 103

- 8 × 103 onformal states per setors. In the DN ase the number of states below Ecut is

independent of p, while in the NN ase it depends sensitively on it.
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Figure 6.1: Ground state energy versus l in the DN ase at various p-s. The slope of the

dashed lines is −1
4
tan(pπ

2
).

6.1 Ground state and boundary energy

In any boundary �eld theory in �nite volume, for large enough L-s, we expet on general

physial grounds, that the volume dependene of the ground state energy an be written as

E0(L) = ǫ0L+ EL + ER, (6.1)

where ǫ0 is the ground state energy density and EL,R are the ground state boundary energies

assoiated to the left and right ends of the strip. In the BSG model one an argue that ǫ0
is nothing but the well known bulk energy onstant, −M2

4
tan(pπ

2
), of the bulk SG theory. In

BSG with Dirihlet boundary onditions, LeClair et al. [18℄ were able to obtain EDir from

TBA, at least for those values of p when not only the boundary but also the bulk satterings

beome diagonal. The ase of Neumann boundary ondition is more ompliated as there is

no p where the boundary satterings would beome diagonal.

Nevertheless using TCSA, we an get information on ENeu. To this end we determined

E0(l)/M (M is the soliton mass and l = ML is the dimensionless volume parameter) from

our TCSA data at various values of p both in the (DN) and in the (NN) ases; the results are

shown on Figs.(6.1-6.2) These �gures show in a onvining way that in these BSG models

ǫ0 is indeed the expeted one. Interestingly the (DN) data for E0(l)/M are onsistent with

a straight line passing through the origin; i.e. with ENeu(p) = −EDir(p, φ0 = 0). Sine from

ref.[18℄ we know EDir analytially, using the (DN) data we have a predition for E0(l)/M in

the (NN) ase: a straight line with slope parameter −1
4
tan(pπ

2
) and intersetion

2
ENeu

M
= −1

2

(

1− 2

cos(pπ
2
)
+ cot(

π(p+ 1)

4
)

)

. (6.2)

Fig.(6.2) shows that this predition is onsistent with our (NN) data.
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Figure 6.2: Ground state energy versus l in the NN ase at various p-s. The slope of the

dashed lines is the same as on Fig.(6.1), but their intersetion is given by Eq.(6.2).

6.2 Low lying one partile lines, re�etions on the ground state wall

Next we summarize what we an learn about the Neumann spetrum by studying the lowest

lying one partile states.

6.2.1 Breather lines

Using the formalism developed in setion 4 it is straightforward to express in parametri form

the Bethe - Yang (BY) lines orresponding to the various breathers moving between ground

state walls at the ends of the strip

6

:

(E(L), L) = (Mn cosh θ, (2πIn + i logR
(n)
L (θ) + i logR

(n)
R (θ))/(2Mn sinh θ)) . (6.3)

Here E(L) is the energy of the n-th breather above the ground state, θ (the parameter of the

line) is the rapidity of Bn
(whih, therefore, neessarily must be real and non negative), and

Mn is the mass of Bn
. In is the quantum number haraterizing the line; if R

(n)
L (0)R

(n)
R (0) = 1

then In is integer, while if R
(n)
L (0)R

(n)
R (0) = −1 then In is half integer. (If R

(n)
L (θ) = R

(n)
R (θ) as

in the (NN) ase, then only the �rst possibility appears, the seond happens e.g. in the (DN)

ase for the C even breathers).

The perfet agreement between the TCSA data and the preditions oming from (6.3)

for B1
, B2

and B3
with In > 0 in both the (DN) and the (NN) ases - as summarized in

Figs.(6.3-6.4) - gives onvining evidene for the orretness of the re�etion fators given in

[3℄.

7

6

Among the breather lines these are of the lowest in energy above the ground state.

7

On Figs.(6.3-6.6) the dimensionless energy levels above the ground state are plotted against l. On all plots

the ontinuous lines are the interpolated TCSA data and the various symbols mark the data orresponding

to the various BY lines. Some of the higher TCSA lines appear to have been broken, the apparent turning
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Using the parametri form of L(θ) given in (6.3) together with the limits

lim
θ→0

R
(n)
L (θ)R

(n)
R (θ) = ±1, lim

θ→∞
| logR(n)

L (θ)R
(n)
R (θ)| <∞

it is straightforward to show that for In > 0 the range of L(θ) runs from zero to in�nity, as θ
dereases from in�nity to zero (i.e. as we move from the UV to the IR). However, as it was

explained in setion 4, in the ase of In = 0 there is a maximal value of L0 beyond whih

we an not go keeping θ real. We an see this phenomenon on the In = 0 lines on Figs.(6.3-

6.4). Interestingly, there are TCSA lines on Figs.(6.3-6.4) whih, below a maximal L, an be

desribed well by breather (BY) lines with negative quantum numbers like the B2
line with

I2 = −1/2 or the B3
line with I3 = −1. The essential di�erene between the L(θ) funtions

with In = 0 and the ones with In < 0 is that while the former ones reah their maximal value

at θ = 0, the latter ones do this at some positive θ. Therefore, while in the former ase the

BY lines an be ontinued by going to purely imaginary rapidity, we an not do this in the

latter ases. As illustrated on Figs.(6.3-6.5) this ontinuation desribes the TCSA data very

well as u = −iθ moves from zero towards the �rst singularity in the re�etion fators, if this

�rst singularity orresponds to a bound state pole in bootstrap: see the B1
lines ending in the

e1 bound state in both the (DN) and the (NN) ases.

These Figures also show that the idea put forward in setion 4 to desribe (at least for

large enough L-s) the TCSA lines orresponding to BBS by appropriate one partile (here

breather) BY lines with purely imaginary rapidities (independently whether they are obtained

from ontinuation through θ = 0 or not) works indeed. At this point the omparison of the

DN and NN spetra is very instrutive: while in the DN ases there are only single lines that

desend to e1 or e2 from above for large L-s, in the NN ases one an see both an inreasing

and a dereasing line tending to e1 and e2. In the latter ase these nearly degenerate TCSA

states may be interpreted as the symmetri and antisymmetri wave funtions in whih one of

the idential (and hene indistinguishable) boundaries is in an exited state and the other one

is in the ground state. For large enough L-s the volume dependene of the nearly degenerate

energies is well desribed by BY lines with purely imaginary rapidities just above or just below

the values orresponding to e1 or e2.
On the last two plots in Fig.(6.5) we also exhibit the appearane of the |3〉 state in an

expeted way. For p = 25/137 (when the state |3〉 is absent) the BY line marked by the ◦-s
is a solitoni line with N = 1 extending to in�nity, while for p = 50/391 (when |3〉 is already
present) it is a solitoni line with N = 0, ending at a maximal l. In this latter ase the TCSA

data in the ontinuation of this BY line are orretly desribed by the x-s, whih are the data

from the BY line of the third breather with imaginary rapidity just below u3.

6.2.2 Soliton lines

As mentioned in the introdution to this setion in the desription of solitoni one partile

states we have to fae the problem of non diagonal re�etions. In the C symmetri ase (i.e.

when s ↔ s̄ is a symmetry) the one partile soliton anti soliton transfer matrix is 2 × 2, and
the Bethe Yang equations using the eigenvalues of this matrix take the form

1 = ei2ML sinh θ(PL(θ)±QL(θ))(PR(θ)±QR(θ)) , (6.4)

points are in fat level rossings with the other line not shown. This happens beause our numerial routine,

instead of giving the eigenvalues of the Hamiltonian in inreasing order at eah value of l, �xes their order at
a partiular small l and follows them � keeping their order � aording to some riteria as l is hanging to

higher values.
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Figure 6.3: TCSA data and soliton/breather Bethe Yang lines in the C even setors with

p = 25/137.
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where, in the C even/odd setors the upper/lower signs apply, and PL,R(θ) (QL,R(θ)) denote
the soliton soliton (soliton anti soliton) re�etion fators on the ground state left and right

boundaries. In the (NN) ase these equations simplify to

1 = ei2l sinh θ(P (θ)±Q(θ))2, l =ML, (6.5)

while in the (DN) ase - when on the Dirihlet wall Q vanishes - to

1 = ei2l sinh θ(P (θ)±Q(θ))PD(θ). (6.6)

(Here PD is the ξ = 0 ase of the soliton re�etion fator in BSG with Dirihlet boundary

onditions: PD(θ) = P (+)(θ)|ξ=0 of ref. [4℄). Using the in�nite produt form of P , Q and PD

it is straightforward to verify, that the expressions multiplying ei2l sinh θ
in Eq. (6.5-6.6) are

indeed pure phases � at least for 0 ≤ θ ≤ ∞ � thus these equations make sense.

The in�nite produt representation is not very useful when we ompare BY lines oming

from Eq. (6.5-6.6) to the TCSA data. Therefore, using the well known integral representation

for the logarithm of the Gamma funtion, we reast l(θ) suh that the parametri form of the

solitoni BY lines looks like (with E(l)/M denoting the energy above the ground state):

(E(l)/M, l) = (cosh θ, l(θ)), (6.7)

where

l(θ) =
Nπ + ai log r± + I(p, θ)

sinh θ
, (6.8)

with

I(p, θ) =

∞
∫

0

dy

y
sin(

2θy

π
)
(2 sinh(3y/2) sinh([1− p]y/2)

sinh(py/2) sinh(2y)
+

a sinh(py)− sinh(y)

cosh(y) sinh(py)

)

, (6.9)

and

r+ =
sin
(

π
4p

− i θ
2p

)

sin
(

π
4p

+ i θ
2p

) , r− =
cos
(

π
4p

− i θ
2p

)

cos
(

π
4p

+ i θ
2p

) , (6.10)

in the C even/C odd setors. Here the parameter a is one, a = 1, in the (NN) ase and is

one half, a = 1/2, in the (DN) ase; the quantum number N , haraterizing the BY line, is a

non negative integer in all setors and all ases and -as before - θ is both the parameter of the

line and the rapidity of the solitoni partile. (Although this representation of the solitoni

BY lines works for real rapidities only, one an show that all the �boundary dependent� poles

at θ = iu ome from log r±, in fat from the set of poles, θ = i(π
2
− kpπ), r+ has poles for

k = 2N while r− for k = 2N + 1).
On Figs.(6.3-6.4) we demonstrate the exellent agreement between the TCSA data and

the BY lines given by (6.7-6.10) with N > 0 in both the C even and the C odd setors of

the (DN) and (NN) ases. This agreement gives a strong evidene for the orretness of the

solitoni re�etion fators given in [1℄.

Note that in some ases we have TCSA lines that below a maximal L an be desribed well

by solitoni BY lines with zero quantum number, N = 0. The ontinuation of these BY lines

to imaginary rapidities � that worked for the breather lines � is hampered by the fat, that in

all the ases investigated, the pole in (P±Q)2 or (P±Q)PD nearest to the origin turned out to

be a Coleman-Thun pole. Therefore the solitoni BY lines ontinued to imaginary rapidities

deviate from the TCSA data.
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6.3 New boundary bound states and re�etions on exited walls

The most interesting appliation of TCSA is to �nd evidene for the existene of the new

BBS-s predited by the bootstrap and hek the orretness of the `exited' re�etion fators,

i.e. the ones desribing the sattering of breathers/solitons on the wall in an exited state. In

this inquiry it is very helpful to analyze the DN spetra: if, e.g. we �nd a TCSA line (state)

with asymptoti (large l) energy e1 + e2 in the DN spetrum, then we an be sure that it

indeed orresponds to the |1, 2〉 state of the Neumann boundary. (Note that in the NN ase

there are more states having this asymptotis, as the energy of the on�gurations, when one

of the Neumann boundaries is in the |1〉 state and the other is in the |2〉 state, also tends to

e1 + e2).
The state |1, 2〉 an be generated by the third breather, furthermore, the orresponding

pole at u1 is the one nearest to the origin in the third breather's re�etion fator. Therefore

it is expeted that the state |1, 2〉 beomes visible as the imaginary ontinuation of a B3
BY

line with I3 = 0. We olleted the evidene for the existene of |1, 2〉 on �g.(6.5). On all

three plots the ontinuous lines are the interpolated TCSA data, the +-s and the empty boxes

denote the BY line of B1
and B3

with I1,3 = 0 respetively, while the full triangles and the ∗-s
denote the ontinuations of these lines to purely imaginary rapidities with u ranging from zero

to u1. Note, that for p = 2/7, when, aording to bootstrap onsiderations, there is no |1, 2〉
state and the imaginary ontinuation of the B3

BY line should run into a Coleman - Thun

pole, the BY line indeed departs from the TCSA data, (whih, in this ase are well desribed

by a B2B1
BY line where the seond breather's rapidity is imaginary and the �rst breather's

quantum number is I1 = 1, the data orresponding to this line are given by the •-s). On the

other hand, when p is suh that |1, 2〉 should exist, we see that the imaginary ontinuation of

the third breather's BY line desribes the TCSA data just as well as that of the �rst breather's

line, whih runs into e1.
Further evidene for the existene of a new state predited by the bootstrap is given on

Fig.(6.6), where we exhibit a single TCSA line desending to e1 + e3. In the light of what we

said above this indiates the existene of the boundary bound state |1, 3〉. (The horizontal

lines orresponding to m4 = M4/M and the dimensionless e1 + e3 are drawn to guide the

reader's eye to distinguish this line from the real fourth breather's BY lines lying above m4.)

This state orresponds to the pole at u2 in the fourth breather's re�etion fator on the ground

state boundary. Therefore, above a ertain minimal l, the TCSA data in this line an ertainly

be desribed as the BY line of B(4)
with imaginary rapidity below u2, but, sine this re�etion

fator also has a pole at u1, an not be obtained as the analityal ontinuation of a BY line

through θ = 0.
The bootstrap proedure gave not only the spetrum of the BBS but also the re�etion

fators desribing the satterings of the various breathers/solitons on exited boundaries. On

Fig.(6.6) we also on�rm the orretness of these new re�etion fators.

There are two ways one an desribe the sattering of a breather, (Bn
say), on an exited

boundary |k〉. The �rst is to use a BY line (�exited� BY line) following from Eq.(4.4)

(E(L), L) = (ek +Mn cosh θ, (2πIn + i logR
(n)
L (θ) + i logR

(n)
R (θ))/(2Mn sinh θ)) , (6.11)

where R
(n)
R or R

(n)
L now orresponds to the appropriate R

(n)
|k〉 , and the energy above the ground

state is given by ek +Mn cosh θ. This desription, however, ignores the fat, that, in �nite

volume L, even in the absene of the movingBn
, the energy of the state |k〉 only asymptotially

oinides with ek. To remedy this we may try to use a two partile BY line, where ground

state re�etion fators appear, but one of the partiles moves with imaginary rapidity, (whih

25



0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

(E
-E

0)
/M

l

p = 2/7, no |1, 2〉 state exists

0.5

1

1.5

2

0 5 10 15 20 25 30

(E
-E

0)
/M

l

p = 25/137, the |1, 2〉 state exists

0

0.5

1

1.5

2

0 5 10 15 20 25 30

(E
-E

0)
/M

l

p = 50/391, the |1, 2〉 state exists
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DN model with p = 50/391.

is in the viinity of a pole orresponding to |k〉 in the appropriate re�etion fator). It is

expeted that in this way we desribe more aurately the volume dependene of the energy

of the state ombined from the moving breather and |k〉.
Sine the TCSA data are usually the better the lower the level is, we may hope to on�rm

the new re�etion fators mainly for light partiles re�eting on lowly exited boundaries. In

the p range we investigated the �rst breather is the lightest partile, therefore on Fig.(6.6)

we ompare B1
's BY line on the �rst exited boundary |1〉, and the TCSA data. The points

marked by ∗ orrespond to I1 = 1, 2 in (6.11). The data, orresponding to the alternative

desription, using two partile B1B1
lines with one imaginary rapidity and one real one with

quantum numbers I1 = 1 . . . 3 are marked by the full triangles; they give a somewhat better

desription of the TCSA lines. The four lines marked by the empty boxes orrespond to two

partile B1B1
lines with real rapidity and quantum numbers (1, 0), (−1, 1), (1, 2) and (−2, 2)

respetively. The lines marked by ◦ and + are soliton with N = 1 and B2
on ground state

boundary with I1/2 = 1
2
, and I1/2 = 7

2
, respetively; their funtion is to help the reader to

identify the already known breather/soliton ground state BY lines. Finally, for omparison,

we also inluded in this plot two lines - marked by •-s; they are solitoni �exited� BY lines

with N = 1, 2.
Summarizing, we an say, that for the �rst breather, the satisfatory agreement we �nd

between the TCSA data and the various ways of desribing its sattering on the �rst exited

boundary gives support for the orretness of the new re�etion fators. We expet that the

relatively poor agreement between the (onsiderably higher) TCSA data and the �exited�

solitoni BY lines ould be improved by replaing the latter by two partile soliton-B1
lines

where the breather is moving with an imaginary rapidity. On Fig.(6.6) we also show examples

of real two partile BY lines orretly desribing TCSA data as well as instanes, when a TCSA

line is desribed by several BY lines. In the C odd setor the lowest lying � `exited� BY lines

desribe the sattering of B2
on |1〉; we repeated also in this ase the analysis desribed above
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and obtained the same qualitative onlusions.

7 Conlusions

In this paper we analyzed the sine-Gordon model with Neumann boundary ondition (SGN). In

partiular we established the spetrum of boundary states, developed a framework to desribe

�nite size e�ets in boundary theories and used this framework together with TCSA to on�rm

the boundary states and the re�etion fators.

Of the boundary states we showed that they an be labelled by an inreasing sequene

of positive integers ni satisfying ni <
[

λ
2

]

, and denoted as |n1, . . . nk〉. For the states |n〉
we showed that their energies oinide with that of the WKB quantized lassial boundary

breather. We realized the existene of the states |n, k〉 by studying on the one hand the poles

of the breather's re�etion fators on non exited boundaries, and on the other, the poles of

the soliton re�etion fator P|n〉(u) on the exited state |n〉. The novel feature of this study was
that we omputed also the residues of the Coleman-Thun diagrams and the re�etion fators.

This way we disovered that Coleman-Thun diagrams and reation of boundary bound states

may oexist: this happens if the residue of the diagram is not su�ient to explain the residue

of the re�etion fator. Finally we proved that the new boundary states labelled by more

than one integers an be generated suessively by appropriate soliton re�etions. We also

determined all solitoni and breather re�etion fators on these new states and explained their

poles.

It is interesting to ompare the labeling of boundary states here in SGN to that of in

sine-Gordon model with Dirihlet boundary onditions [4℄. In the latter ase the labeling is

more ompliated: it onsists of two sequenes of positive integers. The explanation is that in

the Dirihlet ase, in ontrast to the Neumann one, the solitons and the anti solitons generate

di�erent boundary states.

Moving from the in�nite half line to a �nite line segment, we gave the general form of

Bethe-Yang equations for partiles in �nite volume with boundaries and used them to disuss

the appearane of boundary bound states in this �nite size setting. We showed in partiular,

that these states an be desribed as solutions of the BY equations with purely imaginary

rapidity.

Finally we studied the �nite volume spetrum of SGN by the trunated onformal spae

approah. We established, that the ground state energy density of this model oinides with

that of the bulk SG and ould also relate the ground state Neumann boundary energy to that

of the Dirihlet one with φ0 = 0. The perfet agreement we found between ertain lines in

the TCSA spetrum and the one partile soliton/breather Bethe-Yang lines gives evidene

that the re�etion fators entering into the BY lines are indeed orret. We showed that the

boundary bound states indeed appear in the TCSA spetra as predited by the Bethe-Yang

equations with purely imaginary rapidity. Finally in the TCSA data we found evidene for

the existene of the new multi labelled states and also for the exited state re�etions.
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Figure A.1: Shemati draw of the top line

A The proof of the existene of boundary bound states

In this appendix we prove that the boundary bound state |n1, n2, . . . , nl, k〉 an be reated

by re�eting a soliton with rapidity νk on the boundary state |n1, n2, . . . , nl〉. In doing so we

show that no on-shell diagram exist for this proess. Sine any on-shell diagram onsists of

virtual proesses we omit the attribute virtual from now on. One possible diagram is shown

on Fig.(A.1).

The leftmost proess in whih a soliton arrives with rapidity νk and virtually fuses with

a breather into a soliton is alled the �nal proess while the breather is the �nal breather.

Now if we follow the breather line towards the wall and turn in eah 3-point vertex to the

left we obtain a line whih we all the top line. (In ase of a 4-point vertex, that desribes a

possible two partile sattering instead of fusion, we follow the line with the same rapidity).

The top line reahes the wall in the initial breather

8

. Of ourse we have analogous diagrams

by replaing some of the breather lines with soliton lines. In this ase the �nal/initial soliton

terminology is used. Clearly in the �nal proess the partile reated must travel towards the

wall i.e. it must have positive rapidity.

The outline of the proof goes as follows: First of all we introdue the notion of �proper�

partiles and show that partiles with rapidity suitable for being �nal ones are �proper�. Sine

any initial partiles are also �proper� we show that in the diagram above only �proper� partiles

exist. Moreover, we determine all the bulk proesses that take plae on the top line and all

them �proper� proesses. Having introdued a harge like quantity for �proper� partiles we

show that the maximal harge of the initial partiles is nl. Sine the harge never inreases in

�proper� proesses and the harge of the �nal partile is at least k whih is larger than nl we

onlude that no on-shell diagram exists.

Let us go into the details. We all a breather �proper� if it has rapidity −un , n ∈ N and

a soliton is �proper� if its rapidity is −νn. The possible �nal proesses are shown by diagram

(a-b) on Fig.(A.2). Clearly both the �nal breather and the �nal solitons are �proper�. Initial

partiles are produed by the deay of boundary bound states, the various virtual proesses are

desribed on the three diagrams of Fig.(A.3). Clearly all the initial partiles are also �proper�.

8

We all it in this way, beause in our onvention, when time �ows from top to bottom, the emission of

this breather by the wall preedes all the other proesses on the top line.
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Figure A.3: Initial proesses

For �proper� partiles we introdue the notion of harge. For Bn
with rapidity u = −um the

harged is de�ned to be Q = n+m
2

while for a soliton with rapidity u = −νk it is simply Q = k.
The harges of the initial partiles are also displayed on Fig.(A.3). The maximum of the initial

harge is nl, obviously. The �nal harges are also displayed on Fig.(A.2). Sine the partile,

produed in the �nal proess, has to travel towards the wall, (i.e. νn−k < νk for diagram (b)),

we onlude that the �nal harge must be larger then k. Now we analyze how the harges

hange on the top line.

We are looking for bulk proesses whih an take plae on the top line i.e. whih are in

between the �nal and initial �proper� partiles. There are two types of bulk proesses, one

with only breathers and the other one with two solitons and one breather, already depited

on Fig.(3.1). In the present ase however, any of the partiles an arrive from the boundary

so we have six di�erent ases. First we analyze how the rapidities are hanging. Consider the

diagrams on Fig.(A.4-A.5).

We start with the ase when the �nal partile is a breather. Let us denote, for a moment,

by Nx the number of x type proess on the top line, where x runs through the six diagrams
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on Fig.(A.4) and Fig.(A.5). From the onservation of partile types it follows that in ase

of a breather initial state Nbreather−soliton = Nsoliton−breather, while in ase of a solitoni initial

state Nbreather−soliton + 1 = Nsoliton−breather and all other Nx-s are unonstrained. We laim,

however, that only diagrams (a-b) on Fig.(A.4) are allowed. In showing this we parameterize

the rapidities as K π
2
+ un and note that for a �proper� breather K = 0, while for a �proper�

soliton K = −1. Now it is easy to see that on diagrams (a-b) on Fig.(A.4) and on diagram ()

on Fig.(A.5) the parameter K does not hange, on diagram () on Fig.(A.4) K → K + 2, on
diagram (a) on Fig.(A.5) K → K − 1, �nally on diagram (b) on Fig.(A.5) K → K + 3. Sine
the initial and �nal partiles are �proper� the various K-fators must sum up aordingly

on the top line, showing that only diagrams (a-b) on Fig.(A.4) are allowed. We all these

proesses �proper�.

We also indiated on the diagrams how the harge hanges. If we did not have diagram

(b) on Fig.(A.4) we would be ready, sine in the proess on diagram (a) the harge never

inreases, onsequently the �nal harge an not be larger than the initial one. In the general

ase, having also the breather fusion type proess we argue as follows: �nd the breather fusion

vertex on the top line whih is farthest away from the wall. The bottom breather oming from

the diretion of the wall in this proess is also a �proper� breather. Following its line bak

towards the wall always turning to the left we either reah the top line or the wall. Thus this

new line has one or two ommon verties with the top line. Now we hange from the original

top line to a new �top� line by replaing the segment of the the old one between the ommon

verties or between the ommon vertex and the wall with the line obtained from the bottom

breather. Sine the new line segment shares the properties of the original top line, namely it

starts and ends with a �proper� breather and we have turned at eah vertex to the left, we

an argue for it in the same way as before. Applying this proedure step by step we arrive

at a line whih ontains only breather deay type proesses so the previous argument applies.

Sine in every step we eliminate at least one edge of the diagram the proedure terminates and

we arrive at the �nal breather onluding that its harge an not be larger than the largest

initial harge i.e. nl.

For the solitoni �nal state the K parameter is −1. Thus either we have purely solitoni

proesses on the top line, in whih ase the harge dereases with eah step or we start with

some breather proesses allowed in the above mentioned sense and later by the breather-

soliton diagram on Fig.(A.5) we hange bak from the breather to soliton and ontinue with
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the purely solitoni proesses. Now in the seond ase the previous proof for the breathers

an be used to show that the harge does not inrease in the breather part of the top line. In

the hange from a breather to soliton the harge always dereases, sine for Bn
with harge k

the inequality n < 2k is always satis�ed, so the onlusion is the same i.e. the �nal harge is

always less than the maximal initial harge nl.

Summarizing we showed that no on-shell diagram exists, sine for the existene the �nal

harge must be at least k, but the initial harge is at most nl < k and the harge does not

inrease in the allowed proesses.

These onsiderations apply to the diret hannel proess only. The proof for the rossed

hannel is quite similar so we omit it here. The di�erene is just that we have to introdue a

new harge for Bn
whih is q = n−m

2
if the rapidity is u = um. Having analyzed the analogous

diagrams step by step the onlusion is the same.

B Pole struture

In this Appendix we start by reviewing the soliton and breather re�etion fators on the state

|n1, n2, . . . , nk〉 and analyze their pole struture. Proeeding indutively in the order of the

pole we show nested on shell diagrams whih have poles of the same order as the re�etion

amplitudes. We do not ompute the residue of these diagrams, however, sine on the one hand

the alulation is very di�ult to perform, and on the other, we know instanes where the

result does not oinide with the one oming from the re�etion fator. The analysis is arried

out in two steps. First, the solitoni poles are explained, then we turn to the explanation of

the breather ones.

B.1 Solitoni pole struture

The solitoni re�etion fators are

P|n1,n2,...,nk〉(u) = an1
(u)an2

(u) . . . ank
(u)P (u) ; P ↔ Q .

The funtion an(u) = {2n − 1 + λ}{2n− 3 + λ} . . . {1 + λ} has the pole struture shown on

Fig.(B.1), where the number of dots represents the order of the pole.
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In the general re�etion amplitude we have to sum up all the orders of the poles of the

various ani
(u) fators and also to take into aount the poles of the prefator P (u). As a

result, we have the following table

loation ν1 . . . νn1−1 νn1
νn1+1 . . . νnk−1 νnk

νnk+1 . . . νnmax

order 2k + 1 . . . 2k + 1 2k 2k − 1 . . . 3 2 1 . . . 1

Now the main observation, similar to what was made in [4℄, is that the poles above are

already present in the re�etion amplitude P|nk〉(u), only the orders are di�erent, but this an

be ompensated by nesting appropriate sub-diagrams as we will see. Let us onsider the poles

at νN step by step.

• As we proved in the previous Appendix the simple pole for N > nk is responsible for

the reation of the state |n1, n2, . . . , nk, N〉.

• Lets onsider diagram (a) on Fig.(B.3). The state |n1, n2, . . . , nk−1, nk〉 deays to
|n1, n2, . . . , nk−1〉 by emitting an anti soliton with rapidity νnk

. The soliton and the anti

soliton fuse into BN+nk
with rapidity unk−N . In the N = nk ase the breather travels

parallel with the wall giving a diagram with a seond order pole.

• In the N < nk ase the re�etion fator of BN+nk
has a pole at u = unk−N , for whih

a sub-diagram, that is desribed in detail in the next subsetion, has to be embedded.

We just present here in advane, that when N dereasingly reahes any of the ni-s then

the order of the breather pole is inreased by one and when N = ni − 1 it inreases

by one more. Furthermore, it does not hange until N reahes ni−1, where the same

story happens. Colleting all the order of these poles and also the one more extra, whih

omes from the ground state re�etion fator we arrive at the right result.

We emphasize that from the shifting argument desribed in setion (3.3) we know that in spite

of the existene of the on-shell diagram shown above the pole at νN in the re�etion amplitude

P|n1,n2,...,nk〉(u) also reates the state |n1, . . . , ni, N, ni+1, . . . , nk〉, if this state exists, that is if
ni < N < ni+1 for some i.

B.2 Breather pole struture

The breather Bn
on the state |n1, n2, . . . , nk〉 has the following re�etion fator

R
(n)
|n1,n2,...,nk〉

(u) = bnn1
(u)bnn2

(u) . . . bnnk
(u)R(n)(u)

where

bnm(u) = {n+2m−1}{n+2m−3} . . . {n+2m−1−2l} . . .
{

{n− 2m+ 1} if n− 2m+ 1 > 0
{2m− n+ 1} if 2m− n+ 1 > 0

.
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Lets parameterize the poles of bnm(u) as un+2x. Considering the two ases separately we obtain

the loation of the poles as

x

0 m−m

in the ase when n > 2m while as

x

mm−n

in the other ase. Summing up all the poles oming from the various b -fators we get

the following result. If nq ≤ x < nq+1 and np ≤ n + x < np+1 hold in the x > 0 ase or

nq ≤ |x| < nq+1 and np < n − |x| < np+1 is satis�ed for x < 0, then the order of the pole at

un+2x is 2(p − q) + ǫ (where ǫ = 1 if the bound for p is saturated and ǫ = −1 if the bound

for q is saturated and zero otherwise). For eah pole there is the analogous pole at π− un+2x,

whih is in the physial strip if un+2x is not there.

Now we explain the pole of the re�etion amplitude R
(n)
|n1,n2,...,nk〉

(u) at un+2x. For x = nk

the state |n1, n2, . . . , nk + n〉 is reated or if it is not in the spetrum we have an analogous

diagram to diagram (d) on Fig.(3.2). For x < nk onsider diagram (a) on Fig.(B.2).

Here Bn
deays into Bn+x−np

and Bnp−x
in the bulk. First Bn+x−np

reahes the wall

with rapidity un+x+np
exiting the state |n1, . . . , np, . . . , nk〉 to |n1, . . . , n + x, . . . , nk〉. If the

breather traveled bakwards in time (n + x + np > [λ]) or the exited state did not exists

(n+x >
[

λ
2

]

) then we would have diagram (b), where the state |n1, . . . , np−1, np, np+1, . . . , nk〉
would deay to |n1, . . . , np−1, np+1, . . . , nk〉 by the emission of a soliton with rapidity −νnp

,

whih then absorbs Bn+x−np
and reahes the wall at rapidity −νn+x . In both ases Bnp−x

re�ets on the resulting state with rapidity u(np−x)+2x. In order to ompute the order of its

pole we observe that nq ≤ x < nq+1 as before, but now np−1 < (np−x)+x. From this it follows
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that the order of the pole is 2(p−1−q)+ǫ, whih is less than the one investigated originally by

two. Sine the diagram itself gives a seond order pole (we have used the Coleman-Thun type

anellation in the (b) ase) we are ready. Resolving indutively the pole of this re�etion by

the analogous sub-diagram we arrive at asades of diagrams, where in the last sub-diagram

the breather re�ets with a simple pole or without poles.

For the poles of type π − un+2x we have an analogous onsideration: If we parameterize

the rapidity as π − un+2x and analyze the relation between x, n + x and ni we get the same

formula for the order of the poles as we had before. The explanation is given in terms of the

rossed diagrams. Diagram (b) on Fig.(B.3) explains the x = nk ase, while for x < nk we have

diagram () on the same Figure. The argument is ompletely analogous to the non-rossed

version so we omit it here.

Note, that these breather diagrams are generi, whih means that they exist for any x. It
may happen, however, that for some partiular x we have some other diagram with the right

order of pole. Notie also that in spite of the existene of the diagrams above we might have

boundary bound state reation, desribed in detail in setion (3.3), at the same time.

C Boundary c = 1 theories

In this Appendix we warm up by onsidering the ompati�ed free boson with periodi bound-

ary onditions on a irle of irumferene L. Having mapped the system onto the plane we

identify those onformally invariant boundary onditions whih also preserve the underlying

a�ne Û1 × Û1 symmetry. They originate from utting the original irle and applying Neu-

mann or Dirihlet boundary onditions on both ends of the strip. We also determine the

theory whih orresponds to imposing Neumann boundary ondition on one end and Dirih-

let boundary ondition on the other end of the strip. In all ases the data we need for the

TCSA, suh as the spetrum of bulk and boundary primary operators, their normalizations,

onformal weights, bulk and boundary operator produt expansions are summarized. Though

most of these data are available in the literature we ollet them here to make the paper self
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ontained.

C.1 Compati�ed free boson with periodi boundary onditions

Consider a free boson with ompati�ation radius r on�ned into a box of size L subjet

to periodi boundary ondition Φ(L, t) ≡ Φ(0, t) + 2πrn, where n ∈ Z is alled the winding

number. The ation whih governs the dynamis is

S =
1

8π

∫ ∞

−∞

dt

∫ L

0

dx∂µΦ∂
µΦ

Canonial quantization results in the following expression for the �eld operator Φ(x, t):

Φ(x, t) = Φ0 +
4π

L

(

Π0t +
rM

2
x

)

+ i
∑

n 6=0

1

n

(

ane
i 2π
L
n(x−t) + āne

−i 2π
L
n(x+t)

)

,

where M is the winding operator with eigenvalues m ∈ Z, and the nonzero ommutators are

[Φ0,Π0] = i ; [an, am] = nδn+m , [ān, ām] = nδn+m . (C.1)

We an use ζ-funtion regularization for omputing the Casimir energy and �nd the Hamilto-

nian as

H =
2π

L

∑

n>0

(a−nan + ā−nān −
1

12
) +

2π

L

(

Π2
0 +

(

rM

2

)2
)

.

Having mapped the system onto the plane via the (x, it) = ξ → z = ei
2π
L
ξ
onformal transfor-

mation, hiral fatorization originates from the split Φ(z, z̄) = φ(z) + φ̄(z̄), where

φ(z) = φ0 − ia0 ln z + i
∑

n∈Z

an
z−n

n
; φ̄(z̄) = φ̄0 − iā0 ln z̄ + i

∑

n∈Z

ān
z̄−n

n
.

It is useful to introdue the dual of Φ(z, z̄) as Φ̃(z, z̄) = φ(z)− φ̄(z̄). The Û1 × Û1 symmetry

of the model is generated by the hiral urrents, J(z) = i∂zφ(z) , J̄(z̄) = i∂z̄φ̄(z̄), and the

primary �elds of the symmetry algebra are the vertex operators

V(n,m)(z, z̄) = : ei
n
r
Φ(z,z̄)+imr

2
Φ̃(z,z̄) := : eiqφ(z)+iq̄φ̄(z̄) : (C.2)

We use the parameterization (n,m) and (q, q̄) in parallel, the onnetion between them being

q+ q̄ = 2n
r
and q− q̄ = mr. The vertex operators have onformal weights h(n,m) =

q2

2
, h̄(n,m) =

q̄2

2
with respet to the onformal energy momentum tensor T (z) = 1

2
: J(z)J(z) : and T̄ (z) =

1
2
: J̄(z)J̄(z) :. The Hilbert spae is built up by the suessive appliation of the modes of the

hiral urrents on the highest weight state reated by the vertex operators as

|n,m〉 = V(n,m)(0, 0)|0〉

and Π0|n,m〉 = n|n,m〉 , M |n,m〉 = m|n,m〉. The operator produt expansion of the vertex

operators starts as

V(q,q̄)(z, z̄)V(q′ ,q̄′)(w, w̄) = (z − w)qq
′

(z̄ − w̄)q̄q̄
′

V(q+q′ ,q̄+q̄′ )(w, w̄) + . . . (C.3)

We have two maximal sets of the allowed (n,m) pairs [19℄ and here we onentrate on the

bosoni one whih has n ∈ Z, m ∈ Z.
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C.2 Conformal boundary onditions

Now we would like to impose suh boundary onditions in the theory that preserve not only

the onformal but also the Ka-Moody symmetry of the model. The easiest way to formulate

this is to restrit the theory on the upper half plane and demand[20℄

L(z) = L̄(z̄) , J(z) = ΩJ̄(z̄) ;

on the real axis, where Ω is any automorphism of the algebra (C.1). We have two possible

hoies Ω = 1 or Ω = −1, [21℄, they orrespond to Neumann and Dirihlet boundary onditions

imposed on the �eld Φ, respetively. Note that for the dual �eld the roles are interhanged,

that is Ω = 1 orresponds to Dirihlet while Ω = −1 for Neumann boundary ondition.

C.2.1 Neumann boundary ondition

The Ω = 1 boundary ondition in terms of the modes reads as ān = an, that is

Φ(z, z̄) = Φ0 − ia0(ln z + ln z̄) + i
∑

n∈Z

an
n
(z−n + z̄−n) .

We an map this �eld bak to the strip by the inverse of the transformation ξ → z = ei
π
L
ξ

Φ(x, t) = Φ0 +
4π

L
Π0 +

∑

n 6=0

an
n
(ei

π
L
n(x−t) + e−i π

L
n(x+t)) (C.4)

From the x -dependene we an read o� the Neumann boundary onditions

∂xΦ(0, t) = ∂xΦ(L, t) = 0 ; ∀t

The Hamiltonian of this system in the strip an be obtained diretly from (C.4) by ζ-funtion
regularization

H =
2π

L
Π2

0 +
π

L

(

∑

n 6=0

na−nan −
1

24

)

. (C.5)

Turning bak to the plane we realize that the vertex operators V(n,0)(z, z̄) do not reprodue

the most singular part of the OPE (C.3) any more as we would expet. Changing however

their normalization funtion as

V(n,0)(z, z̄) = |z − z̄|q2 : eiqΦφ(z,z̄) : ; q =
n

r
, (C.6)

we preserve their onformal weights, (whih is h = q2

2
for T (z)) and restore the leading part

of the OPE (C.3). The boundary �elds in a boundary onformal �eld theory live only on the

boundary and are in a one-to-one orrespondene with the vetors of the Hilbert spae. In

our ase they are the boundary vertex operators

Ψq(x) = : eiqΦ(x,x) : ; q =
n

r
,

(whih are primary �elds of weight hn = 2q2), and their desendants. The dual �eld vanishes

at the boundary so in the Hilbert spae we do not have winding as we would expet from the

Neumann boundary ondition.
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C.2.2 Dirihlet boundary ondition

The Ω = −1 boundary ondition fores Φ(z, z̄) to be of the form

Φ(z, z̄) = Φ0 − ia0(ln z − ln z̄) + i
∑

n∈Z

an
n
(z−n − z̄−n) .

The boundary ondition an be determined on the strip by mapping the system via the inverse

of ξ → z = ei
π
L
ξ
to the strip. We have

Φ(x, t) = Φ0 +
2π

L
rM̃x− i

∑

n 6=0

an
n

(

ei
π
L
n(x−t) − e−i π

L
n(x+t)

)

,

where M̃ =M + ΦL−Φ0

2πr
and M ∈ Z is the winding number. This orresponds to the

Φ(0, t) = Φ0 ; Φ(L, t) = ΦL ∀t

Dirihlet boundary ondition. The Hamiltonian of the system above is

H =
2π

L

(

rM̃

2

)2

+
π

L

(

∑

n 6=0

na−nan −
1

24

)

. (C.7)

By hanging the normalization funtion of the vertex operators

V(q,0)(z, z̄) = |z − z̄|−q2 : eiqΦφ(z,z̄) : ; q =
n

r
, (C.8)

we an ensure the most singular part of the bulk OPE to hold. Now the �eld Φ is onstant at

the boundary so we do not have nonzero momentum Fok modules. The dual �eld however

an reate the setors orresponding to the di�erent winding numbers. The Hilbert spae by

this token onsists of the Fok modules orresponding to the di�erent winding numbers.

C.2.3 Mixed boundary ondition

It is also possible to demand mixed boundary onditions. On the plane one possible hoie

is Dirihlet boundary ondition for ℑm(z) = 0 , ℜe(z) > 0 and Neumann for ℑm(z) =
0 , ℜe(z) < 0. A �eld satisfying this an be given as

Φ(z, z̄) = Φ0 + i
∑

n∈Z+ 1

2

an
n
(z−n − z̄−n) .

Sine on the strip

Φ(x, t) = Φ0 − i
∑

n∈Z+ 1

2

an
n

(

ei
π
L
n(x−t) − e−i π

L
n(x+t)

)

,

the boundary ondition there reads as

Φ(0, t) = Φ0 ; ∂xΦ(L, t) = 0 ∀t ,
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that is Dirihlet boundary ondition at x = 0 and Neumann boundary ondition at x = L.
Using ζ-funtion regularization the Hamiltonian turns out to be

H =
π

L





∑

n∈Z+ 1

2

na−nan +
1

48



 . (C.9)

The model looks like a twisted boson with hiral urrent J(z) =
∑

n∈Z+ 1

2

anz
−n−1 . The vertex

operators aquire a fator

Vq(z, z̄) =





√

z
z̄
+ 2 +

√

z̄
z

4|z − z̄|





q2

: eiqΦ(z,z̄) : ; q =
n

r
, (C.10)

in order to ensure the most singular part of the bulk OPE to hold. Now the �eld Φ has a

non vanishing limit only for ℑm(z) = 0 , ℜe(z) < 0 while the dual �eld survives at ℑm(z) =
0 , ℜe(z) > 0. Thus the only boundary operator is the urrent J(x) and onsequently the

Hilbert spae is generated by ating with its modes a−n , n ∈ Z+ − 1
2
, on the vauum vetor.
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