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Abstract

We give the emission function of the axially symmetric Buda-Lund hydro model and
present its simultaneous, high quality fits to identified particle spectra, two-particle
Bose-Einstein or HBT correlations and charged particle pseudorapidity distributions
as measured by BRAHMS and PHENIX in 0-30 % central,

√
sNN = 200 GeV Au+Au

collisions at RHIC. The best fit is achieved when the most central region of the particle
emitting volume is superheated to T0 = 200±9 MeV ≥ Tc = 172±3 MeV, a preliminary,
3 σ effect.

1 Introduction

The Buda-Lund hydro model is successful in describing the identified single particle spectra
and the transverse mass dependent Bose-Einstein or HBT radii as well as the pseudora-
pidity distribution of charged particles in Au + Au collisions at

√
sNN = 130 GeV [1], as

measured by the BRAHMS, PHENIX, PHOBOS and STAR collaborations. The result of
the simultaneous fit to all these datasets indicate the existence of a very hot region, with
a temperature significantly greater than 170 MeV [2]. Recently, Fodor and Katz calculated
the phase diagram of lattice QCD at finite net barion density [3]. These lattice results,
obtained with light quark masses four times heavier than the physical value, indicated that
in the 0 ≤ µB ≤ 700 MeV region the transition from confined to deconfined matter is a
cross-over, with Tc ≃ 172± 3 MeV. This value is, within one standard deviation, indepen-
dent of the bariochemical potential in the 0 ≤ µB ≤ 300 MeV region. The Buda-Lund fits,
combined with these lattice results, provide an indication for quark deconfinement in Au
+ Au collisions with

√
sNN = 130 GeV colliding energies at RHIC. This observation was

confirmed [2] by the analysis of the transverse momentum and rapidity dependence of the
elliptic flow as measured by the PHENIX and PHOBOS collaborations.

Here we investigate what happens if a similar analysis is performed on the final, published
Au+Au collision data at RHIC at the maximum,

√
sNN = 200 GeV bombarding energies.
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2 The emission function of the Buda-Lund hydro model

The Buda-Lund hydro model was introduced in refs. [4, 5]. This model was defined in terms
of its emission function S(x, k), for axial symmetry, corresponding to central collisions of
symmetric nuclei. The observables are calculated analytically, see refs. [6, 1] for details
and key features. Here we summarize the Buda-Lund emission function in terms of its fit
parameters. The presented form is equivalent to the original shape proposed in refs. [4, 5],
however, it is easier to fit and interpret it.

The single particle invariant momentum distribution, N1(k1), is obtained as

N1(k1) =

∫

d4xS(x, k1). (1)

For chaotic (thermalized) sources, in case of the validity of the plane-wave approximation,
the two-particle invariant momentum distribution N2(k1, k2) is also determined by S(x, k),
the single particle emission function, if non-Bose-Einstein correlations play negligible role
or can be corrected for, see ref. [6] for a more detailed discussion. Then the two-particle
Bose-Einstein correlation function, C2(k1, k2) = N2(k1, k2)/ [N1(k1)N1(k2)] can be evalu-
ated in a core-halo picture [7], where the emission function is a sum of emission functions
characterizing a hydrodynamically evolving core and a surrounding halo of decay products
of long-lived resonances, S(x, k) = Sc(x, k) + Sh(x, k). Consequently, the single particle
spectra can also be given as a sum, N1(k) = N1,c(k) +N1,h(k). In the correlation function,
an effective intercept parameter λ ≡ λ∗(K) appears and its relative momentum dependence
can be calculated directly from the emission function of the core,

C2(k1, k2) = 1 +
|S̃(q,K)|2
|S̃(0,K)|2

≃ 1 + λ∗(K)
|S̃c(q,K)|2
|S̃c(0,K)|2

, (2)

where the relative and the momenta are q = k1 − k2, K = 0.5(k1 + k2), and the Fourier-
transformed emission function is defined as S̃(q,K) =

∫

d4xS(x,K) exp(iqx).
The measured λ∗ parameter of the correlation function is utilized to correct the core

spectrum for long-lived resonance decays [7]: N1(k) = Nc(k)/
√

λ∗(k). The emission function
of the core is assumed to have a hydrodynamical form,

Sc(x, k)d
4x =

g

(2π)3
kνd4Σν(x)

B(x, k) + sq
, (3)

where g is the degeneracy factor (g = 1 for pseudoscalar mesons, g = 2 for spin=1/2
barions). The particle flux over the freeze-out layers is given by a generalized Cooper–
Frye factor: the freeze-out hypersurface depends parametrically on the freeze-out time τ
and the probability to freeze-out at a certain value is proportional to H(τ), kνd4Σν(x) =
mt cosh(η − y)H(τ)dτ τ0dη drx dry . Here η = 0.5 log[(t + rz)/(t − rz)], τ =

√

t2 − r2z , y =

0.5 log[(E + kz)/(E − kz)] and mt =
√

E2 − k2z . The freeze-out time distribution H(τ)

is approximated by a Gaussian, H(τ) = 1
(2π∆τ2)3/2

exp
[

− (τ−τ0)
2

2∆τ2

]

, where τ0 is the mean

freeze-out time, and the ∆τ is the duration of particle emission, satisfying ∆τ ≪ τ0. The
(inverse) Boltzmann phase-space distribution, B(x, k) is given by

B(x, k) = exp

(

kνuν(x)

T (x)
− µ(x)

T (x)

)

, (4)
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and the term sq is 0, −1, and +1 for Boltzmann, Bose-Einstein and Fermi-Dirac statistics,
respectively. The flow four-velocity, uν(x), the chemical potential, µ(x), and the tempera-
ture, T (x) distributions for axially symmetric collisions were determined from the principles
of simplicity, analyticity and correspondence to hydrodynamical solutions in the limits when
such solutions were known [4, 5]. Recently, the Buda-Lund hydro model lead to the discovery
of a number of new, exact analytic solutions of hydrodynamics, both in the relativistic [8, 9]
and in the non-relativistic domain [10, 11, 12].

The expanding matter is assumed to follow a three-dimensional, relativistic flow, char-
acterized by transverse and longitudinal Hubble constants,

uν(x) = (γ,Htrx, Htry, Hzrz) , (5)

where γ is given by the normalization condition uν(x)uν(x) = 1. In the original form, this
four-velocity distribution uν(x) was written as a linear transverse flow, superposed on a
scaling longitudinal Bjorken flow . The strength of the transverse flow was characterized by
its value 〈ut〉 at the “geometrical” radius RG, see refs. [4, 13, 14]:

uν(x) =

(

cosh[η] cosh[ηt], sinh[ηt]
rx
rt
, sinh[ηt]

ry
rt
, sinh[η] cosh[ηt]

)

,

sinh[ηt] = 〈ut〉rt/RG, (6)

with rt = (r2x + r2y)
1/2. Such a flow profile, with a time-dependent radius parameter RG,

was recently shown to be an exact solution of the equations of relativistic hydrodynamics of
a perfect fluid at a vanishing speed of sound, see refs. [15, 16].

The Buda-Lund hydro model characterizes the inverse temperature 1/T (x), and fugacity,
exp [µ(x)/T (x)] distributions of an axially symmetric, finite hydrodynamically expanding
system with the mean and the variance of these distributions, in particular

µ(x)

T (x)
=

µ0

T0
−

r2x + r2y
2R2

G

− (η − y0)
2

2∆η2
, (7)

1

T (x)
=

1

T0

(

1 +
r2t
2R2

s

) (

1 +
(τ − τ0)

2

2∆τ2s

)

. (8)

Here RG and ∆η characterize the spatial scales of variation of the fugacity distribution,
exp [µ(x)/T (x)], that control particle densities. Hence these scales are referred to as geo-
metrical lengths. These are distinguished from the scales on which the inverse temperature
distribution changes, the temperature drops to half if rx = ry = Rs or if τ = τ0 +

√
2∆τs.

These parameters can be considered as second order Taylor expansion coefficients of these
profile functions, restricted only by the symmetry properties of the source, and can be triv-
ially expressed by re-scaling the earlier fit parameters. The above is the most direct form
of the Buda-Lund model. However, different combinations may also be used to measure
the flow, temperature and fugacity profiles [4, 6]: Ht ≡ b/τ0 = 〈ut〉/RG = 〈u′

t〉/Rs ,

Hl ≡ γt/τ0, where γt =
√

1 +H2
t r

2
t is evaluated at the point of maximal emittivity, and

1

R2
s

=
a2

τ20
= 〈∆T

T
〉r

1

R2
G

=
T0 − Ts

Ts

1

R2
G

, (9)

1

∆τ2s
=

d2

τ20
= 〈∆T

T
〉s

1

∆τ2
=

T0 − Te

Te

1

∆τ2
. (10)
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3 Buda-Lund fits to Au+Au data at
√
s

NN
= 200 GeV

In this section, we present new fit results to BRAHMS data on charged particle pseudora-
pidity distributions [18], and PHENIX data on identified particle momentum distributions
and Bose-Einstein (HBT) radii [17, 19] in Au+Au collisions at

√
sNN = 200 GeV.

The analysis codes and methods are identical to the ones used to fit the BRAHMS [21],
PHENIX [23, 24], PHOBOS [22], and STAR [25] data in 0- 5% most central Au+Au colli-
sions at

√
sNN = 130 GeV, see ref. [1]. The applied Buda-Lund 1.5 fitting package can be

downloaded, together with the detailed fit results, from ref. [20]. This calculation determines
the position of the saddle point exactly in the beam direction, but in the transverse direction,
the saddle point equations are solved only approximately, as summarized in ref. [6].

The new results for
√
sNN = 200 GeV Au+Au collisions in the 0-30% centrality class

are shown in the first column of Table 1. For comparison, we also show the results of an
identical fit to

√
sNN = 130 GeV Au+Au collisions in the 0- 5% centrality class.

Figure 1: Solid line shows the simultaneous Buda-Lund v1.5 fit to final Au+Au data at
√
sNN = 200

GeV. The transverse mass distributions of identified particles are measured by PHENIX [17] the

pseudorapidity distributions of charged particles are measured by BRAHMS [18], the transverse

mass dependence of the radius parameters are data of PHENIX [19]. Note that the identified

particle spectra are published in more detailed centrality classes, but we recombined the 0-30%

most central collisions so that the fitted spectra and radii be obtained in the same centrality class.
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Let us clarify first the meaning of the parameters shown in Table 1. The temperature
at the center of the fireball at the mean freeze-out time is denoted by T0 ≡ T (rx = ry =
0, τ = τ0). The surface temperature is also a characteristic, kind of an average temperature,
and its value is always Ts ≡ T (rx = ry = Rs, τ = τ0) = T0/2. In fact this relationship
defines the “surface” radius Rs. During the particle emission, the system may cool due to
evaporation and expansion, this is measured by the “post-evaporation temperature” Te ≡
T (rx = ry = 0, τ = τ0 +

√
2∆τ). In the presented cases, the strength of the transverse

flow is measured by 〈u′

t〉, its value at the “surface radius” Rs. The “mean freeze-out time”
parameter is denoted by τ0 and the “duration” of particle emission, or the width of the
freeze-out time distribution is measured by ∆τ . The fugacity distribution varies on the
characteristic transverse scale given by the “geometrical radius” RG. Finally, the width
of the space-time rapidity distribution, or the longitudinal variation scale of the fugacity
distribution is measured by the parameter ∆η.

Perhaps it could be more appropriate to directly fit the transverse Hubble constant, Ht =
〈u′

t〉/Rs to the data, as this value is not sensitive to the length-scale chosen to evaluate the
“average” transverse flow 〈u′

t〉. In the case of parameters shown in Table 1, the density drop
in the transverse direction is dominated by the cooling of the local temperature distribution
in the transverse direction, and not so much by the change of the fugacity distribution.
That is why we fitted here 〈u′

t〉 at the “surface radius” Rs. Note also that τ0 could more
properly be interpreted as the inverse of the longitudinal Hubble constant Hl, which is only
an order of magnitude estimate of the mean freeze-out time, similarly to how the inverse of
the present value of the Hubble constant in astrophysics provides only an order of magnitude
estimate of the life-time of our Universe. The feasibility of directly fitting the transverse
and longitudinal Hubble constants to data will be investigated in a subsequent publication.

Let us also note, that we have fitted the absolute normalized spectra for identified par-
ticles, and the normalization conditions were given by central chemical potentials µ0 that
were taken as free normalization parameters for each particle species. All these directly
fitted parameters are made public at [20]. From these values, we have determined the net
bariochemical potential as µB = µp − µp. Although this parameter is not directly fitted
but calculated, we have included µB in Table 1, so that our results could be compared
with other successful models of two-particle Bose-Einstein correlations at RHIC, namely the
AMPT cascade [26], Tom Humanic’s cascade [27], the blast-wave model [28, 29], the Hirano-
Tsuda numerical hydro [30] and the Cracow “single freeze-out thermal model” [31, 32, 33].

Now, we are ready for the discussion of the results in Table 1. In case of more central
collisions at the lower RHIC energies, a well defined minimum was found, with accurate
error matrix and a statistically acceptable fit quality, χ2/NDF= 158/180, that corresponds
to a confidence level of 88 %. (These fit results were shown graphically on Figs. 1 and 2 of
ref. [1], and the parameters are summarized in the second column of Table 1.) In the case of
the less central but more energetic Au+Au collisions, the obtained χ2/NDF fit is too small.
Note that in these fits we added the systematic and statistical errors in quadrature, and this
procedure is preliminary and has to be revisited before we can report on the final values of
the fit parameters and determine their error bars. It could also be advantageous to analyze
a more central data sample, or the centrality dependence of the radius parameters and the
pseudorapidity distributions, or to fit additional data of STAR and PHOBOS too, so that
the parameters of the Buda-Lund hydro model could be determined with smaller error bars.

At present, we find that T0 > Tc = 172± 3 MeV [3] by 3 σ in case of the 0-30 % most
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central Au+Au data at
√
sNN = 200 GeV, while T0 > Tc by more than 5 σ in case of the

0-5(6) % most central Au+Au data at
√
sNN = 130 GeV. Thus this signal of a cross-over

transition to quark deconfinement is not yet significant in the more energetic but less central
Au+Au data sample, while it is significant at the more central, but less energetic sample. In
this latter case of 130 GeV Au+Au data, RG obviously became an irrelevant parameter, with
1/RG ≈ 0. . This is explicitly visible in Fig. 2 of ref. [1], where the last row indicates that
the correlation radii are in the scaling limit and the fugacity distribution, exp [µ(x)/T (x)]
is independent of the transverse coordinates.

The Buda-Lund model predicted, see eqs. (53-58) in ref. [4] and also eqs. (26-28)
in [12], that the linearity of the inverse radii as a function of mt can be connected to
the Hubble flow and the temperature gradients. The slopes are the same for side, out and
longitudinal radii if the Hubble flow (and the temperature inhomogeneities) become direction
independent. The intercepts of the linearly extrapolated mt dependent inverse squared radii
at mt = 0 determine 1/R2

G, or the magnitude of corrections from the finite geometrical
source sizes, that stem from the exp[µ(x)/T (x)] terms. We can see on Fig. 2, that these
corrections within errors vanish also in

√
sNN = 200 Au+Au collisions at RHIC. This result

is important, because it explains, why thermal and statistical models are successful at RHIC:
if exp[µ(x)/T (x)] = exp(µ0/T0), then this factor becomes an overall normalization factor,
proportional to the particle abundances. Indeed, we found that when the finite size in the
transverse direction is generated by the T (x) distribution, the quality of the fit increased
and we had no degenerate parameters in the fit any more. This is also the reason, why we
interpret Rs, given by the condition that T (rx = ry = Rs) = T0/2, as a “surface” radius:
this is the scale where particle density drops.

Note that we have obtained similarly good description of these data if we require that
the four-velocity field is a fully developed, three-dimensional Hubble flow, with uν = xν/τ ,
however, we cannot elaborate on this point here due to the space limitations [2].

4 Conclusions

Table 1, Figures 1 and 2 indicate that the Buda-Lund hydro model works well both at the
lower and the higher RHIC energies, and gives a good quality description of the transverse
mass dependence of the HBT radii. For the dynamical reason, see refs. [12] and [4]. In
fact, even the time evolution of the entrophy density can be solved from the fit results,
s(τ) = s0(τ0/τ)

3, which is the consequence of the Hubble flow, uν = xν/τ , a well known
solution of relativistic hydrodynamics, see also ref. [9]. This is can be considered as the
resolution of the RHIC HBT “puzzle”, although a careful search of the literature indicates
that this “puzzle” was only present in models that were not tuned to CERN SPS data [34].

We also observe that the central temperature is T0 = 214± 7 MeV in the most central
Au+Au collisions at

√
sNN = 130 GeV, and we find here a net bariochemical potential of

µB = 77± 38 MeV. Recent lattice QCD results indicate [3], that the critical temperature is
within errors a constant of Tc = 172±3 MeV in the 0 ≤ µB ≤ 300 MeV interval. Our results
clearly indicate (T, µB) values above this critical line, which is a significant, more than 5 σ
effect. The present level of precision and the currently fitted PHENIX and BRAHMS data
set does not yet allow a firm conclusion about such an effect at

√
sNN = 200 GeV, however,

a similar behavior is seen on a 3 standard deviation level. This can be interpreted as a hint
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at quark deconfinement at
√
sNN = 200 GeV at RHIC.

Finding similar parameters from the analysis of the pseudorapidity dependence of the
elliptic flow, it was estimated in ref. [2] that 1/8th of the total volume is above the critical
temperature in Au+Au collisions at

√
sNN = 130 GeV, at the time when pions are emitted

from the source. We interpret this result as an indication for quark deconfinement and
a cross-over transition in Au+Au collisions at

√
sNN = 130 GeV at RHIC. This result

was signaled first in ref. [34] in a Buda-Lund analysis of the final PHENIX and STAR
data on midrapidity spectra and Bose-Einstein correlations, but only at a three standard
deviation level. By including the pseudorapidity distributions of BRAHMS and PHOBOS,
the T0 ≫ Tc effect became significant in most central Au+Au collisions at

√
sNN = 130

GeV. We are looking forward to observe, what happens with the present signal in Au+Au
collisions at

√
sNN = 200 GeV, if we include STAR and PHOBOS data to the fitted sample.

The above observation of temperatures, that are higher than the critical one, is only an
indication, with other words, an indirect proof for the production of a new phase, as the
critical temperature is not extracted directly from the data, but taken from recent lattice
QCD calculations.

More data are needed to clarify the picture of quark deconfinement at the maximal
RHIC energies, for example the centrality dependence of the Bose-Einstein (HBT) radius
parameters could provide very important insights.
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[1] M. Csanád, T. Csörgő, B. Lörstad, A. Ster, Act. Phys. Pol. B35, 191 (2004),
nucl-th/0311102.
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[11] T. Csörgő, hep-ph/0111139.
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[15] T. S. Biró, Phys. Lett. B 474 (2000) 21
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Au+Au 200 GeV Au+Au 130 GeV
Buda-Lund BRAHMS+ BRAHMS+PHENIX
v1.5 PHENIX +PHOBOS+STAR

0 - 30 % 0 - 5(6) %

T0 [MeV] 200 ± 9 214 ± 7
Te [MeV] 127 ± 13 102 ± 11
µB [MeV] 61 ± 40 77 ± 38
RG [fm] 13.2 ± 1.3 28.0 ± 5.5
Rs [fm] 11.6 ± 1.0 8.6 ± 0.4
〈u′

t〉 1.5 ± 0.1 1.0 ± 0.1
τ0 [fm/c] 5.7 ± 0.2 6.0 ± 0.2
∆τ [fm/c] 1.9 ± 0.5 0.3 ± 1.2
∆η 3.1 ± 0.1 2.4 ± 0.1
χ2/NDF 132 / 208 158.2 / 180

Table 1: The first column shows the source parameters from simultaneous fits of final
BRAHMS and PHENIX data for 0 - 30 % most central Au + Au collisions at

√
sNN = 200

GeV, as shown in Figs. 1 and 2, as obtained with the Buda-Lund hydro model, version 1.5.
The errors on these parameters are still preliminary. The second column is the result of
an identical analysis of BRAHMS, PHENIX, PHOBOS and STAR data for 0 - 5 % most
central Au+Au collisions at

√
sNN = 130 GeV, ref. [1].
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Figure 2: Top row shows the transverse mass dependence of the side, out and longitudinal HBT

radii, the central line shows their pairwise ratio (usually only Rout/Rside is shown) together with

the Buda-Lund fits, vers. 1.5. The bottom line shows the inverse of the squared radii. The intercept

of the curves in this row is within errors zero for the two transverse components, so the fugacity

is within errors independent of the transverse coordinates. However, the intercept is nonzero in

the longitudinal direction, which makes the fugacity (hence particle ratios) rapidity dependent. See

also ref. [1] for a similar plot at
√
sNN = 130 GeV.
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