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Gribov’s theory of light quark confinement implies the existence of two kinds of
scalar bound states. The phase diagram of the three-flavor QCD is mapped out
in the (mπ − mK)–plane with help of the SUL(3) × SUR(3) linear sigma model
supplemented with the assumption that the masses of the so-called superbound
scalars do not change under the variation of the pion and kaon mass. The phase
boundary along the mπ = mK line is found in the interval 15 MeV < mcrit <

25 MeV, irrespective which f0 − σ linear combination is identified with the pure
superbound state.

1. Introduction

Volodia Gribov repeatedly has expressed in the early nineteen-eighties his

view that deconfinement in QCD is going to turn out to be a complete

analogue of atomic ionisation, which one would not call a phase transition.

There is increasing evidence that the temperature driven transition from

the hadronic phase to quark-gluon plasma is a smooth crossover indeed 1.
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He based his confinement theory also on an analogy with a phenomenon

of atomic physics, e.g. supercritical binding. This would occur for light

quarks irrespective to the accurate value of their mass 2. The role of chiral

symmetry is not evidently important in this theory, and the consequences

on its spontaneous breakdown were not yet fully clarified 3.

In this contribution to the commemoration of the 75th anniversary of

V.N. Gribov, we exploit semi-quantitatively his ideas on the nature of the

scalar meson sector when discussing the chiral symmetry restoring quark-

hadron transition in different points of the mπ − mK-plane with help of

a variant of the linear sigma model (LσM). In a recent publication 4 we

constructed a continuation of the parameters of this model from the physical

point to an arbitrary mass-point mπ,mK requiring agreement with results

of Chiral Perturbation Theory (ChPT) for the decay constants fπ, fK and

the trace of the squared mass matrix in the η − η′ sector, M2
η , at the

tree level. In the η − η′ sector the predictions of the two models for the

separate mass eigenvalues nicely coincide. It was emphasised that for a

complete specification of the parameters of the model one needs a single

extra information on the dependence of scalar spectra on the masses of the

pseudoscalar nonet. This information is beyond ChPT, therefore in general

only ad hoc assumptions can be made and tested through the consequences.

According to Gribov’s confinement theory in addition to normal q̄q

states also superbound states do exist, which contain quarks with negative

kinetic energy. Some repulsive interaction between such quarks increases

their energy above zero and makes these associations physically observ-

able 5. These states are of smaller size and higher energy than the normal

scalar meson states, therefore it was suggested to associate them with f0 in

the isoscalar and with a0 in the isovector channel. In the SU(2)× SU(2)

model they form another O(4) quartet in addition to σ, π. It is rather nat-

ural to assume that the masses of the superbound states are not sensitive

to the variation of mπ.

In the three flavor case a similar “doubling” of the multiplet structure

can be assumed, if the strange quark is light enough. In this paper we shall

explore the boundary of the first order transition region around the chiral

point in the three-flavor QCD 6 taking into account the extra requirement

to have scalars in the spectra whose mass does not vary with mπ,mK .

The consequences of identifying the physically observable scalars with some

mixture of the pure normal and pure superbound states will be investigated.

Numerical investigations of the chiral symmetry restoration were done in

the framework of lattice QCD and systematically improved for the 3-flavor
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degenerate case mu = md = ms 6= 0. The initial estimate for the critical

pseudoscalar meson mass, mcrit(diag) ≈ 290 MeV 7 was seen to be reduced

to 60− 70 MeV 8 or may be to even further down 9 when finer lattices and

improved lattice actions are used. Very recently de Forcrand and Philipsen

reported an estimate mcrit ≈ (0.1−0.2)Tc, which very conservatively means

mcrit ≈ 15 − 30MeV 10. One should be conscious of the fact, that it is

extremely difficult to reach continuum results in this mass regime.

Effective models (linear or non-linear sigma models, Nambu–Jona-

Lasinio model) represent another, in a sense complementary, approach to

the study of the phase structure, which one expects to work the better

the lighter quark masses are used 11,12,13. It is surprising that only mod-

erate effort was invested to date to improve the pioneering studies of the

SU(3) × SU(3) linear sigma model by Meyer-Ortmanns and Schaefer 11

which used a saddle point approximation valid in the limit of infinite num-

ber of flavors, and derivedmcrit(diag) . 51 MeV. An extension of their work

to unequal pion and kaon masses was achieved by C. Schmidt 14. He found

mcrit(diag) = 47 MeV and a phase boundary approaching the mK-axis

rather sharply. The phase boundary was calculated also by Lenaghan 15

using the Hartree-approximation to the effective potential derived in CJT-

formalism. For the complete determination of the couplings of the three-

flavor chiral meson model he fixed the T = 0 mass of the σ particle in

addition to the experimental mass spectra of the pseudoscalar sector. The

emerging phase boundary is rather sensitive to this mass. The estimate for

mcrit(diag) which one can extract from Fig. 3 of 15 for mσ = 900 MeV is

compatible with 11,14.

Our method of parametrisation and solution of LσM was described in

detail in 4. Therefore here we shall only review the set of the equations to

be solved for the determination of the transition point. The changes arising

from the implementation of the insensitivity of Gribov’s superbound scalars

to the variation of the fundamental masses will be emphasised. We conclude

by giving the most characteristic features of the phase boundary.

2. LσM parametrisation consistent with ChPT

We outline first, how one obtains with ChPT the mπ,mK-dependence of

the masses and decay constants in the pseudoscalar sector. The dependence

of the pion and kaon masses as well as of their decay constants on the quark

masses were determined in 16 for the SU(3)×SU(3) nonlinear sigma model:
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m2
π = 2A

[

1 +
1

f2

(

µπ − 1

3
µη + 16A(2L8 − L5)+

+16A(2 + q)(2L6 − L4)

)]

, (1)

m2
K = A(1 + q)

[

1 +
1

f2

(

2

3
µη + 8A(1 + q)(2L8 − L5)

+16A(2 + q)(2L6 − L4)

)]

, (2)

fπ = f

[

1 +
1

f2
(−2µπ − µK + 8AL5 + 8A(2 + q)L4)

]

, (3)

fK = f

[

1− 1

f2

(3

4
(µπ + µη + 2µK)− 4A(1 + q)L5 − 8A(2 + q)L4

)

]

.(4)

Here A, q are related to the quark masses, f is the coupling of the non-

linear sigma model. µPS defines the so-called chiral logarithm for each

pseudoscalar meson (PS) proportional to ln(mPS/M0) with M0 = 4πf .

The determination of the low energy chiral constants Li is discussed in

depth in 4.

One inverts the first two equations with O(f−2) accuracy and finds the

following mπ,mK-dependence for the decay constants:

fπ = f

[

1− 1

f2
(2µπ + µK − 4m2

π(L4 + L5)− 8m2
KL4)

]

, (5)

fK = f

[

1− 1

f2

(

3

4
(µπ + µη + 2µK)− 4m2

πL4 − 4m2
K(L5 + 2L4)

)]

.

The extension to the U(3) × U(3) ChPT is somewhat more compli-

cated. It was worked out in 17,18,19,20 and allows the determination of

mη(mπ ,mK),mη′(mπ ,mK). For the parametrisation of LσM one more in-

dependent relation can be obtained from the mixing η−η′ sector, for which

in 4 we have chosen the trace of the 2× 2 squared mass matrix, denoted by

M2
η ≡ m2

η +m2
η′ :

M2
η = 2m2

K − 3v
(2)
0 + 2(2m2

K +m2
π)(3v

(2)
2 − v

(1)
3 ) (6)

+
1

f2

[

8v
(2)
0 (2m2

K +m2
π)(L5 + 3L4) +m2

π(µη − 3µπ)− 4m2
Kµη

+
16

3
(6L8 − 3L5 + 8L7)(m

2
π −m2

K)2

+
32

3
L6(m

4
π − 2m4

K +m2
Km2

π) +
16

3
L7(m

2
π + 2m2

K)2
]

.
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Also the constants v
(j)
i were determined in 4 from the T = 0 properties of

the Goldstone particles.

Next, we turn to the problem of parameterising LσM to provide spectra

the closest possible to ChPT. The Lagrangian of the SUL(3) × SUR(3)

symmetric linear sigma model with explicit symmetry breaking terms is

given 21 by

L(M) =
1

2
tr(∂µM

†∂µM + µ2
0M

†M)− f1
(

tr(M †M)
)2

(7)

− f2tr(M
†M)2 − g

(

det(M) + det(M †)
)

+ ǫ0σ0 + ǫ8σ8,

where M is a complex 3×3 matrix, defined by the σi scalar and πi pseu-

doscalar fieldsM :=
1√
2

8
∑

i=0

(σi+iπi)λi, with λi : i = 1 . . . 8 the Gell-Mann

matrices and λ0 :=
√

2
31. The last two terms of (8) break the symmetry

explicitly, the possible isospin breaking term ǫ3σ3 is not considered.

A detailed analysis of the symmetry breaking patterns which might

occur in the system described by this Lagrangian can be found in 12. The

field expectation values 〈σ0〉, 〈σ8〉 both contain strange (≡ y) and non-

strange (≡ x) components:

x = (
√
2〈σ0〉+ 〈σ8〉)/

√
3, y = (〈σ0〉 −

√
2〈σ8〉)/

√
3. (8)

With help of the PCAC relations and the tree level mass formulae (see

Table 1, where the x − y basis is used instead of 0 − 8) the following ex-

pressions can be derived for the couplings of LσM :

x = fπ, y = (2fK − fπ) /
√
2 , (9)

f2 =
(6fK − 3fπ)m

2
K − (2fK + fπ)m

2
π − 2(fK − fπ)M

2
η

4(fK − fπ)(8f2
K − 8fKfπ + 3f2

π)
,

g =
2fKm2

K + 2(fK − fπ)m
2
π − (2fK − fπ)M

2
η√

2(8f2
K − 8fKfπ + 3f2

π)
,

M2 ≡ −µ2
0 + 4f1(x

2 + y2)

=
1

2
M2

η +
g√
2
(2fK − fπ)− 2f2[(fπ − fK)2 + f2

K ].

The sources ǫx = (
√
2ǫ0 + ǫ8)/

√
3, ǫy = (ǫ0 −

√
2ǫ8)/

√
3, which explicitly

break chiral symmetry are determined with help of the Gell-Mann–Oakes–

Renner relations:

ǫx = m2
πx, ǫy =

√
2

2
(m2

K −m2
π)x+m2

Ky. (10)
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Table 1. Squared masses of the pseudoscalar boson nonet and
their parity partners

m2
π = −µ2

0
+ 2(2f1 + f2)x2 + 4f1y2 + 2gy

m2
a0

= −µ2

0
+ 2(2f1 + 3f2)x2 + 4f1y2 − 2gy

m2

K
= −µ2

0
+ 2(2f1 + f2)(x2 + y2) + 2f2y2 −

√
2x(2f2y − g)

m2
κ = −µ2

0
+ 2(2f1 + f2)(x2 + y2) + 2f2y2 +

√
2x(2f2y − g)

m2
ηxx

= −µ2

0
+ 2(2f1 + f2)x2 + 4f1y2 − 2gy

m2
ηyy

= −µ2

0
+ 4f1x2 + 4(f1 + f2)y2

m2
ηxy

= −2gx

m2
σxx

= −µ2

0
+ 6(2f1 + f2)x2 + 4f1y2 + 2gy

m2
σyy

= −µ2

0
+ 4f1x2 + 12(f1 + f2)y2

m2
σxy

= 8f1xy + 2gx

Note: The expressions of the squared masses of parity partners
having the same isospin and hypercharge appear in one block.
Different isomultiplets are separated by double lines. In the lowest
big block the matrix elements of the mixing in the η−η′ and σ−f0
sectors are given in the x− y base.

The requirement of the agreement of LσM with ChPT is fulfilled when

the (mπ,mK)-dependence of the couplings x, y, f2, g,M
2 is determined with

help of Eqs.(5,6). Before the procedure just described was first proposed in

Ref.4 mπ−mK mass tuning was taken into account only in (10). The quality

of this not fully complete parametrisation (e.g. only the combination M2

of f1 and µ2
0 is determined at this stage) can be assessed by comparing the

separate the mπ − mK mass dependence of mη and mη′ obtained in the

present parametrisation of LσM with the predictions of ChPT. In Fig. 1

the comparison is done for mπ = 0 and the agreement is fairly good up to

mK ≈ 800MeV.

The combination M2 of f1 and µ2
0 can be split up only by making use

of the expression of the admixed scalars, therefore the use of one charac-

teristics of the mixed scalar spectra is unavoidable 22.

For the separate determination of µ2
0 and f1 we have fixed first the mass

of the f0 meson. This meson mass is identified with the heavier eigenvalue

calculated in the mixing scalar subspace. Since there is the possibility of

mixing between the normal and the superbound multiplets we have chosen

as a second possibility also fixing the trace m2
σ +m2

f0
= m2

σxx
+m2

σyy
(see

Table 1) in the squared mass subspace of admixed scalars. In order to

test the sensitivity of the results to the scalar masses (which are not very

accurately known) we have performed the calculations for both alternatives

with several numerical values.



December 8, 2013 5:56 Proceedings Trim Size: 9in x 6in wsgrib75

7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  100  200  300  400  500  600  700  800  900

M
eV

mK [MeV]

mη (LσM)  
mη’(LσM)  
mη (ChPT)
mη’(ChPT)

Figure 1. The tree–level kaon mass dependence of mη and m
η
′ for mπ = 0. The

labels refer to the results of ChPT and the predictions of linear sigma model (LσM),
respectively.

3. Quasiparticle thermodynamics and phase diagram

The renormalised set of the equations of state and of the selfconsistent pion

propagator determine the temperature dependence of the vacuum expecta-

tion values x and y. The scheme of the perturbation theory applied here

agrees with the Optimal Perturbation Theory of Chiku and Hatsuda 23,

which was renormalised using the approach of 24.

The tree level mass of π involves now the thermal mass parameter:

m2
π = M2(T ) + 2(2f1 + f2)x

2 + 4f1y
2 + 2gy, (11)

and all other meson masses to be used in the tadpole integrals below agree

with the formulas appearing in Table 1 with the replacement −µ2
0 →

M2(T ). If all quantum corrections are condensed into M2(T ), then the

tree–level masses of other mesons are expressible through the mass of the

pion. One might expect that the pion has the lowest mass and therefore

for M2(T ) > 0 these squared masses are all positive, which is not the case

when −µ2
0 < 0 is used in the propagators. We define a physical region of

x and y where all tree-level mass squares are positive, and thus the one-

loop contribution of the meson fluctuations to EoS is real. This region is

most severely restricted by the mass of σ, which strongly decreases near

the phase transition. We will restrict our attention to the solution of the

EoS’s in the physical region.
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For the determination of the thermal mass we use the Schwinger–Dyson

equation for the inverse pion propagator at zero external momentum. At

one-loop it receives the contribution Π(M(T ), p = 0), which is the self-

energy function of the pion at zero external momentum, plus the coun-

terterm contribution −µ2
0 − M2(T ). We apply the principle of minimal

sensitivity (PMS) 23, that is we require that the pion mass be given by its

tree-level expression:

Π(M(T ), p = 0)− µ2
0 −M2(T ) = 0. (12)

Π(M(T ), p) itself is a linear combination of the tadpole and bubble dia-

grams (the latter not included in the treatment of 12), with coefficients

derived with help of the 4-point and 3-point couplings among mass eigen-

value fields.

The self-energy can be represented as a linear combination of tadpole

integrals, which gives when substituted into Eq. (12):

0 = −M2(T )− µ2
0 +

α=σ, π
∑

i=π,K, η,η
′

cπαi
I(mαi

(T ), T ) . (13)

Here cπαi
are the weights of the renormalised tadpole contributions evaluated

with different mass eigenstate mesons αi = σi, πi. The integrals over the

corresponding propagators are evaluated with effective tree-level masses

where M2(T ) replaces −µ2
0. In this way (13) is actually a gap equation

which determines the thermal mass parameter, M2(T ). With help of Eq.

(11) this equation can be also understood as a gap equation for the pion

mass (the pion mass is present also in the expressions of I(mαi
, T ) through

mαi
!):

m2
π = −µ2

0+2(2f1+f2)x
2+4f1y

2+2gy+

α=σ, π
∑

i=π,K, η,η
′

cπαi
I(mαi

(T ), T ) . (14)

For the determination of the order parameters x, y we solved the two

renormalised equations of state using the solution of the gap equation in

the propagator masses:

−ǫx − µ2
0x+ 2gxy + 4f1xy

2 + 2(2f1 + f2)x
3 (15)

+
∑α=σ,π

i=π,K, η,η
′ Jit

x
αi
I(mαi

(T ), T ) = 0 ,

−ǫy − µ2
0y + gx2 + 4f1x

2y + 4(f1 + f2)y
3 (16)

+
∑α=σ,π

i=π,K, η,η
′ Jit

y
αi
I(mαi

(T ), T ) = 0 ,
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The quantities txαi
and tyαi

give the corresponding weights. Ji is the isospin

multiplicity factor: Jπ = 3, JK = 4, and Jη,η′ = 1. The coefficients c and

t were listed in 4. One finds cπαi
= Jit

x
αi
/x, which ensures that the solution

for the mass of the pion obeys Goldstone’s theorem.

The solution of Eqs. (14), (15), (16) for givenmπ,mK allows to establish

the nature of the temperature driven transitions. First order transitions

are signalled by multivaluedness in the temperature evolution of both the

non-strange and strange condensates. For large values of the kaon mass, we

claim that the phase transition is driven by the variation of the non-strange

condensate, since each of the multiple solutions of the strange condensate

are very close to each other, and all stay at high values. Subsequent decrease

of the strange condensate at higher temperature displays only a crossover.
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Figure 2. The temperature dependence in the physical point of: (a) the non-strange
(x) and strange (y) condensates; (b) the pseudoscalar (θη) and scalar (θσ) mixing angles
(in the (0-8) basis); (c) the mass of the chiral partners (π, σ) and (a0, η); (d) the mass
of f0, κ, η′, K mesons.

In the physical point the system exhibits clear crossover as can be seen

in Fig.2. Let us discuss next what happens near the mπ = mK diago-

nal. In Fig.3 the gradual deformation of the boundary line is shown when

four different (mπ,mK)-independent conditions (listed on the figure) are

imposed on the spectra of the admixed scalars. The boundary reaches the

diagonal in the range mcrit ≈ 20 MeV independently of the condition im-

posed. When moving away from the diagonal for mK > mπ the larger is

the scalar mass scale the farther the boundary goes away from the mπ = 0
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Figure 3. Variation of the boundary of first order transitions near and above the mπ =
mK diagonal (note the rather different units on the two axes!)

axis. Therefore with this method one cannot make any definite statement

on the location of the tricritical point on the mK-axis defined as the point

where the transition changes from a discontinuous nature into a continuous

one.

In conclusion of this study we find that the assumption of the mπ−mK

independence of the mass of the heavier isoscalar-scalar member of the

nonet, suggested by Gribov’s confinement picture leads to a rather unique

conclusion, that the mπ = mK diagonal crosses the critical curve of the

chiral phase transitions of the 3-flavor QCD at a rather low value: 15 MeV ≤
mcrit ≤ 25 MeV.
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