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Abstract

Several recent studies of complex networks have suggested algorithms for locating
network communities, also called modules or clusters, which are mostly defined as
groups of nodes with dense internal connections. Along with the rapid development
of these clustering techniques, the ability of revealing overlaps between communi-
ties has become very important as well. An efficient search technique for locating
overlapping modules is provided by the Clique Percolation Method (CPM) and its
extension to directed graphs, the CPMd algorithm. Here we investigate the central-
ity properties of directed module members in social networks obtained from e-mail
exchanges and from sociometric questionnaires. Our results indicate that nodes in
the overlaps between modules play a central role in the studied systems. Further-
more, the two different types of networks show interesting differences in the relation
between the centrality measures and the role of the nodes in the directed modules.
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1 Introduction

A widespread approach to the analysis of complex social and economic phe-
nomena is to assemble the participating individuals or objects and their inter-
actions into a network (nodes and links) and to infer functional characteristics
of the entire system from this static web of connections [12/3/45]. Over the
past few years, several broadly studied large-scale properties of real-world webs
have been uncovered, e.g.the broad (scale-free) distribution of node degree
[6], overrepresented small subgraphs [78] and various signatures of hierarchi-
cal/modular organisation [9]. Also, many useful measures have been defined
to quantify the importance of the individual nodes in the networks. If a vertex
lies on many shortest paths running between other vertices, it plays a central
role in information flows [10] and is responsible for the vulnerability of the
system [I1]. In a social network the actors capable of reaching the others with
the lowest number of steps (being the closest to others on average) have the
greatest influence [12[13].

In recent years there has been a quickly growing interest in the study of the
intermediate-scale network structures as well. These units, made up of ver-
tices more densely connected to each other than to the rest of the network,
are often referred to as communities, modules, clusters or cohesive groups
[TAT5[T6I7]. In the various types of networks’ these groups can represent,
communities of people [T4/18], functional units in molecular biology [19/20], a
set of tightly coupled stocks or industrial sectors in economy [21] etc. Search
techniques allowing overlaps between such modules are becoming very impor-
tant [2223[2425/26/2728/29)30]. Indeed, communities in real-world graphs are
often inherently overlapping: each person in a social web belongs usually to
several groups (family, colleagues, friends, etc.) and proteins in a protein inter-
action network may participate in multiple complexes. Modules, and also some
small subgraphs, are appropriate for “coarse-graining” complex networks: each
module/subgraph can be represented as a node and two such nodes can be
linked, if the corresponding modules/subgraphs are connected (or overlap)
731132

In this paper we study the centrality properties of module members (nodes)
in four social networks representing either e-mail connections between people
or social links obtained from questionnaires. Both types of data sets can be
represented by directed networks, therefore, the modules are located using a
directed community finding method, the Directed Clique Percolation Method
(CPMd) [33]. Our focus is on the correlations between general single-node
properties (e.g.the closeness) and the role/importance of the members in the
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Fig. 1. Visualisation of the CPM method. A community is explored by walking
over neighbouring building blocks. The blocks are triangles in this example, that
are k-cliques with size k = 3. At figure a) the graph is depicted without marking of
blocks. At figure b) the same graph is plotted with marking the nodes with different
symbols for each different block. This graph contains three blocks, and one node,
which is not a member of any blocks. The nodes of each blocks are marked by circles,
rectangles and pentagons respectively. The unclassifiable node is marked by a filled
ellipse. The block built from rectangles and the block of circles are neighbours since
they differ only in one node. The block of pentagons and circles are neighbours as
well. This graph contains only one community, since all blocks are reachable from
each other by walking over neighbours. In this case the walks take at most two steps
e.g. from block of rectangles to block of circles and than to block of pentagons.

communities, (e.g.the number of communities they participate in).

2 Directed network modules

2.1 Directed clique percolation method (CPMd)

The CPMd is a natural extension of the Clique Percolation Method (CPM)
[17J34]. In the CPM a community is built up from adjacent blocks of the same
size k. These blocks correspond to k-cliques, that are subgraphs with the
highest possible density: each pair selected from the k£ nodes of the subgraph
is connected. Two blocks are considered adjacent if they overlap with each
other as strongly as possible, i.e., they share kK — 1 nodes. A community is a
set of blocks that can be reached from one to the other through a sequence
of adjacent blocks[34]. Note, that any block belongs always to exactly one
community, however, there can be nodes belonging to several communities.
(E.g. if blocks overlap only in a single node.) The CPM community searching
method is visualised in Fig[l} the communities found by CPM contain only
nodes that are densely connected. Nodes with only a few connections or nodes
that do not participate in a densely connected subgraph are not classified into
any community.

The CPM method is robust against of removal or insertion of a single link.
Due to the local nature of this approach, such perturbations can alter only the
communities containing at least one of the end points of the link. (In contrast,
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Fig. 2. Two example for directed graphs, that are k-cliques of size k = 4 if neglecting
the directionality of the links. However, the graph a) forms a directed k-clique, but
the graph b) does not. The numbers near the nodes of graph a) show the ordering
among the nodes for defining the overall directionality of the clique. The graph b)
cannot be ordered due to the loop formed by the links among nodes B, C' and D.

for global methods like modularity optimisation the removal or insertion of a
single link can result in the change of the overall community structure.)

Finally, we note that the CPM will find the same communities in a given
subgraph irrespective to the fact whether the subgraph is linked to a larger
network or not. Therefore, a heterogeneous network can be analysed by first
dividing it into homogeneous parts, and applying the method to these sub-
networks separately. Homogeneous parts of a network can be determined e.g.
from external informations like geographical locations of the nodes etc.

The undirected approach detailed above can be made inherently directed by re-
placing the (undirected) building blocks with directed k-cliques. In this Clique
Percolation Method with directed cliques (CPMd) the building blocks of a
community are defined as complete subgraphs of size k in which an ordering
can be made such that between any pair of nodes there is a directed link
pointing from the node with the higher order towards the lower one [33]. See
FigPl In the absence of bidirectional links (also called double links) the above
condition is equivalent to

e the absence of directed loops (closed directed paths) in the directed k-
cliques.

e the directionality of all links within the k-clique, where any directed link
points from a node with a higher order to a lower one.

e the topology, where the number of the nearest out-neighbours (neighbours
reached along an out-link) is different for each node in the k-clique.

In the presence of bidirectional links a complete subgraph of size k is qualified
as a directed k-clique if it is possible to rectify the bidirectional links in such
a way that the remaining unidirectional links fulfil the above criterion. Note,
that without rectification a k-clique with a double link cannot satisfy the
definition of the directed k-clique. One can easily see on Figldl that above
conditions cannot fulfilled e.g. there is a loop among the nodes.
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Fig. 3. Two example for directed graphs, that are k-cliques of size k = 4 if neglecting
the directionality of the links. The graph a) qualifies as a directed k-clique, but the
graph b) without rectification does not. The double link between the nodes B and
C forms a loop.

The overall directionality of such an object naturally follows the ordering
of the nodes: the node with highest order is the one which has only out-
neighbours, and can be viewed as the “source” or “top”’-node of the k-clique,
whereas the node with lowest order has only incoming links from the others,
and corresponds to a “drain” or “bottom” node.

The communities are built up similarly to the undirected case: two directed
building blocks (k-cliques) are considered to be neighbours if they share k — 1
nodes. A directed k-clique module (the CPMd modules) arises as the union
of directed k-cliques that can be reached from each other through a series of
neighbouring k-cliques.

There are many other possibilities to define a directed k-clique. We have used
one particular choice[33], which is more restrictive as other natural possibili-
ties, and which is suitable for any k-clique without need of further consider-
ations. Previous results showed that even this restrictive definition can result
in similar community structures as the undirected method[33].

2.2 Quantifying the ranking of directed module members

A natural and simple approach to rank nodes in a module is to compare the
number of their incoming and outgoing links. For example, a node having
only out-neighbours can be viewed as a “source”, whereas a node with only
incoming links as a “drain”. Most nodes, however, fall between these two
extremes. To quantify this property, we use the relative out-degree of node 7
in module « as
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where d¢, and df,; denote the numbers of in-neighbours and out-neighbours

amongst the other nodes in the module, respectively [33].

Obviously, the values of Dy, fall into the range between 0 (for drain nodes)
and 1 (for source nodes). The analogous quantity for in-degrees is obtained
as 1 — Dg,- Since modules may overlap, nodes may have as many relative

out(in)-degree as many modules they participate in.

3 Centrality measures of individual nodes

In the following we shall use the betweenness centrality [35] and the closeness
centrality [13] to characterise the role and position of the nodes in the studied
networks. We apply these measures to directed networks, where moving along
an edge is allowed only into the direction of the edge. This restriction effects
the possible shortest paths and the distance of nodes as well.

The betweenness centrality, b;, of node ¢ measures the importance of ¢ in
the communication between any node pair in the network [12]. We use the
definition

bi= > o1(), (2)
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where 0y;() is the portion of number of all shortest paths between node [ and
node j that go through 7. The closeness centrality, ¢;, of node i is defined as
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where d(i, j) is the distance between i and j. The closeness centrality of a node
is large if it can be reached within a small number of steps on average. Note
that in directed networks the distance (the number of steps along a shortest
path) may depend on the direction of the path. Therefore, we shall differentiate
between in- and out-closeness (¢; i, and ¢; o) depending on whether ¢ is the
end point or the starting point of the path connecting ¢ and j.

4 Results in social networks

In this section we examine the centrality properties of nodes in directed social
networks with respect to their membership number m (the number of mod-
ules they participate in) and with respect to their relative out-degrees. The



networks under study represent the directed e-mail connections between the
students at the University of Kiel [36], (containing 57, 158 nodes and 103, 701
links), the e-mails between the employees of the Enron concern [37], (consist-
ing of 151 nodes and 1364 links), and two networks obtained from sociometric
questionnaires in a smaller and a medium-sized company. In the latter cases
a directed link was set between two employees if one has named the other in
any questio, resulting in 1166 links between 115 employees for the small
company and 4349 links between 597 nodes for the other company.

When extracting the directed modules using the CPMd, we adjusted the pa-
rameter k (k-clique size) using a criterion to find a modular structure as highly
structured as possible. This criterion is based on the observation, that for many
real networks there is a well defined parameter range, where no giant commu-
nity (having size in order of magnitude as the size of the whole network) can
be found, instead many smaller communities occur. However, if the parame-
ters are changed (in our case the value of k is decreased), the rich community
structure disappears and one giant community dominates the network. In the
optimal setting the parameters are adjusted just below the critical point of
this percolation transition (for details see [17]).

For data sets studied in this paper the percolation threshold can be determined
by observing the change in the size, s, of the largest community as the control
parameter (the clique size, k) increases. Since there is no weight defined on
the links in our networks, we have only one control parameter. Below the
percolation threshold (at small k values) a giant community exists in the
network. If k increases, near the critical point the size of the largest community
drops quickly. At large k values the size of the largest community decreases
at a moderate rate.

In Figll we show the behaviour of the size of the largest community. Since the
size of the largest community, s, is different for each network, we have plotted
a rescaled community size, s*, equal to s divided by the size of the largest
community at k& = 3. (This way, each curve starts with s* = 1 at the smallest
possible k, which is k = 3.) We found, that the optimal k value for the Enron
data set and for the questionnaire data set of the smaller company is k = 6.
For the larger company we found the optimal value k = 5, whereas for the
email data set of the University of Kiel it turned out to be k = 4.

I Tn a questionnaire there are several questions concerning different type of social
relations, and answers are typically names of colleagues who are thought to satisfy
the posed situation.
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Fig. 4. The rescaled size, s*, of the largest community decreases with increasing
k. Near the percolation threshold s* decreases rapidly, and the optimal k value
(marked by a small arrow) is chosen to be the smallest k where no giant community
can be found in the network.

4.1  Extracting networks from email and questionnaire data

There is a growing interest of measuring and analysing social relation data
within organisations. Relations between people can be of various types: they
can exchange informations, meet each other by lunch, etc.

Nowadays information is mainly exchanged by using some electronic form:
either by phone calls[I8] or by emails. Email is the electronic form of letters:
there is always a sender, whom the email is sent from, and there is a receiver,
whom the email is sent to. If one person writes an email to another one, a
social relation emerges between two actors. These contacts can be represented
by a network in which the nodes correspond to the users and the links to the
emails. These connections are directed, and the natural choice for the direction
is to follow the path of the email, pointing from the sender to the receiver.

The same message content can be spread among several recipients by listing
more than one recipient in the header. We consider this type of contacts as
several individual relations originating from the sender to each of the receivers.
Here we do not analyse the correlations emerging from emails with multiple
recipients.

Other, less formal relations (e.g.someone can trust in the opinion of others)
are hard to measure directly and are practically impossible to extract from
automatically recorded resources. Thus, one has to apply indirect measuring
methods. The most often used solution is provided by questionnaires. In ques-
tionnaires the investigated set of people (e.g.employees of a company) are
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Fig. 5. Left: betweenness as a function of the membership number. Due to the loga-
rithmic scale nodes with zero betweenness are dropped. The smooth lines show the
tendency of the data. Right: smoothed average in-closeness against the membership
number. (For clarity the lines are scaled to start at 1). Both centrality measures
show increasing tendency in function of m.

asked the same questions relating to their social contacts. These questions are
formulated along the rules of standard sociometry: they must take into ac-
count, that the answerers are human beings with restricted time and memory
capacity as compared to computers. Humans can have different interests and
can cheat in their answers. Well organised questionnaires can help to minimise
false results due to such effects.

We used results of two surveys, where the employees received a set of questions
concerning their social contacts. The answers to the questions contained a list
of names, where the names had to be picked out from a prepared list of
colleagues. The network representation was built up from the questionnaire
results by representing the employees as nodes. Two nodes are connected, if
there exists an answer in any of the questionnaires, that justifies the existence
of a social relation between the corresponding two employees. If an employee
marked another employee in any of the answers then a directed link points
from the answerer to the colleague named in the answer.

4.2 Nodes in community overlaps are central

After extracting the directed modules using the CPMd, we first examined the
centrality properties of the nodes in the overlaps between the modules (the
nodes having a membership larger than one).

In Fig. [l we show (b;) and (c;in) as a function of the membership number m.
We can observe a clear tendency: nodes participating in more communities are
more central. They can control more effectively the flow of information, since
they lie typically on more shortest paths. Also, they can reach other nodes
faster, since they need less steps on average to others.
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Fig. 6. Counter-example for the correlation between the membership and centrality
measures. The node marked by a surrounding circle has a large membership number:
at k = 3 its membership number is m = 5 and the betweenness and closeness value
of this node is small, since this node is at the periphery of the network. However,
the node marked by a frame has a membership number m = 1 and its betweenness
is large, since it acts as a bridge.

Note, that the observed positive correlation between the centrality measures
and the membership number is not trivial. It is easy to construct counter-
examples, where nodes with high membership number are at the periphery of
the network. We show a sketch of such a network in Fig. [6l Similar counter-
examples can be generated for any k.

4.8 Centrality as a function of the relative out-degree

Next we analysed the dependence of the two chosen centrality measures on
the relative out-degree of the module members. According to Fig. [{l both
the betweenness centrality and the in-closeness show a decreasing tendency
with increasing Dy, in the networks obtained from questionnaires (black
symbols). In other words: people named by fewer colleagues than vice versa
are less central in the network. These people can be reached by others in
more steps on average (they have smaller in-closeness values), and they have
less control on the information flow (their betweenness centrality is lower).
Interestingly this tendency cannot be observed in case of the e-mail networks
(white symbols in Fig. [7]), where the centrality measures are more or less
independent of the relative out-degree (or show a slight increasing tendency).
For all four networks (c;i,) suddenly drops to zero at Df . = 1. This is due
to the fact that nodes having only out-neighbours have a zero in-closeness by
definition.
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Fig. 7. Left: relative out-degree and betweenness. The smoothed curves are shifted
to 0 at the maximal values. Again, e-mail networks do not show decreasing tendency
as questionnaire networks do. Right: relative out-degree and averaged in-closeness.
The (c;in) is decreasing with Dot for the questionnaire networks, whereas it is
more or less constant for the e-mail networks. For better visibility the smoothed

in-closeness values are scaled to take similar values before the cutoff.

This difference between the two types of networks is likely to originate in the
different methods used to collect the data. E-mail networks are generated au-
tomatically, no interaction with the observed persons is necessary. In contrast,
a questionnaire can not be filled without some interaction. Interaction needs
time from the respondent and from the interviewer as well. This sets some
restrictions to the number of emerging links: the number of questions and
the number of possible answers can not be as large as the number of e-mails
between actors that can be exchanged during several months. Furthermore, e-
mails are collected in a wide time span (during which fluctuations are averaged
out), whereas a questionnaire captures an instantaneous state.

4.4 Average membership as a function of the relative out-degree

Another interesting difference between the studied email and questionnaire
networks can be observed in the relation between the average membership
of a node (the average number of communities the node participates in) and
the relative out-degree ([IJ). In questionnaire networks the average membership
takes larger values at nodes whose relative out-degree is small. In contrast, we
find the membership maximum at large relative out-degrees for nodes in email
networks. The corresponding curves are shown in Fig[8l

A plausible explanation of this observation can be that in email networks
the directionality of the links follows the direction of the information flow:
there is always some content in the text body of the email. Those persons,
that participate in several groups (communities) will probably more often
forward information between communities: if some knowledge is available only
in one community, than the actors in the community overlaps will provide this

11
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Fig. 8. Relative out-degree and membership: the averaged membership takes its
maximum at lower relative out-degree in questionnaire networks and it is maximal
at high relative out-degree for email networks.

information for the other communities they participate in.

In questionnaire networks the direction is opposite: if one has named somebody
he will probably ask him to receive some information. Hence the direction of
the links are the opposite as of the information flow: the most often named
persons are most trusted for helping or providing helpful information. If a
person is named by many others, than its node will have large relative in-
degree (small relative out-degree). Probably those persons can help others who
can easily build new social contacts, and therefore they probably participate
in several different communities.

5 Summary

We have examined four directed social networks constructed from e-mail ex-
changes and from questionnaire data. We have extracted the overlapping di-
rected module structure of these nets using the CPMd algorithm, and studied
the behaviour of the betweenness centrality and closeness for module mem-
bers. Our results indicate that nodes with high memberships (participating
in numerous modules in parallel) play a central role in these networks. Fur-
thermore, our investigations revealed interesting differences between the two
types of networks concerning the dependence of the centrality measures on the
relative out-degree of module members (the ratio of out-degree versus number
of all nearest neighbours within the modules) .
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