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Abstract

LetE be an elliptic curve—defined over a number fieldK—without complex multiplication
and with good ordinary reduction at all the primes above a rational primep ≥ 5. We construct
a pairing on the dualp∞-Selmer group ofE over any strongly admissiblep-adic Lie extension
K∞/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois
groupG = Gal(K∞/K). Under some mild additional hypotheses this gives an algebraic func-
tional equation of the conjecturedp-adicL-function. As an application we construct completely
faithful Selmer groups in case thep-adic Lie extension is obtained by adjoining thep-power divi-
sion points of another non-CM elliptic curveA.

1 Introduction

The main conjectures of Iwasawa theory usually state that(i) there exists ap-adicL-function
attached to the elliptic curve over ap-adic Lie extension ofQ which interpolates the special values of
the complexL-functions of the elliptic curve twisted by Artin representations of the Galois group, and
(ii), thisp-adicL-function is a characteristic element for the dual of the Selmer group. These are the
only tools known at present for studying the mysterious relationship between the arithmetic properties
of elliptic curves and the special values of their complexL-functions, especially for attacking the
conjectures of Birch and Swinnerton-Dyer. In the noncommutative setting of [4] thep-adicL-function
lies in the algebraicK1-group ofΛ(G)S∗ , the Iwasawa algebra of the Galois group localized by a
canonical Ore set.

Let E be an elliptic curve without complex multiplication definedover a number fieldK and
p ≥ 5 be a prime such thatE has good ordinary reduction at all the primes abovep in K. The aim
of this paper is to prove an algebraic functional equation for the conjecturedp-adicL-function over
arbitrary strongly admissiblep-adic Lie extensionsK∞. This generalizes earlier results of the second
author in caseK = Q andK∞ being the false Tate curve extension [26] and theGL2-extension
associated toE [27].

This “algebraic functional equation” is on the level of the class of dual Selmer groups in the
Grothendieck groupK0(MH(G)) of a certain categoryMH(G) of (finitely generated left)Λ(G)-
modules whereΛ(G) is the Iwasawa algebra of the Galois groupG = Gal(K∞/K). Here the objects
of the categoryMH(G) are thoseΛ(G) modulesM for whichM/M(p) is finitely generated over the
smaller Iwasawa algebraΛ(H) whereH = Gal(K∞/K

cyc). Let us denote by# the anti-involution
on Λ(G) induced by the inversion map#: G ∋ g 7→ g−1 ∈ G. For an leftΛ(G)-moduleM we

∗The second author was partially supported by OTKA Research grant no. K-101291.
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denote byM# the rightΛ(G)-module on the same underlying abelian group asM obtained by the
rulemλ := λ#m for m ∈M andλ ∈ Λ(G). Now if M lies in the categoryMH(G) then

#: K0(MH(G)) → K0(MH(G))

[M ] 7→

dimG+1
∑

i=1

[ExtiΛ(G)(M
#,Λ(G))]

is an involution on the Grothendieck groupK0(MH(G)). Here we regardExtiΛ(G)(M
#,Λ(G)) as

a left module overΛ(G) via the left multiplication ofΛ(G) on itself. By an algebraic functional
equation for a moduleM we mean a relation involving the classes[M ] and#([M ]).

In the classical case whenK∞ is the cyclotomicZp-extension of a number fieldL Perrin-Riou
[19] constructed aΛ(ΓL)-homomorphismX(E/Lcyc) → Ext1Λ(ΓL)

(X(E/Lcyc)#,Λ(ΓL)) as the
projective limit of the Cassels-Tate-Flach pairing (hereΓL = Gal(Lcyc/L)). By taking projective
limit of these maps for varyingK ≤ L ≤ K∞ we obtain a map

ϕ : X(E/K∞)→ Ext1(X(E/K∞)#,Λ(G)) .

Our first Theorem (Thm. 2.1) is a careful analysis of the kernel and cokernel of this map. We show
that the kernel ofϕ has trivial class in the Grothendieck groupK0(MH(G)). On the other hand, the
cokernel equals—up to error terms with vanishing class inK0(MH(G))—the direct sum of certain
local factorsΛ(G) ⊗Λ(Gv∞ ) Tp(E)∗ for primesv ∤ p in K ramifying infinitely inK∞ such that the
Tate moduleTp(E) is defined over the completionK∞,v∞ of K∞ at a (once and for all) fixed prime
v∞ in K∞ abovev. We denote byP1 (resp.P2) the set of those primesv having the above property
that are potentially multiplicative (resp. potentially good) for the curveE.

In order to obtain a functional equation forX(E/K∞) we also have to deal with the higher ex-
tension groupsExtiΛ(G)(X(E/K∞)#,Λ(G)) (i ≥ 2). In section 3 we show that the class of these
extension groups vanishes inK0(MH(G)) under certain local conditions at primes abovep only.
Moreover, ifG is isomorphic to an open subgroup ofGL2(Zp) then we do not need to assume these
local conditions. So under these assumptions we obtain a functional equation of the characteristic ele-
ment ofX(E/K∞)—the conjecturedp-adicL-function—in theK1 of the localized Iwasawa algebra.

In section 4 we show the compatibility of this functional equation with the conjectured interpol-
ation property of thep-adicL-function. Note that the local factorαv ∈ K1(Λ(G)S) appearing in
the functional equation is the characteristic element ofTp(E)∗ as a module over the local Iwasawa
algebraΛ(Gv∞). When one substitutes an Artin representationρ of G into αv the value we get is the
quotient Lv(E,ρ∗,1)

Lv(E,ρ,1) of local L-values up to an epsilon factor. Here the difficulty is that while in the
interpolation property all the localL-factors at primes ramifying infinitely inK∞ are removed, in the
algebraic functional equation only those show up for which the Tate moduleTp(E) is defined over the
completed fieldK∞,v∞ . However, one can resolve this seeming contradiction can beresolved easily
if one passes to a finite prime-to-p extensionF∞ ofK∞ over whichTp(E) is defined after completion
at a primew∞ dividing v∞. In the functional equation of the characteristic element of X(E/F∞) the
local factorsαv do appear, however these elements map to0 under the composite map

K1(Λ(Gal(F∞/K))S∗

F
)

π
→ K1(Λ(G)S∗)

∂G→ K0(MH(G))

therefore they do not appear in the functional equation overK∞ even thoughπ(αv) still interpolates
quotients of localL-values atv of twists ofE by Artin representations factoring throughG.

The rest of the paper is devoted to the case whenG ∼= H × Z is a pro-p group such that the Lie
algebra ofH is split semisimple overQp andZ = Z(G) ∼= Zp is the centre ofG. For instance the
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groupGL2(Zp) has a system of open neighbourhoods of the identity consisting of subgroupsG having
this property. In this case we show that whenever the set of primesP1 ∪P2 is nonempty then the dual
SelmerX(E/K∞) is not annihilated by any element in the centre ofΛ(G). Therefore by a result of
Ardakov [2] its global annihilator inΛ(G) also vanishes. Moreover, ifX(E/K∞) is further assumed
to haveΛ(H)-rank1 then its imageq(X(E/K∞)) in the quotient category by the full subcategory of
pseudonull modules is completely faithful (that is all the subquotients ofX(E/K∞) are pseudonull
or have trivial global annihilator). Finally we give an example of two curvesE andA such that in case
K∞ = Q(A[5∞]) all these assumptions are satisfied thereforeq(X(E/K∞)) is completely faithful.
As previous work of the first author [3] shows we cannot takeE = A since in this caseX(E/K∞)
always hasΛ(H)-rank bigger than1.

1.1 Notation

K∞ will always mean a strongly admissible extension of a numberfieldK, in the sense that

1. K∞ containsK(µp∞).

2. K∞/K is unramified outside a finite set of places ofK.

3. Gal(K∞/K) is ap-adic Lie group of dimension at least2

4. Gal(K∞/K) has no elements of orderp

We make the following definitions.
GL = Gal(K∞/L)
HL = Gal(K∞/L

cyc)
ΓL = Gal(Lcyc/L)
Γ∗
L = Gal(Lcyc/K)

Mv = Homcont(M,Qp/Zp)
M∗ = Homcont(M,Zp)

G = Gal(K∞/K)
H = Gal(K∞/K

cyc)
Γ = Gal(Kcyc/K)

M# = opposite module ofM
aiR(M) = ExtiR(M,R)

Moreover, we are going to denote byv the primes inK and byqv := NK/Q(v) their absolute
norm. Further,vcyc, vL, vLcyc , v∞ will denote primes abovev inKcyc, L,Lcyc, andK∞, respectively.
Moreover, ifF1 ≤ F2 is a Galois extension andw is a prime in the fieldF2 then we denote by
Gal(F2/F1)w the decomposition subgroup of the Galois groupGal(F2/F1).

Let G be anyp-adic Lie group without elements of orderp and with a closed normal subgroup
H ⊳ G such thatΓ := G/H ∼= Zp. We are going to need the special case whenG is a finite index
subgroup ofGal(Q(E[p∞])/Q) and also in the case whenG ∼= Zp. The former embeds intoGL2(Zp)
once we choose aZp-basis ofTp(E). We denote byΛ(G) the IwasawaZp-algebra ofG and byΩ(G)
its Fp-version.

Let S be the set of allf in Λ(G) such thatΛ(G)/Λ(G)f is a finitely generatedΛ(H)-module and

S∗ =
⋃

n≥0

pnS.

These are multiplicatively closed (left and right) Ore setsof Λ(G) [4], so we can defineΛ(G)S ,Λ(G)S∗

as the localizations ofΛ(G) atS andS∗. We writeMH(G) for the category of all finitely generated
Λ(G)-modules, which areS∗-torsion. A finitely generated left moduleM is in MH(G) if and only if
M/M(p) is finitely generated overΛ(H) [4]. We writeK0(MH(G)) for the Grothendieck group of

3



the categoryMH(G). Similarly, letM(G, p) denote the category ofp-power-torsion finitely generated
Λ(G)-modules andNH(G) the category ofΛ(G)-modules that are finitely generated overΛ(H).

Lemma 1.1. Assume in addition thatG is a pro-p group. Then we haveK0(MH(G)) = K0(M(G, p))⊕
K0(NH(G)).

Proof. By definition any module inMH(G) is an extension of a module inM(G, p) and a module
in NH(G). Hence we haveK0(MH(G)) = K0(M(G, p)) + K0(NH(G)). LetM andN beΛ(G)-
modules as above. Now we claim that the map[M ] 7→ [M(p)] is well defined and extends to a
homomorphismK0(MH(G))→ K0(M(G, p)). For this let

0→ A→ B → C → 0

be a short exact sequence inMH(G). Then we haveµ(B) = µ(A) + µ(C) for their µ-invariants
(asΛ(G)-modules) sincep-power-torsionΛ(G)-modules that are finitely generated overΛ(H) (ie.
modules inM(G, p) ∩ NH(G)) clearly have trivialµ-invariant. Here theµ-invariant µ(M) of a
finitely generatedΛ(G)-module is defined by

∑∞
j=0 rkΩ(G)(p

jM(p)/pj+1M(p)). Hence we have
[B(p)] = [A(p)] + [C(p)] in K0(M(G, p)) by the main theorem of [1] applied to pro-p groups. The
statement follows using again that modules inNH(G) have trivialµ-invariant hence the homomorph-
ism constructed is zero onK0(NH(G)).

Further, ifM is a left Λ(G)-module, then byM# we denote the right module defined on the
same underlying set with the action ofΛ(G) via the anti-involution# = (·)−1 on G, i. e. for anm
element inM andg in G, and the right action is defined bymg := g−1m. By extending the right
multiplication linearly to the whole Iwasawa algebra we getmx = x#m.

1.2 Elliptic curves over strongly admissible extensions

LetE be an elliptic curve without complex multiplication. We areinterested in theΛ(G)-module
X(E/K∞) = Selp∞(E/K∞)v, which is the Pontryagin dual of thep∞-Selmer group ofE overK∞.
This is the subject of the non-commutative main conjecture in the Iwasawa theory of elliptic curves
[4]. It is conjectured thatX(E/K∞) always lies inMH(G) provided thatE has good ordinary
reduction atp. The following is a positive result in this direction.

Definition 1.2. For a finite or infinite field extensionL ≥ K, let R(L) be the set of primes inL
where the extensionK∞/L is infinitely ramified andP0(L) the subset ofR(L) consisting of primes
not dividingp. For each primev ∈ L choose a primevcyc (resp.v∞) abovev in Lcyc (resp.K∞).

P1(L) = {v ∈ P0(L)|E has split multiplicative reduction atv∞}

P2(L) =
{

v ∈ P0(L)|E has good reduction atv∞ and E(Lcyc
vcyc)[p] 6= 0

}

Pi(K) (resp.R(K)) will be denoted byPi (resp.R) for convenience.

Theorem 1.3([15, Theorem 5.4]). LetK∞/K be a strongly admissible pro-p p-adic Lie extension.
Let E be an elliptic curves defined overK that has good ordinary reduction atp. Assume that
X(E/Kcyc) is finitely generated overZp. ThenX(E/K∞) is finitely generated overΛ(H) (i.e. it is
in NH(G)) and

rkΛ(H)X(E/K∞) = rkZpX(E/Kcyc) + |P1(K
cyc)|+ 2|P2(K

cyc)| .

Remark. The primes inP1 ∪ P2 are exactly those primesv ∈ P0 for which all thep-power division
pointsE[p∞] are contained in the local tower extensionK∞,v∞ (Prop. 5.1 in [13]).
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2 A pairing over strongly admissible extensions

The following theorem is the key for establishing the functional equation of the characteristic
element ofX(E/K∞).

Theorem 2.1. LetE be an elliptic curve without complex multiplication havinggood ordinary reduc-
tion at all the primes abovep ≥ 5. LetK be a number field andK∞ a strongly admissible extension.
Assume thatX(E/K∞) has rank0 as aΛ(G)-module.

Then there is a map

ϕ : X(E/K∞)→ Ext1(X(E/K∞)#,Λ(G))

with kernel representing0 and cokernel representing

⊕

v∈P1∪P2

Λ(G)⊗Λ(Gv∞) Tp(E(K∞,v∞))∗

in K0(MH(G)).

The following lemmas prepare the proof of this theorem.

Lemma 2.2. a) H i(HL, E[p∞](K∞)) has a bounded number of generators asL→ K∞.

b) Moreover, ifE[p∞](K∞) is finite then|H i(HL, E[p∞](K∞))| is bounded asL→ K∞.

Proof. To show a), it is enough to prove thatdimFp H
i(HL,Fp) is bounded as in [27, Lemma 5.3].

We may assume thatL is large enough so thatHL acts trivially onE[p∞](K∞). Then, by induc-
tion on the order ofE[p∞](K∞), |H i(HL, E[p∞](K∞))| is expressible as a function of|Hj(HL,Fp)|.
It is therefore sufficient to bound these groups to prove b).

By a theorem of Lazard, each compactp-adic analytic group contains an open characteristic uni-
formly powerful subgroup [24, Theorem 5.1.1]. Therefore wemay take the limitL → K∞ with HL

always a uniformly powerful subgroup, which is also a pro-p p-adic analytic group (these properties
are inherited fromHK). ThendimFp H

i(HL,Fp) = dimHL anddimFp H
i(HL,Fp) =

(

dimHL
i

)

by
[24, Theorem 5.1.5.]. BecauseH is a uniform pro-p group, it has afinite rankgiving an upper bound
to dimHL.

Lemma 2.3. LetG be a compactp-adic Lie group with a closed normal subgroupH ⊳ G such that
Γ = G/H ∼= Zp. Then anyΛ(G)-moduleM of finite order has trivial class inK0(MH(G)).

Proof. As any finite module is a successive extension ofp-torsionΛ(G) modules we may assume
without loss of generality thatM is a finite dimensional vectorspace overFp. Note thatFp with the
trivial action ofG has class0 in K0(Fp[[G]]) and hence also inK0(MH(G)) as we have a short exact
sequence

0→ Fp[[Γ]]→ Fp[[Γ]]→ Fp → 0

induced by the augmentation map. On the other hand, ifM is anFp[[G]]-module finite overFp then
for any finitely generatedFp[[G]]-moduleN the moduleM ⊗Fp N with the diagonal action ofG is
also finitely generated overFp[[G]]. ThereforeM ⊗Fp ·—being exact—induces a homomorphism
K0(Fp[[G]])→ K0(Fp[[G]]) mapping[0] = [Fp] to [M ] whence we also have[M ] = [0].
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Lemma 2.4. LetG1 andG2 be two compactp-adic Lie groups andψ : G1 → G2 a continuous homo-
morphism with open image. Suppose that there is a closed normal subgroupHi ⊳ Gi (i = 1, 2) such
that Gi/Hi

∼= Zp andH1 = ψ−1(H2). Assume further that the modules in the categoryMH2
(G2)

that are finitely generated overZp have trivial class inK0(MH2
(G2)). Then the same is true for the

groupG1, ie. for any finitely generatedZp-moduleM in the categoryMH1
(G1) we have[M ] = 0 in

K0(MH1
(G1)).

Proof. By assumptionsψ(H1) has finite index inH2 therefore any finitely generatedΛ(H2)-module
is finitely generated overΛ(H1) when regarded as aΛ(H1)-module via the mapψ. Therefore we
obtain an exact functor

ψ∗ : MH2
(G2) → MH1

(G1)

M 7→ M as aΛ(G1)-module viaψ .

Soψ∗ induces a homomorphism (still denoted byψ∗ by a slight abuse of notation) on theK0 having
the property that[Zp] = ψ∗([Zp]) = ψ∗([0]) = [0] where we regardZp aΛ(G2) (resp.Λ(G1)) module
with the trivial action ofG2 (resp. ofG1).

Now letM ∈MH1
(G1) be finitely generated overZp. By Lemma 2.3 we may assume thatM has

no p-torsion. ThereforeM ⊗Zp · is exact, in particular induces a homomorphismK0(MH1
(G1)) →

K0(MH1
(G1)) (with the diagonal action ofG1 onM ⊗Zp N ) mapping[Zp] to [M ⊗Zp Zp] = [M ].

Therefore[M ] equals0 as we have[Zp] = 0 by the above discussion.

Proposition 2.5. If E[p∞](K∞) is infinite then all modules inMH(G) that are finitely generated
overZp represent0 in K0(MH(G)).

Proof. This follows from Lemma 2.4 and Proposition 4.2 in [27] as in this case we have a continuous
group homomorphismψ : G→ GL2(Zp) with open image.

The following observation will play a key role in the proof ofTheorem 2.1.

Corollary 2.6. Any inverse limitlim
←−HL

H i(HL, E[p∞](K∞)) has trivial class inK0(MH(G)).

Proof. If E[p∞](K∞) is finite, these groups have bounded order by Lemma 2.2 and hence the limit is
finite, which represents0 in K0(MH(G)) by Lemma 2.3. Otherwise, Lemma 2.2 shows that the limit
is finitely generated overZp, which is sufficient because of Proposition 2.5.

Lemma 2.7. For any Galois sub-extensionL/K ofK∞/K and a primevL ∤ p of L, eitherHL,vLcyc

is trivial if K∞ is unramified atvL, or it is the full Galois group of the maximal pro-p extension of
LvL if it is ramified.

Proof. If vL ∤ p thenLvL(p), the maximal pro-p extension ofLvL is aZp-extension ofLcyc
vLcyc which

is totally ramified. Lcyc
vLcyc itself is an unramified extension ofLvL . HenceHL,v∞ being trivial is

equivalent toK∞ being unramified atvL. Therefore ifvL ∤ p, Lcyc
vcyc is a subfield of this maximal

extension, henceHL,v∞ is a quotient ofZp by a closed subgroup, so it is either a finitep-group or the
whole ofZp. SinceHL,v∞ is a subgroup ofG, it has nop-torsion, so it cannot be finite non-trivially.
HenceHL,v∞ is either trivial, or equalsGal(LvL(p)/LvL).

Proof of Theorem 2.1.The proof of Theorem 5.2 in [27] applies with some changes.
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As in [27], for each intermediate fieldL betweenK andK∞ we consider the maps

ϕ2,L : X(E/Lcyc)→ a1Λ(ΓL)
(X(E/Lcyc)

ϕ1,L : a
1
Λ(ΓL)

(X(E/Lcyc)→ a1Λ(ΓL)
(X(E/Kcyc)#HL

and take their inverse limit asL→ K∞ to obtainϕ = ϕ1 ◦ ϕ2.
We examineϕ1,L first. LetR denote the set of primes inK whereK∞/K is ramified. For a prime

vL in L we put

JvL(L
cyc) =

⊕

Lcyc∋vcyc|u

H1(Lcyc
vcyc , E(Lcyc

vcyc))[p
∞]

JvL(K∞) = lim
−→
L

JvL(L
cyc).

We will use the following fundamental diagram

0→ Sel(E/Lcyc) → H1(KR/L
cyc, E[p∞])→

⊕

vL∈R(L)

JvL(L
cyc)→ 0





yrL





ygL





y⊕ hL,vL(1)

0→ Sel(E/K∞)HL → H1(KR/K∞, E[p∞])HL →
⊕

vL∈R(L)

JvL(K∞)HL

[7][Lemma 2.1] is general enough to justify the0 in the upper right corner since we assumed that
X(E/K∞) isΛ(G)-torsion.

Now the snake lemma gives

0→ Ker(rL)→ Ker(gL)→
⊕

vL∈R(L)

Ker(hL,vL)→ Coker(rL)→ Coker(gL).

Here, using the inflation-restriction exact sequence we have

(2) Ker(gL) ∼= H1(HL, E[p∞](K∞)), andCoker(gL) →֒ H2(HL, E[p∞](K∞)).

If E[p∞](K∞) is infinite, it will be sufficient to show that have a bounded number of generators
asL → K∞ (see Proposition 2.5). IfE[p∞](K∞) is finite, we also need these to have bounded
cardinality asL grows.

Further, the proof in thata2Λ(ΓL)
(X(E/Lcyc)#) is valid in the general case. Furthermore, by

[27, Eq. 5.35],a2Λ(ΓL)
(X(E/Lcyc)#) = a2Λ(ΓL)

(F ) whereF is bounded by the inverse limit of

H1(Γn, E[p∞](Lcyc) = E[p∞](Lcyc)/(γp
n

L − 1)E[p∞](Lcyc). This is bounded byE[p∞](Lcyc) ≤
E[p∞](K∞), thereforeF is finite, and as Abelian groups we havea2Λ(ΓL)

(F ) ∼= F .
Therefore we have the quasi-exact (i.e. exact up to modules with bounded number of generators,

or bounded orders whenE[p∞](K∞) is finite) sequence

(3) 0→ a1Λ(ΓL)
(X(E/Lcyc)#)→ a1Λ(ΓL)

(X(E/K∞)#HL
)→

⊕

u∈R(L)

a1Λ(ΓL)
(Ker(hL,vL)

v#)→ 0.
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After using Shapiro’s lemma and Kummer theory as in [27, 5.39-40], we have

Ker(hL,vL) =
⊕

v∞|vL

H1(HL,v∞ , E(K∞,v∞)[p∞]) .

Using Lemma 2.7,HL,v∞ is either trivial, or the Galois group of the maximal pro-p extension of
Lv∞ .

For the latter case, the direct summand for a primev∞ is computed in [26, eqn. (6.8)] as
follows. If vL 6∈ P1(L) ∪ P2(L) thenH1(HL,v∞ , E(K∞,v∞)[p∞]) = 0. If vL ∈ P2(L) then
H1(HL,v∞ , E(K∞,v∞)[p∞]) = E[p∞](−1). If vL ∈ P1(L) thenH1(HL,v∞ , E(K∞,v∞)[p∞]) =
B(−1) whereB comes from the following exact sequence ofGal(K∞/L)v∞ -modules

(4) 0→ A→ E[p∞]→ B → 0

whereA ∼= µp∞ andB ∼= Qp/Zp asGal(K∞/L)v∞ -modules. (However,B might have additional
Gal(K∞/K)v∞ -module structure.)

For a discreteΛ(ΓL,vLcyc )-moduleU we havea1Λ(ΓL,vLcyc )
((Uv)#) ∼= Tp(U), hence

a1Λ(ΓL,vLcyc )
(Hom(B(−1),Qp/Zp)

#) = Bv(−1) if vL ∈ P1(L)(5)

a1Λ(ΓL,vLcyc )
(Hom(E[p∞](−1),Qp/Zp)

#) = Tp(E)∗ if vL ∈ P2(L)(6)

Substituting these into (3) we obtain the quasi-exact sequence

0→ a1Λ(ΓL)
(X(E/Lcyc)#)→ a1Λ(ΓL)

(X(E/K∞)#HL
)→(7)

→
⊕

vLcyc∈P1(Lcyc)

Bv(−1)⊕
⊕

vLcyc∈P2(Lcyc)

Tp(E)∗ → 0(8)

To compute the direct limit of the terms of this sequence asL → K∞, we must know that the
connecting maps induced byL1 ⊂ L2 for the last term are surjective. This is provided by [27][Lemma
5.4].

We have determined that the kernel and cokernel ofϕ1,L is respectively0 and





⊕

vLcyc∈P1(Lcyc)

Bv(−1)



⊕





⊕

vLcyc∈P2(Lcyc)

Tp(E)∗




∼=





⊕

v∈P1(K)

Λ(Γ∗
L)⊗Λ(Γ∗

L,vLcyc
) B

v(−1)



 ⊕





⊕

v∈P2(K)

Λ(Γ∗
L)⊗Λ(Γ∗

L,vLcyc
) Tp(E)∗





up to finite modules with bounded number of generators asL→ K∞.
The second task is to compute the kernel and cokernel ofϕ2,L.
Up to finite modules bounded byH i(L,E[p∞])v (i = 1, 2), the kernel is0 and the cokernel is

(9)



 lim
−→
k→∞

⊕

v∈P0

⊕

vLcyc |v

H1(Γk, E(Lcyc
vLcyc )[p

∞])





v

.

whereΓk = Gal(Kcyc/K(µpk)).
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If vL ∈ P1(L), the situation is the same as in [27], we have

(10) 0→ B(1)→ E(Lcyc
vLcyc )[p

∞]→ B[prL ]→ 0

for some integerrL. By the long exact sequence ofΓk-cohomology we get thatH1(Γk, E(Lcyc
vLcyc )) is

isomorphic toB[prL ] independently ofk whererL tends to infinity as the fieldL grows sinceK∞,v∞

contains the wholeE[p∞] (similarly to the discussion at the bottom of [26, p. 548]).
If vL ∈ P0(L) \ P1(L), then by [12, Lemma 4.4],H1(Γk, E(Lcyc

vLcyc )[p∞]) is finite with bounded
order ask varies. Now we have determined that the kernel and cokernel of ϕ2,L are respectively0 and

⊕

vLcyc∈P1(Lcyc)

B[prL ] ∼=
⊕

v∈P1(K)

Λ(Γ∗
L)⊗Λ(Γ∗

L,vLcyc
) B[prL]

up to finite modules with bounded number of generators asL→ K∞.
So the kernel of the compositeϕL = ϕ1,L ◦ϕ2,L is finite with bounded number of generators and

its cokernel equals




⊕

v∈P1(K)

Λ(Γ∗
L)⊗Λ(Γ∗

L,vLcyc
) (B[prL ]⊕Bv(−1))



 ⊕





⊕

v∈P2(K)

Λ(Γ∗
L)⊗Λ(Γ∗

L,vLcyc
) Tp(E)∗



 .

The statement follows by taking projective limit over the finite extensionsK ≤ L ≤ K∞ noting that
lim
←−L

Λ(Γ∗
L) = Λ(G) andlim

←−L
Λ(Γ∗

L,vLcyc
) = Λ(Gv∞). Here we have used that[Bv ⊕ Bv(−1)] =

Tp(E)∗ by the exact sequence

0→ Bv → Tp(E)∗ → Bv(−1)→ 0 .

Corollary 2.8. Assume the hypotheses of Theorem 2.1. Then the maximal pseudonull submodule of
X(E/K∞) is finitely generated overZp (and even finite ifE[p∞] 6⊆ K∞). Moreover, ifX(E/Lcyc)
does not have any nonzero pseudonull (that is finite) submodule for any intermediate finite extension
K ≤ L ≤ K∞ thenX(E/K∞) does not have any nonzero pseudonull submodule either.

Proof. As Λ(G) is Auslander regular, the modulea1Λ(G)(X(E/K∞)) does not have any pseudonull
submodules. Therefore the maximal pseudonull submodule ofX(E/K∞) is contained in the ker-
nel of ϕ. Moreover, the kernel ofϕ is the projective limit of the kernels ofϕL : X(E/Lcyc) →
a1Λ(ΓL

(H0(HL,X(E/K∞))). HereϕL is injective if we assume thatX(E/Lcyc) has no nonzero
finite submodule.

Remark. If we assume that theµ-invariant ofX(E/Kcyc) vanishes andG is pro-p then our as-
sumption thatX(E/Lcyc) is Λ(ΓL)-torsion implies thatX(E/Lcyc) has no finite submodule for any
intermediate extensionK ≤ L ≤ K∞ (see Proposition 7.5 in [18]).

3 The vanishing of the class of higherExt groups

In this section assume thatX(E/K∞) lies in the categoryMH(G).
LetG be ap-adic Lie group of dimensiond without elements of orderp. Assume further that there

is a closed normal subgroupH⊳G such thatΓ = G/H ∼= Zp. We putai(M) := ExtiΛ(G)(M,Λ(G)).
The following is a slight generalization of Prop. 6.1 in [27]with basically the same proof which we
recall for the convenience of the reader. Note that in this case the global dimension of the Iwasawa
algebraΛ(G) is at mostd+ 1.
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Proposition 3.1. LetM be in the categoryMH(G). LetξM andξai(M) be characteristic elements of
M and ofai(M) for 1 ≤ i ≤ d+ 1, respectively. Then we have

(11) ξ−1
M

d+1
∏

i=1

ξ
(−1)i+1

ai(M)

lies in the image ofK1(Λ(G)) in K1(Λ(G)S∗).

Proof. First of all we need to verify that wheneverM is in MH(G) then so isai(M) for any i ≥
1. Because of the long exact sequence ofExtΛ(G)(·,Λ(G)) it is enough to prove both this and the
statement of the proposition separately forp-torsion modules and modules finitely generated over
Λ(H).

For p-torsion modules the extension groupsai(M) are alsop-torsion and hence lie inMH(G).
On the other hand, it suffices to show the statement of the proposition for projectiveΩ(G)-modules.
Indeed, asG does not have any element of orderp, the Iwasawa algebraΩ(G) has finite (≤ d) global
dimension and we can once again apply the long exact sequenceof ExtΛ(G)(·,Λ(G)). For projective
modules we only have first extension groups. Furthermore, ifM is a projectiveΩ(G)-module then
a1(M) ∼= Hom(M,Ω(G)) and so have the same characteristic element asM using the formula for
the characteristic element ofp-torsion modules [1].

Now if M is finitely generated overΛ(H) then by Theorem 3.1 in [21]ai(M) is isomorphic to
Exti−1(M,Λ(H)) up to a twist, and in particularai(M) is also finitely generated overΛ(H) (hence
lies inMH(G)). On the other hand, the characteristic element forM in this case is in the image of
the composed map [4, 25]

Λ(G)×S ։ K1(Λ(G)S)→ K1(Λ(G)S∗).

Moreover, any element inΛ(G)S can be written in the formx1x
−1
2 with x1, x2 in Λ(G). Now it can

be easily seen that
a1(Λ(G)/Λ(G)xi) ∼= Λ(G)/xiΛ(G) for i = 1, 2

and their higher extension groups vanish as these modules have a projective resolution of length1. So
the equation(11) is true for modulesMi with characteristic elementsxi and therefore it is also true
for M with characteristic elementx1x

−1
2 as both sides of(11) are multiplicative with respect to short

exact sequences.

For the vanishing of the class ofaiΛ(G)(X(E/K∞)) in K0(MH(G)) we need to use different
ideas from those in [27]. The reason for this is that we do not assume the dimensiond of G as a
p-adic Lie group to be at most4, hencep-torsion freeΛ(G)-modulesM with vanishingaiΛ(G)(M)
for i ≤ 3 might not be finitely generated overZp. So we need additional hypotheses that are partly
known, partly conjectured to be true.

Hypothesis 1. The modulesHi(HL,X(E/K∞)) (i ≥ 1) are finite with bounded number of gen-
erators overZp independent ofL. Moreover, ifE[p∞](K∞) is finite thenHi(HL,X(E/K∞)) has
bounded order independent ofL.

At first note that in caseK∞ = K(E[p∞]) it is known (Remark 2.6 in [7]) that the homology
groupsHi(HL,X(E/K∞)) vanish for alli ≥ 1 as we are assuming thatX(E/K∞) ∈ MH(G)
(whenceX(E/K∞) is Λ(G)-torsion). Now we are going to impose sufficient conditions for Hypo-
thesis 1 in general.
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Hypothesis 2.For the primesv dividingp we have either(i) dimGv∞ ≤ 2 or (ii) dimGv∞ = 3 and
Ẽv[p

∞] is contained in the residue field ofK∞ at v∞. HereẼv denotes the reduction ofE modv.

The following is a slight generalization of Theorem 2.8 in [16] with essentially the same proof.

Proposition 3.2. Hypothesis 2 implies Hypothesis 1.

Proof. We are going to analyze the fundamental diagram

0→ Sel(E/Lcyc) → H1(KR/L
cyc, E[p∞])→

⊕

vL∈R(L)

JvL(L
cyc)→ 0





y
rL





y
gL





y
⊕ hL,vL(12)

0→ Sel(E/K∞)HL → H1(KR/K∞, E[p∞])HL
φ∞

→
⊕

vL∈R(L)

JvL(K∞)HL .

Note by our assumption thatX(E/Lcyc) isΛ(ΓL)-torsion, the natural map

λLcyc : H1(KR/L
cyc, E[p∞])→

⊕

vL∈R(L)

JvL(L
cyc)

is surjective for any intermediate fieldL (see the discussion concerning Conjectures 2.5 and 2.6 in
[16]). By taking direct limit the map

λK∞
: H1(KR/K∞, E[p∞])→

⊕

vL∈R(L)

JvL(K∞)

is also surjective. Therefore the bottom row of (12) can be extended to the long exact sequence of
HL-cohomology

0→ Coker(φ∞)→ H1(HL,Sel(E/K∞))→ H1(HL,H
1(KR/K∞, E[p∞]))→

→ H1(HL,
⊕

vL∈R(L)

JvL(K∞))→ . . .

Lemma 3.3. The groupsH i(HL,H
1(KR/K∞, E[p∞])) are finite with bounded number of generat-

ors for all i ≥ 1. Moreover, ifE[p∞](K∞) is finite, then the groupsH i(HL,H
1(KR/K∞, E[p∞]))

even have bounded order.

Proof. By the assumption thatX(E/Lcyc) is Λ(ΓL)-torsion for each intermediate extensionL it
follows thatH2(KR/L

cyc, E[p∞]) = 0 (see the discussion concerning Conjectures 2.5 and 2.6 in
[16]). By taking direct limit for allL in K∞ we also obtainH2(KR/K∞, E[p∞]) = 0. Moreover,
sincep 6= 2 thep-cohomological dimension of totally real number fields is atmost2 (see Proposition
4.4.13 in [23]) therefore we also haveH i(KR/K∞, E[p∞]) = 0 andH i(KR/L

cyc, E[p∞]) = 0 for
all i ≥ 3. So by the Hochschild-Serre spectral sequence we obtain theexact sequence

H i(KR/L
cyc, E[p∞])→ H i−1(HL,H

1(KR/K∞, E[p∞]))→ H i+1(HL, E[p∞](K∞))

for all i ≥ 2. The statement follows from Lemma 2.2a).

Lemma 3.4. Assume Hypothesis 2. Then for alli ≥ 1 we haveH i(GL,
⊕

vL∈R(L) JvL(K∞)) = 0.
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Proof. Note that by Shapiro’s Lemma we haveH i(GL, JvL(K∞)) ∼= H i(GL,v∞ ,H
1(K∞,v∞ , E)(p))

(cf. Lemma 2.8 in [6]). Assume first thatvL ∤ p. By Kummer theory we haveH1(K∞,v∞ , E)(p) ∼=
H1(K∞,v∞ , E[p∞]). Moreover, by Lemma 5.2 in [6] for any primevL (even for those dividing
p) we haveH i(GL,v∞ ,H

1(K∞,v∞ , E[p∞])) ∼= H i+2(GL,v∞ , E[p∞]). For primesvL ∤ p the p-
cohomological dimension ofGL,v∞ is at most2 so we obtainH i(GL,v∞ ,H

1(K∞,v∞ , E)(p)) = 0 for
i ≥ 1 as desired.

Now letvL be a prime dividingp. By our assumption that the reduction type atvL is ordinary, we
have a short exact sequence

0→ C → E[p∞]→ D → 0

of local Galois-modules whereD can be identified withẼvL [p
∞] whereẼvL denotes the reduction

of E mod vL. It is shown in [5] (Propositions 4.3 and 4.8) that—since ourextensionK∞,v∞/LvL

is deeply ramified—we haveH1(K∞,v∞ , E)(p) ∼= H1(K∞,v∞ ,D) (see also Prop. 5.15 in [6]).
Moreover, a Hochschild-Serre spectral sequence argument shows that we haveH i(GL,v∞ , JvL(K∞)) ∼=
H i+2(GL,v∞ ,D(K∞,v∞)). The statement follows from our assumption Hypothesis 2.

Lemma 3.5. Assume Hypothesis 2. Then for alli ≥ 1 we haveH i(HL,
⊕

vL∈R(L) JvL(K∞)) = 0.

Proof. As ΓL hasp-cohomological dimension1 the Hochschild-Serre spectral sequence reduces to
short exact sequences

0→ H1(ΓL,H
j(HL,

⊕

vL∈R(L)

JvL(K∞))→ Hj+1(GL,
⊕

vL∈R(L)

JvL(K∞))→

→ Hj+1(HL,
⊕

vL∈R(L)

JvL(K∞))ΓL → 0

and the statement follows from Lemma 3.4 if we note thatHj+1(HL,
⊕

vL∈R(L) JvL(K∞)) is p-
primary with the discrete topology andΓL is a pro-p group.

Putting all the above together it remains to show that the cokernel ofφ∞ is finite with bounded
number of generators. We are going to show that under Hypothesis 2 it is even0. By the snake Lemma,
Coker(φ∞) is contained inCoker(

⊕

vL
hL,vL). Moreover, for any fixedvL the cokernel ofhL,vL is

contained inH2(HL,v∞ , E(K∞,v∞))(p) by the inflation restriction exact sequence. Moreover, if
vL ∤ p then we have

(13) H2(HL,v∞ , E(K∞,v∞))(p) ∼= H2(HL,v∞ , E[p∞](K∞,v∞))

by Kummer theory. However, in this case thep-cohomological dimension ofHL,v∞ is 1 therefore the
right hand side of (13) vanishes. On the other hand, ifvL | p then we haveH2(HL,v∞ , E(K∞,v∞))(p) ∼=
H2(HL,v∞ ,D(K∞, v∞)). By Hypothesis 2 we have two cases: ifdimGv∞ ≤ 2 then the dimension
ofHL,v∞ is at most1, thereforeH2(HL,v∞ ,D(K∞, v∞)) vanishes. On the other hand, ifdimGv∞ =
3 andD = D(K∞, v∞) then it is shown in Lemma 2.3 in [7] thatH2(HL,v∞ ,D) = 0.

Proposition 3.6. Apart from our standing assumptions assume that at least oneof the following
conditions is satisfied. Either

(i) G is an open subgroup ofGL2(Zp), or

(ii) Hypothesis 1 holds.
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Then the class ofaiΛ(G)(X(E/K∞)) vanishes inK0(MH(G)) for all i ≥ 2.

Proof. In case(i) the argument in the proof of Proposition 6.4 in [27] shows thevanishing of the class
of ai(X(E/K∞)) in K0(MH(G)) for all i ≥ 2.

So assume Hypothesis 1 now. We are going to show thataiΛ(G)(X(E/K∞)) are finitely generated

overZp for all i ≥ 2. Moreover, wheneverE[p∞](K∞) is finite thenaiΛ(G)(X(E/K∞)) are not just
finitely generated overZp, but even finite.

For a finite Galois extensionL of F insideK∞ let us denote byΓ∗
L the Galois groupGal(Lcyc/F ).

Note that we haveG = lim
←−L

Γ∗
L hence alsoΛ(G) = lim

←−L
Λ(Γ∗

L). Thus by the exactness oflim
←−

on compact abelian groups we obtain an isomorphismai(M) ∼= lim
←−L

ExtiΛ(G)(M,Λ(Γ∗
L)) for any

finitely generatedΛ(G)-moduleM .
On the other hand, there is a Grothendieck spectral sequence

Ep,q
2 = ExtpΛ(Γ∗

L)
(Hq(HL,X(E/K∞)),Λ(Γ∗

L))⇒ Extp+q
Λ(G)(X(E/K∞),Λ(Γ∗

L))

as we haveHomΛ(G)(·,Λ(Γ
∗
L)) = HomΛ(Γ∗

L)
(·,Λ(Γ∗

L)) ◦H0(HL, ·) is the composite of a right exact
covariant functor and a left exact contravariant functor. Our goal is to show that inEp,q

2 all the
modules are finitely generated overZp with a bounded number of generators except forE1,0

2 =
a1Λ(Γ∗

L)
(X(E/K∞)HL

). The statement follows from this.

Note that asΓL = Gal(Lcyc/L) has finite index inΓ∗
L we have an isomorphismapΛ(Γ∗

L)
(M) ∼=

apΛ(ΓL)
(M) asΛ(ΓL)-modules (Lemma 2.3 in [17]). On the other hand, the ringΛ(ΓL) ∼= Zp[[T ]]

has global dimension2, so the aboveExt groups vanish forp ≥ 3. By Lemma 1 it remains to show
thata2Λ(ΓL)

(X(E/K∞)HL
) has a bounded number of generators overZp. However, as in the proof of

2.1a2Λ(ΓL)
(X(E/K∞)HL

) is isomorphic to the maximal finite submodule ofX(E/K∞)HL
. Further,

the natural restriction mapX(E/K∞)HL
→ X(E/Lcyc) has kernel finite free overZp up to a finite

module with bounded number of generators. The statement follows if we note that the maximal finite
subgroup ofX(E/Lcyc) also has a bounded number of generators.

Now we can state our result concerning the functional equation of the characteristic element of
X(E/K∞).

Theorem 3.7. LetE be an elliptic curve overK without complex multiplication and with good or-
dinary reduction at all the primes abovep ≥ 5. Assume that the dual SelmerX(E/K∞) over the
strongly admissiblep-adic Lie extensionK∞ lies in the categoryMH(G) and that Hypothesis 1 holds.
Then the characteristic elementξX(E/K∞) of theΛ(G)-moduleX(E/K∞) in the groupK1(Λ(G)S∗)
satisfies the functional equation

(14) ξ#X(E/K∞) = ξX(E/K∞)ε0(X(E/K∞))
∏

v∈P1∪P2

αv

for someε0(X(E/K∞)) in K1(Λ(G)). Here the modifying factorsαv are the images of the charac-
teristic elements ofTp(E)∗ under the natural mapK1(Λ(Gv∞)S∗

v∞
)→ K1(Λ(G)S∗).

Proof. We use Theorem 2.1 and the fact that two elements inK1(Λ(G)S∗) define the same class in
the Grothendieck groupK0(MH(G)) if and only if they differ by an element inK1(Λ(G)).
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4 Compatibility with the conjectured interpolation proper ty of the p-
adic L-function

Let us recall at first the Main Conjecture over the strongly admissiblep-adic Lie extensionK∞/K.
Fix a global minimal Weierstraß equation forE over the ring of integersOK of K. We denote by
Ω±(E) the periods ofE, defined by integrating the Néron differential of this Weierstraß equation
over the±1 eigenspacesH1(E(C),Z)± of complex conjugation. As usual,Ω− is chosen to lie in
iR. Moreover, for any Artin representationτ of the absolute Galois group ofK let d+(τ) andd−(τ)
denote the dimension of the subspace of the vector space ofτ on which complex conjugation acts by
+1 and−1, respectively. Deligne’s period conjecture [10] asserts that

(15)
L(E/K, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
∈ Q.

As before letR denote the set of rational primes ramifying infinitely inK∞/K. We define the
modifiedL-function

(16) LR(E/K, τ, s) :=
∏

v/∈R

Pv(E, τ, q
−s
v )−1

by removing the Euler-factors at primes inR. Finally, sinceE has good ordinary reduction at all the
primesvp dividing p, we have

(17) Pvp(E,T ) = 1− avpT + |NK/Q(vp)|T
2 = (1− bvpT )(1− cvpT ), bvp ∈ Z×

p ,

where|NK/Q(vp)| + 1 − avp = #(Ẽvp(F|NK/Q(vp)|)) is the number of points on the curve reduced
modulovp. The analogue of Conjecture 5.7 in [4] for the extensionK∞/K is the following

Conjecture 4.1. Assume thatE has good ordinary reduction at all the primes abovep. Then there
existsLE in K1(Λ(G)S∗) such that, for all Artin representationsτ ofG, we haveLE(τ) 6=∞, and

(18) LE(τ
∗) =

LR(E, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
·
∏

vp|p

εvp(τ) ·
Pvp(τ

∗, b−1
vp )

Pvp(τ, c
−1
vp )

· b−fτ
vp ,

whereεvp(τ) denotes the localε-factor atvp attached toτ , andpfτ is thep-part of the conductor of
τ .

The Main Conjecture of the Iwasawa theory for elliptic curves without complex multiplication
overK∞ is the following (cf. Conjecture 5.8 in [4]).

Conjecture 4.2. Assume thatp ≥ 5, E has good ordinary reduction atp, andX(E/K∞) belongs
to the categoryMH(G). Granted Conjecture4.1, the p-adic L-functionLE in K1(Λ(G)S∗) is a
characteristic element ofX(E/K∞).

It is shown in Proposition 7.1 [27] that (up to anε-factor) the value ofαv at Artin representations
τ ofG equals the quotient of the localL-factor ofE twisted byτ by the localL-factor ofE twisted by
the contragredient representationτ∗. This is parallel to the fact that thep-adicL-function conjectur-
ally interpolates theL-values in which all theL-factors at primes ramifying infinitely inK∞/K are
removed. However, in our Theorem 3.7 we only have the modifying factorsαv at primesv in P1∪P2,
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that is at the primes that not only ramify infinitely inK∞/K butE[p∞] is contained inK∞,v∞ . The
reason for this is the following:

For a primev ∤ p ramifying infinitely inK∞/K the fieldK∞,v∞ is the unique pro-p extension
of Kv. ThereforeE[p∞] is contained in a finite prime-to-p extensionF∞,v∞ of K∞,v∞ with Galois
group∆ := Gal(F∞,v∞/K∞,v∞), so we may choose a global extensionF∞ of K∞ with completion
F∞,v∞ at a prime abovev∞ such thatGal(F∞/K∞) ∼= ∆. Now the factorαv ∈ K1(Λ(GF )S∗)
does appear in the functional equation of the characteristic element ofX(E/F∞) and interpolates the
quotients of the localL-factors ofE twisted by Artin characters ofGF = Gal(F∞/K). Note that the
identificationG = GF /∆ induces a commutative diagram

K1(Λ(GF )S∗)
π

−−−−→ K1(Λ(G)S∗)

∂GF





y





y
∂G

K0(MHF
(GF ))

(·)∆
−−−−→ K0(MH(G))

(19)

as∆ is finite of order prime top whence taking∆-homologies is exact onZp[∆]-modules.
Now if we assume Conjectures 4.1 and 4.2 for the larger extension F∞ instead ofK∞ then it

also implies these conjectures for the smaller fieldK∞. Indeed, the Artin representations ofG can
be viewed as Artin representations ofGF via the quotient mapGF ։ G = GF /∆. So if LE/F∞

has the required interpolation properties then so doesLE/K∞
:= π(LE/F∞

). Moreover, the Main
Conjecture overK∞ follows from the Main Conjecture overF∞ by the commutativity of the diagram
(19). Now both the functional equation of the characteristic element ofX(E/F∞) and the numerical
computations in [11] predict that when defining thep-adicL-function one has to remove all theL-
factors for primes ramifying infinitely inF∞/K so this discussion shows that we also have to remove
all theseL-factors.

However, ifv is a prime inP0 \ (P1 ∪ P2) then a usual spectral sequence argument shows that
H0(∆,Λ(GF ) ⊗Λ(GF,v∞) Tp(E)∗) ∼= Λ(G) ⊗Λ(Gv∞) (Tp(E)∗∆). HereTp(E)∗∆ is dual toE[p∞]∆.
In particular, it is finite as we assumed thatv /∈ P1 ∪ P2 whenceE[p∞] is not contained inK∞,v∞ .
So we see that the class ofΛ(G) ⊗Λ(Gv∞) (Tp(E)∗∆) vanishes inK0(MH(G)). Therefore by the
commutativity of the diagram (19) aboveπ(αv) lies in the image ofK1(Λ(G)). However, for the
value ofπ(αv) at an Artin representationτ factoring through the quotientG of GF we clearly have
π(αv)(τ) = αv(τ). Soπ(αv) still interpolates the same quotients of localL-factors, even though in
this case its image inK0(MH(G)) is trivial so there is no need to include these factors in the algebraic
functional equation.

5 Central torsion Iwasawa-modules

In this section we are going to assume thatG = H × Z is a pro-p p-adic Lie-group without
elements of orderp such that the centreZ(G) is Z ∼= Zp and the Lie algebraLie(H) of H is split
semisimple overQp. For example any open subgroup ofGL2(Zp) contains a finite index subgroupG
with these properties.

Lemma 5.1. LetM be a finitely generated central torsionΛ(G)-module withoutp-torsion. ThenM
represents the trivial element in theK0(MH(G)) if and only if it isΛ(H)-torsion.

Proof. One direction follows from the existence of a homomorphism

K0(MH(G))→ Z
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sending modules to theirΛ(H)-rank.
For the other direction assume thatM is bothΛ(H)- andΛ(Z)-torsion and choose (by the Wei-

erstraß preparation theorem noting thatM has nop-torsion) a distinguished polynomialf(T ) in
Zp[T ] ⊂ Zp[[T ]] ∼= Λ(Z) annihilatingM . We may assume without loss of generality thatf is ir-
reducible. ThereforeΛ(Z)/(f)[1/p] is a finite extension ofQp whose ring of integers we denote by
O (even though we may haveΛ(Z)/(f) ( O). Hence there is an isomorphismΛ(G)/(f)[1/p] ∼=
O[[H]][1/p]. As O[[H]] is a regular local ring, we obtain thatΛ(G)/(f)[1/p] has finite global di-
mension and thatG0(Λ(G)/(f)[1/p]) ∼= K0(Λ(G)/(f)[1/p]) ∼= Z. SinceM is torsion as aΛ(H)-
module,M [1/p] = Qp ⊗Zp M is also torsion as aΛ(G)/(f)[1/p]-module. In particular, the class
of M [1/p] in G0(Λ(G)/(f)[1/p]) vanishes. Moreover, note that the category of finitely gener-
atedΛ(G)/(f)[1/p]-modules is equivalent to the quotient category of finitely generatedΛ(G)/(f)-
modules by the Serre subcategory ofp-power torsion modules. SinceΛ(G)/(f) is finite overΛ(H),
this quotient category is equivalent to the full subcategory of MH(G)/M(G, p) consisting of those
objects that are annihilated byf . So we obtain that the image of[M ] under the natural homomorph-
ism K0(MH(G)) → K0(MH(G)/M(G, p)) is zero. By Quillen’s localization exact sequence in
K-theory (Thm. 5 in [20]) this shows that[M ] is in the image of the natural mapK0(M(G, p)) →
K0(MH(G)) therefore we deduce[M ] = 0 by Lemma 1.1 noting thatM lies inNH(G) as it has no
p-torsion.

Lemma 5.2. LetM be aΛ(Z)-torsion module in the categoryMH(G). ThenExt1Λ(G)(M
#,Λ(G))

is alsoΛ(Z)-torsion.

Proof. By the long exact sequence ofExt(·,Λ(G)) we may assume without loss of generality that
M is killed by a prime elementf in the commutative algebraZp[[T ]] ∼= Λ(Z), ie. f is either a
distinguished polynomial orf = p. SinceM# is then killed byf# and finitely generated overΛ(G),
it admits a surjectiveΛ(G)-homomorphism from a finite free module overΛ(G)/(f#). So again by
the long exact sequence ofExt(·,Λ(G)) it suffices to show the statement forM# = Λ(G)/(f#).
However, we haveExt1Λ(G)(Λ(G)/(f

#),Λ(G)) ∼= Λ(G)/(f#) therefore the statement.

Lemma 5.3. TakingH-coinvariants induces a homomorphism on theK0-groups

H∗(H, ·) : K0(MH(G)) → K0(Λ(Z)− tors)

M 7→

dimH+1
∑

i=0

(−1)i[Hi(H,M)]

whereΛ(Z)− tors denotes the category of finitely generated torsionΛ(Z)-modules.

Proof. First of all note that since we haveZ ∼= Zp, a finitely generatedΛ(Z)-moduleN belongs to
M1(Z) if and only if it has finiteZp-rank or, equivalently, ifN/N(p) is finitely generated overZp. On
the other hand, ifM lies inMH(G) thenHi(H,M(p)) is killed by a power ofp andHi(H,M/M(p))
is finitely generated overZp. In particular both areΛ(Z)-torsion. The statement follows from the long
exact sequence ofH-homology noting thatH hasp-cohomological dimensiondimH + 1.

6 Selmer groups that are not central torsion

In this section we are going to assume thatG = H × Z is a compact pro-p p-adic Lie-group
without elements of orderp such that the centreZ(G) is Z ∼= Zp and the Lie algebraLie(H) of
H is split semisimple overQp. For example any open subgroup ofGL2(Zp) contains a finite index
subgroupG with these properties.
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Proposition 6.1. Let E be an elliptic curve without complex multiplication havinggood ordinary
reduction at all the primes abovep ≥ 5. LetK be a number field andK∞ a strongly admissible
extension. Assume thatX(E/K∞) is Λ(G)-torsion and that the setP1 ∪ P2 is nonempty. Then
X(E/K∞) is not annihilated by any element ofΛ(Z).

Proof. We prove by contradiction and assume thatX(E/K∞) is Λ(Z)-torsion. We proceed in3
steps.

Step 1. By Lemma 5.2Ext1(X(E/K∞)#,Λ(G)) is alsoΛ(Z)-torsion. On the other hand,
Theorem 5.2 in [27] provides us withΛ(G)-homomorphism

ϕ : X(E/K∞)→ Ext1(X(E/K∞)#,Λ(G))

such thatKer(ϕ) is finitely generated overZp (so it represents the trivial element inMH(G)) and
Coker(ϕ) represents the same element inMH(G) as

(20)
⊕

v∈P1∪P2

Λ(G)⊗Λ(Gv∞ ) Tp(E)∗ =:
⊕

v∈P1∪P2

Mv .

Since the module in (20) has nop-torsion, we deduce thatCoker(ϕ)(p) has trivial class in
K0(MH(G)) by Lemma 1.1. We are going to show that (20) is on one handΛ(H)-torsion, on the
other hand, it does not have a trivial class inK0(MH(G)). This will contradict to Lemma 5.1.

Step 2. In order to show that the class of (20) is nonzero inK0(MH(G)), we apply the homo-
morphismH∗(H, ·) defined in Lemma 5.3 and show that its image

(21) [H∗(H,
⊕

v∈P1∪P2

Mv)] =
∑

v∈P1∪P2

dimH+1
∑

i=0

(−1)i[Hi(H,Mv)]

is nonzero, but has rank0 overZp. The latter implies that (20) isΛ(H)-torsion.
To compute theΛ(Z)-characteristic ideal of the right hand side of (21) we have the following

Lemma 6.2. For any finitely generatedΛ(Gv∞)-moduleN there is an isomorphism

Hi(H,Λ(G) ⊗Λ(Gv∞) N) ∼= Λ(G/H)⊗Λ(Gv∞/(H∩Gv∞ )) Hi(H ∩Gv∞ , N)(22)

ofΛ(G/H)-modules.

Proof. The commutative diagram

Gv∞ −−−−→ G




y





y

Gv∞/(H ∩Gv∞) −−−−→ G/H

induces two spectral sequences

E2
p,q(N) = TorΛ(G)

p (Λ(G/H),TorΛ(Gv∞ )
q (Λ(G), N))

E2
p,q(N) = TorΛ(Gv∞/(H∩Gv∞ ))

p (Λ(G/H),TorΛ(Gv∞ )
q (Λ(Gv∞/(H ∩Gv∞)), N))

both computingTorΛ(Gv∞ )
p+q (Λ(G/H), N). The result follows noting thatΛ(G) (respectivelyΛ(G/H))

is flat overΛ(Gv∞) (respectively overΛ(Gv∞/(H ∩Gv∞))).
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Step 3.By Lemma 6.2 we are reduced to computing the local homology groupsHi(H∩Gv∞ , Tp(E)∗).
As the pro-p extensionK∞/K ramifies infinitely at the primeq andK(µp∞) ⊆ K∞, the extension
K∞,v∞/Kv is the maximal pro-p extension ofKv. In particular, we haveGv∞ ,

∼= Hv∞ ⋊ Γvcyc with
Hv∞ = H ∩ Gv∞

∼= Γvcyc
∼= Zp such that the conjugation action ofΓvcyc onHv∞ is given by the

p-adic cyclotomic characterχv,cyc over the local fieldKv.
First we assume thatv ∈ P1. By the theory of the Tate curveE[p∞] is isomorphic to(µp∞ ×

tZ/p
∞

)/tZ as aGal(Kv/Kv)-module for some elementt ∈ K×
v with |t|v < 1. Hence we have there

exists aZp-basis ofTp(E) inducing an inclusionGv∞ ≤ GL2(Zp) such thatHv∞ ≤ Hv∞,1 :=
(

1 Zp

0 1

)

≤ GL2(Zp).

Therefore the localHv∞,1 ⋊ Γvcyc-moduleTp(E)∗ = HomZp(Tp(E),Zp) ∼= Tp(E)(−1) fits into
the exact sequence

0→ XZp[[X]]→ X−1Zp[[X]]→ Tp(E)∗ → 0

where we identifiedZp[[X]] with Λ(Hv∞,1). SinceHv∞ has finite index inHv∞,1 the above is a
projective resolution ofTp(E)∗ as aΛ(Hv∞)-module. Hence we may compute explicitely itsHv∞-
homology as aΓvcyc-module to obtain isomorphisms

H0(Hv∞ , Tp(E)∗)/H0(Hv∞ , Tp(E)∗)(p) ∼= Zp(−1) ;(23)

H1(Hv∞ , Tp(E)∗)/H1(Hv∞ , Tp(E)∗)(p) ∼= Zp(1) ;(24)

andHi(Hv∞ , Tp(E)∗) = 0 for i > 1. Moreover, the groupsHi(Hv∞ , Tp(E)∗)(p) (i = 0, 1) are finite
therefore represent the trivial element inK0(Λ(Γvcyc)− tors) by Lemma 2.3.

Now we turn to the case whenv ∈ P2. SinceE has good reduction atv, the moduleTp(E)∗ is
unramified atv, ie.Hv∞ acts trivially onTp(E)∗. Moreover, asΓvcyc acts via the cyclotomic character
onHv∞ we obtain that

(25) H0(Hv∞ , Tp(E)∗) ∼= Tp(E)∗ andH1(Hv∞ , Tp(E)∗) ∼= Tp(E)∗(1) ∼= Tp(E) .

By the local and global Weil pairings, the local, resp. global cyclotomic charactersχv,cyc andχcyc

both factor through the determinant map onGL2(Zp) and therefore are independent of the choice of
aZp-basis ofTp(E)∗. Therefore for any primev the composed mapΓvcyc →֒ G։ Z is injective and
fits into the commutative diagram

Γvcyc −−−−→ Z

χv,cyc





y





y

χcyc

Z×
p

=
−−−−→ Z×

p

.

HenceZ acts on the determinant

|P1(Kcyc)|+2|P2(Kcyc)|
∧





⊕

v∈P1

Λ(Z)⊗Λ(Γvcyc )
Zp(−1)⊕

⊕

v∈P2

Λ(Z)⊗Λ(Γvcyc )
Tp(E)∗





(overZp) via χ−|P1(Kcyc)|−2|P2(Kcyc)|
cyc . On the other hand,Z acts viaχ|P1(Kcyc)|+2|P2(Kcyc)|

cyc on

|P1(Kcyc)|+2|P2(Kcyc)|
∧





⊕

v∈P1

Λ(Z)⊗Λ(Γvcyc )
Zp(1) ⊕

⊕

v∈P2

Λ(Z)⊗Λ(Γvcyc )
Tp(E)



 .
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However,χcyc does not have finite order, in particular the charactersχ
−|P1(Kcyc)|−2|P2(Kcyc)|
cyc and

χ
|P1(Kcyc)|+2|P2(Kcyc)|
cyc are different. Hence the class of (20) is nontrivial inK0(MH(G)) as desired.

Corollary 6.3. LetE be an elliptic curve defined overK without complex multiplication and with
good ordinary reduction at the primep. Moreover, assume that|P1(K

cyc)| = 1, |P2(K
cyc)| = 0,

and that both theλ- andµ-invariants ofX(E/Kcyc) are 0. ThenX(E/K∞) has no nonzeroΛ(Z)-
torsion submodule. In particular, the imageq(X(E/K∞)) ofX(E/K∞) in the quotient category by
pseudo-null objects is completely faithful.

Proof. Note that theΛ(H)-rank ofX(E/K∞) is1 in this case. Assume that0 6=M ≤ X(E/K∞)/F
is theΛ(Z)-torsion part ofX(E/K∞). As X(E/K∞) has noΛ(H)-torsion,M has rank1 over
Λ(H). In particular,X(E/K∞)/M is Λ(H)-torsion. Choose an arbitrary elementx ∈ X(E/K∞).
The we have0 6= λ1 ∈ Λ(H) such thatλ1x ∈ M hence there is aλ2 ∈ Λ(Z) such thatλ2λ1x = 0.
Sinceλ2 lies in the centre, we conclude thatλ1(λ2x) = 0. SinceX(E/K∞) has noΛ(H)-torsion by
Corollary 2.8 and the remark thereafter, we haveλ2x = 0 andx ∈ M . By the main theorem in [2]
q(X(E/K∞)) is completely faithful.

7 An example of a completely faithful Selmer group

In this section we construct an extension with Galois group pn in GL2(Zp) where the above
arguments can prove complete faithfulness of the dual a Selmer group. Such results were only known
in the false Tate curvecase [14], in particular, no example was known for anyGL2-type extension.

Let p = 5. We obtain the Selmer group from the elliptic curve

E : y2 + xy = x3 + x

which is21a4 in Cremona’s tables [9]. We will obtain the extension from the elliptic curve

A : y2 + xy = x3 − 355303x − 89334583

which is1950y1 in Cremona’s tables [9].
Note that neitherE or A have complex multiplication, andE has good ordinary reduction at5.

LetK = Q(µ5) andK∞ = Q(A[5∞]). Then by the celebrated result in [22],G = Gal(K∞/K) is an
open subgroup ofGL2(Z5) and henceK∞/K satisfies all the criteria for being a strongly admissible
extension except possibly being pro-5. (We needp ≥ 5 to rule out the existence of an element of order
p in GL2(Zp)). However,K∞/K is pro-5 sinceA[5](K) ∼= Z/5Z, therefore[Q(A[5]) : K] = 5 and
K∞/Q(A[p]) is always pro-p.

It is computed in [11, Table 5-21A4] for this specificE andK that thep-adic Birch–Swinnerton-
Dyer conjecture implies thatSelp∞(E/K) is finite, hence thatλ(E/K) = 0 andµ(E/K) = 0. These
facts imply thatX(E/K∞) isΛ(G) torsion and finitely generated overΛ(H).

We need to determineP1 andP2. 1950 = 2 · 3 · 52 · 13 thereforeP0 = {2, 3, 13}. None of
these primes split inK/Q. Of these,E has split multiplicative reduction at3 and good reduction
at 2 and13, henceP1 = {3}. P2 is empty because the fifth division polynomial ofE splits into4
degree3 irreducible polynomials over bothF24 andF134 henceA[5](K2) = 0 andA[5](K13) = 0.
Therefore, ifX(E/K) is indeed finite as suggested by itsp-adicL-function,E andK∞/K satisfy
the assumptions of Corollary 6.3.
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