
A multi-terabyte relational database for
geo-tagged social network data

László Dobos, János Szüle, Tamás Bodnár, Tamás Hanyecz,
Tamás Sebők, Dániel Kondor, Zsófia Kallus, József Stéger,

István Csabai and Gábor Vattay
Department of Physics of Complex Systems,

Eötvös Loránd University
Pf. 32, H-1518 Budapest, Hungary,

e-mail: dobos@complex.elte.hu

November 6, 2013

Abstract

Despite their relatively low sampling factor, the freely available,
randomly sampled status streams of Twitter are very useful sources
of geographically embedded social network data. To statistically an-
alyze the information Twitter provides via these streams, we have
collected a year’s worth of data and built a multi-terabyte relational
database from it. The database is designed for fast data loading and
to support a wide range of studies focusing on the statistics and geo-
graphic features of social networks, as well as on the linguistic analysis
of tweets. In this paper we present the method of data collection, the
database design, the data loading procedure and special treatment of
geo-tagged and multi-lingual data. We also provide some SQL recipes
for computing network statistics.

1 Introduction

Twitter is a micro-blogging web site that allows users to broadcast short tex-
tual status messages, tweets, up to 140 characters which are automatically

1

ar
X

iv
:1

31
1.

08
41

v2
 [

cs
.D

B
]

 5
 N

ov
 2

01
3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333613485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distributed to the followers of the tweeting user. Twitter also provides data
streams for almost real-time data download at different random sampling
rates. A stream with about 0.5% sampling factor, the so called sprinkler,
can be accessed and downloaded for free and contains a representative sub-
set of all tweets. Data is provided in the form of a continuous stream of
JSON documents which is not the appropriate data format for large statis-
tical analysis.

Twitter data is widely used in network sciences [13] and previous work
usually focused on results of the data analysis, and real-time stream pro-
cessing [2, 3, 10] rather than how to collect and efficiently analyze large sets
of archived data. A handful of papers discussed the possibility of building
relational databases from social network data [20], while a few others even
suggested special query languages [6, 18] for networks. A recent paper [17]
described an architecture very similar to the system presented in this paper
but built on a different platform.

Based on our earlier experiences with astronomical [7–9] and network
measurement [14] data, we have built a data warehouse for geo-tagged Twit-
ter data using Microsoft SQL Server 2012, a relational database engine.
The database is designed to support a large variety of ad-hoc queries, and
indices are defined especially for graph traversal, geographic queries and
free text searches, as well as for large-scale statistics. In this paper we
put emphasis on the description of the data loading process since regu-
lar updates to a multi-terabyte database by merging in new data is not a
trivial task. For source code an more details on our project, please visit
http://www.vo.elte.hu/twitterdb.

The structure of the paper is as follows. In Sec. 2 the contents of the
Twitter data stream and the caveats of data collection are explained. In
Sec. 3 we describe the database, the data loading procedure, as well as the
ordinary and textual indexing of the data. Spatial indexing techniques are
dissected in Sec. 4, whereas data access methods and visualization is touched
in Sec. 5. We show a few sample queries to demonstrate the simplicity and
efficiency of using the data warehouse in Sec. 6 and conclude the paper in
Sec. 7.

2

http://www.vo.elte.hu/twitterdb

2 Twitter data

Twitter provides real-time access to tweets in the form of data streams over
HTTP. Tweets are broadcast in the JSON format which encompasses meta-
data in a hierarchical form. A tweet consists of not more that 140 unicode
characters which allows for using any international script including east Asian
languages. To each tweet, along with basic information, like date and time
of the tweet, ID of the user etc., detailed information about the user is
appended. User details contain fields such as the screen name, location (in
a user-provided format that cannot be used for geo-tagging due to various
reasons, see Sec. 4.5), date of registration as well as the number of tweets,
friends and followers to the given date, etc. Tweets can be retweeted, similarly
to forwarding an e-mail. When a tweet is retweeted, the entry in the stream
will contain the new tweet along with the original one, with detailed user
information on both the original, and the retweeting user. Because any old
tweet can be retweeted, streams might contain some old, historical tweets.
When a tweet is a reply to another, the original tweet ID is provided. The
Twitter system also parses out names of mentioned users from the text of
tweets and resolves them to their numeric user IDs.

2.1 Retweets and geo-tagged streams

Users of Twitter broadcast tweets in the 10,000 s−1 range which adds up to
at least 2 Gbit s−1. While archiving and processing such a stream is feasible,
a special subscription is required to access all tweets real-time. We instead
collected data from the “sprinkler” stream which contains only a uniformly
sampled 0.5% of all tweets. The “sprinkler” stream contains about 50-60
tweets each second, or about 4-5 million tweets per day. The total collected
amount of raw data is 10 GB/day, 2 GB/day when compressed.

A small fraction of tweets (not more than 1.5%) is tagged with geographic
information, usually in the form of real live GPS coordinates recorded by cell
phones. A few users, such as weather forecast and earthquake watch services,
etc., also publish tweets tagged with GPS information that are not necessarily
the coordinates of the broadcasting station. As of Sept., 2013, Twitter allows
downloading a filtered stream, which, when filtered to contain tweets from all
around the world, provides about 50-60 geo-tagged tweets a second in real-
time. The sampling factor of the geo-tagged stream is hard to be estimated as
tweets the “sprinkler” stream barely contains any tweets that are also in the

3

geo-tagged stream. While “sprinkler” contains many retweets, geo-tagged
tweets are seldom retweets. This might be due to the fact that geo-tagged
tweets are sent from cell phones which might not support retweeting as easily
as the Twitter web site typically accessed from PCs without GPS receivers.

2.2 Network data in the streams

There are three types of networks that can be readily extracted from the
streams: 1) the “retweet” network, where edges among users are defined
by one user retweeting a tweet of another; 2) the “reply” network, where
edges come from replies; and 3) the “mention” network where edges are
drawn if one user mentions another by their screen name. Networks also
possess temporal information as each edge is stamped with the date and
time of the tweet. Geographic information is often only available, if available
at all, for one end of the edges. All three networks are directed but can
be considered as non-directed, or one can require that edges point to both
directions between two users. The database schema and pre-built indices we
describe in Sec. 3.1 support all three (retweet, mention, reply) views of the
networks, both directed and undirected.

2.3 Follower graph discovery

Twitter users can follow (subscribe to) tweets of others. Following is an asym-
metric connection between the two users, but the follower graph is considered
the core information about the Twitter social network. For this reason, free
access to the follower graph discovery interface is rather limited. Due to the
value of this information, Twitter is constantly changing the means of gath-
ering information about the follower network. We have been trying our best
to keep up with these changes, so that we can collect as much of the follower
graph as possible. By regularly querying the follower graph, we also expect to
see some interesting temporal behavior in the network. Twitter has recently
introduced significant changes to the graph discovery API which limits the
number of nodes that can be visited in a day to about a mere 100,000.

4

User Graph
Discovery

Tool

Data
Processing
Framework

User Location
Clustering

Tool

PlanetLab Nodes Twitter API

User status updates

Indexed geo data

User connections graph

DB

Figure 1: Illustration of the data collection, data loader and graph discovery
system, as it is build around a central database. The graph discovery tool
can take the list of users from the database and pass the results to the data
processing framework to ingest it into the database.

5

3 Database

Our expertise with the product made Microsoft SQL Server 2012 an obvious
choice as the platform for our data warehouse. SQL Server has had built-in
free-text search and geographic indexing support since version 2008 and the
latest version also supports column-store indices which might significantly
enhance the performance of graph analysis. Other database products were
out of our interest due to various reasons. First of all, we built our solution
over existing scientific tools [16, 19] that would have to be reimplemented
from scratch for other platforms . Ad hoc query support, on the other hand,
requires a SQL interface and a fast parallel engine to execute complex queries
and scans, which ruled noSQL products and non-parallel databases out. The
data warehouse was built on an eight-core commodity server with 16 GB
of RAM and a specially tuned I/O subsystem with 40 TB of disk space
providing maximum throughput of 1 GB s−1.

3.1 Database schema

The database schema storing Twitter data is relatively simple. The central
fact table is “tweet” containing the short text messages. Tweets are organized
into runs to support storing the output from different Twitter streams, like
the original “sprinkler” stream and the stream filtered to contain tweets with
GPS coordinates. Beside the “text” field, the “tweet” table also contains a
foreign key to the tweeting user and, if the tweet is a reply to a former tweet,
the ID of the replied tweet.

A list of users is also maintained in a table called “user”. The user table
grows continuously as new users in the data streams are identified, and the
table always contains the last known user profile status of each user. We also
store historical information on user profiles in a table called “user update”.
As users eventually appear in the stream, we check for changes in the user
profiles and create a record in the “user update” table for each change.

The text of each tweet is processed by Twitter and the streaming API
provides us with the IDs of mentioned users and information on the retweeted
tweet, if it is a retweet. We store these data in the “tweet user mention” and
“tweet retweet” tables, respectively. These two tables, together with the
“tweet” table, constitute the core of the social network data.

We provide views to access the three different networks of the data set.
The view “user mention” lists the directed, time-stamped edges between the

6

mentioned and the mentioning users. Views “user reply” and “user retweet”
are defined similarly. Networks can be queried three different ways: 1) as
time-stamped directed edges, 2) as non-directed, weighted edges, where any
edge pointing to any direction of the original directed graph is considered
as a connection between users, and 3) as mutual edges, where we require
both directed edges to exist in the original directed graph. Indices on the
corresponding tables are built to support fast querying of these views.

3.2 Data loading procedure

Twitter provides data as a ZIP compressed continuous stream of JSON doc-
uments that can be easily downloaded via HTTP. While downloading the
stream is simple, converting it into a data warehouse is a fairly complex
task. As a first step, the continuous stream is chopped into chunks contain-
ing about a day of data. The typical compressed size of a chunk containing
raw JSON is 2.5-3 GB at the compression ratio of 5. It is important to
mention that JSON documents can be compressed even at a ratio of 10 but
compression/decompression of gzip streams is a single-threaded operation,
consequently it can easily be the main bottleneck in the database loading
pipeline.

Since we collect Twitter streams continuously, but data loading is a costly
procedure in terms of both CPU and disk I/O, the database and the loading
process had to be designed such a way that smaller amounts of new data
can be efficiently merged with large amounts of old data. Data loading is
done in batches, by chunks and in multiple steps. The loading process is
implemented such a way that, shall an error occur, any chunk at any step
can be continued.

The main steps of data loading are: 1) preparing bulk-load files for each
batch, 2) bulk-inserting bulk-load files into a temporary database, 3) sorting
daily data in the temporary database, 4) creating certain indices on the
temporary data to support merging with the existing database, 5) merging
data, 6) deleting temporary files and data tables, and 7) recreating indices
on the large database.

Because reindexing the large database takes a significant time (a few
hours), loading is usually done once in a month. The daily chunks are pro-
cessed in parallel by a batch data loader program developed and optimized
by us. Parallel processing of chunks is necessary to benefit from the multi-
core system, but also to drive the high-speed I/O system efficiently. All

7

file operations use large memory buffers (typically on the scale of tens of
megabytes) to avoid random disk access. Preparing bulk-load files consists
of parsing the JSON documents and writing data into a binary format that
the database server can easily digest; one bulk-load file per data table per
chunk is created. The bulk-load files are then ingested into a temporary
database via simple bulk-inserts, without logging the transactions. Tempo-
rary tables are sorted by the same columns as the clustered indices of the
table in the main database. This latter is absolutely necessary to make the
merge process efficient.

Merging new data with old data is probably the hardest task, and requires
lots of tricks and optimizations. Analyzing some of these tricks is rather
instructive. As we mentioned above, new data has to be already sorted in
the temporary database before the merging step. This typically can be done
in a few seconds for a daily chunk. Merging with old data is different for
different entities. Tweets are ordered by their monotonically increasing IDs
but streams also contain historical tweets (in forms of retweets) that have
smaller IDs. Consequently, these old tweets have to be inserted into the
middle of the index structure. To avoid frequent B-tree page splits, which
would reduce the performance significantly, the index fill factor of the tweet
table is set to 80%. This increases the size of the final database by 20%,
which also decreases net read-time I/O slightly, but speeds up the merging
process by a factor of 5.

Page splits have even more significant effect in case of the “user” table, as
user IDs can appear in the Twitter stream randomly. One would expect that
the number of users yet unknown at a given time decreases as we discover
more and more users over time, but this is not the case. In the first few
days of data collection, user count grows according to 1 − e−t/t0 but the
curve never flattens, rather it keeps increasing linearly, see Fig. 2. It turned
out that completely recreating the user table is faster than inserting new
data into an already existing clustered index. To merge the “user” tables
containing old and newly discovered users, we execute a join between them
and write unique results into a new table with which the “user” table of
the large database is subsequently replaced. In general, when the amount of
new data is relatively small compared to old data, a lowered index fill-factor
and using ordinary inserts is the way to execute a merge operation. When a
significantly larger fraction of data is changed during merge, table recreation
might be more beneficial.

Due to regular updates to the databases, file fragmentation is an issue

8

 2

 3

 4

 5

 6

 7

08/01/12 09/01/12 10/01/12 11/01/12 12/01/12 01/01/13

lo
g

of
 n

um
be

r
di

sc
ov

er
ed

 u
se

rs

Figure 2: Logarithm of the number of discovered users as a function of data
collection date. The start of data collection time coincides with the very
fast upturn of the curve. Some users are discovered from retweeted historical
tweets, they make up the plateau before the start of data collection.

that has to be addressed. We separated all major tables into various file
groups, so that tweet, user and network edge information do not share the
same data files. Also, the fill-factor of the clustered index on the tweet table
is set to a 80% which decreases file fragmentation when inserts are common.
The user table is regularly recreated to keep the integrity of data pages.

3.3 Indexing data

For obvious performance reasons, during the merge process, non-clustered
indices are disabled. Merge queries thus can rely solely on clustered indices.
After merging in all chunks from a batch, non-clustered indices have to be
rebuilt. To avoid the fragmentation of the database files due to continuous
index rebuilds, indices are always created in dedicated file groups.

Indices on the “tweet” table are created for fast data retrieval by user ID
and by geographic coordinates encoded as HTM IDs, see Sec. 4.1. Primary
keys of the tables storing network edges are ordered by the two endpoints of
the edges. To allow query flexibility, inverse-ordered cover indices are created

9

on these tables.

3.4 Free text search

The database is indexed for fast full-text search. We built our solution on the
free-text indexing support of Microsoft SQL Server but implemented our own
filter (in the form of a custom language filter) to efficiently eliminate noise
words. By filtering out very short words (less than four characters), words
containing numbers, words containing characters with high unicode values
(asian script or characters used for decorating text) and words containing
the same character consecutive more than twice, the size of the full-text
index could be reduced by a factor of 10, when compared to the index size
created with the default English language filter.

3.5 Language identification

Identifying the language of very short texts is challenging. According to our
tests, simple ngram algorithms perform very badly on tweets. Windows Ex-
tended Linguistic Services, an API part of Windows since version 7, however,
features a proprietary algorithm that performs much better than ngram. We
identify the language of each tweet during the loading process and store it
in the database. The language identification turned out to be robust enough
to reproduce earlier work of others [15]. Correlations between the struc-
ture of the social network, language use of individual users and the role of
multi-lingual users will be an interesting area of research in the future.

4 Handling geo-tagged data

Due to the wide-spread of smart phones, hundreds of millions of people carry
GPS units with them that can also be connected to the Internet. Thousands
of smart phone apps are available that can use GPS coordinates for various
purposes: tag photos, collect sports data, provide localized advertisements
and geo-tag social media contributions. Twitter supports geo-tagging tweets
but, due to obvious reasons, disclosing GPS coordinates is a serious privacy
issue, thus most users disable this feature. Nevertheless, we have identified
more than ten million users who publish GPS coordinates regularly. Because
geo-tagged tweets can be directly targeted by Twitter’s streaming API, about

10

50% of all tweets recorded by us are geo-tagged. The percentage of geo-tagged
tweets of all tweets is somewhere around the 1.5% level.

By processing geo-tagged data, spatial patterns in the behaviors of users
can be identified. Such patterns can include daily commuting, living in two
cities (college, home), going on vacation, etc. The large number of tweets,
and the big scatter in GPS coordinates made it necessary to automatically
identify clusters in coordinates on a per user basis.

4.1 Spatial indexing of tweets

To provide fast lookup of geo-tagged tweets by coordinates we index the data
with the Hierarchical Triangular Mash (HTM) index [4,12]. For every tweet
with coordinates, we calculate the 20 level deep HTM ID which has roughly
the resolution equivalent to an arc second, or 25 meters. HTM was originally
developed for indexing astronomical databases, hence its capabilities are de-
termined by the needs of astronomers. While HTM is capable of indexing
billions of data point, search regions [19] have to be relatively simple. On
the other hand, the geographical indexing tools of SQL Server we also use
to index certain kinds of data, see Sec. 4.3, can handle very complex regions
but indexing billions of rows with them is ineffective.

4.2 Clustering coordinates

Users typically tweet from a few places where they spend most of their
time [5]. These places are likely to be their homes, schools, workplaces, etc.
To determine those few places where a user spends most of their time, we
determine clusters in the GPS coordinates using the friend-of-friend (FoF)
algorithm [11]. The FoF algorithm is known from astronomy and widely-
used to identify galaxy clusters. Two coordinates are considered to belong
to the same cluster if their separation is less than 1 km. For each cluster, we
determine the first two moments of the coordinate distribution. Before cal-
culating the mean, to eliminate outliers, we trim data points until all points
are inside a 3σ radius. We keep three clusters per user, the ones with the
highest cardinalities. For each cluster, the average local hour of tweeting is
calculated so that an estimate on the kind of the location can be made, for
instance workplace or home.

We prefer the friend-of-friend algorithm over other clustering techniques
because, for example, FoF can identify any number of clusters while k-means

11

Figure 3: Clustered coordinates of tweets of a user. Only the three clusters
with the highest cardinalities are kept. Map was created with Google Earth.

expects the number of cluster as an input parameter. Also, the results of
k-means can depend on the initially set cluster centers, while FoF always
gives the same results. Furthermore, FoF can be parametrized by the value
of separation, which allows for tuning cluster sizes and, the separation be-
ing the only parameter, the algorithm is rather simple. Clustering of tweet
coordinates is done by an external tool that runs outside the database and
outputs its result into a bulk-insert file for easy ingestion into the database.
This technique turned out to be more efficient than trying to implement the
FoF algorithm inside the database server. Fig. 3 shows the results of the
clustering of geo-tagged tweets of a user.

4.3 Putting users on the map

Since geographical embedding of social networks is in the center of our re-
search, we focused on preparing our data warehouse for geospatial queries.
As the database already contains about a billion tweets with GPS coordi-
nates, and our performance requirements were high, precautions must have

12

been taken when defining spatial indices. For this reason, we decided not
to index the individual tweets, but rather index the GPS coordinate clus-
ters we identified as described in Sec. 4.2. Clustering reduces the number of
coordinates to be indexed from one billion to the order of 10 million. Once
coordinate clusters are identified and average coordinates are determined,
they get indexed using HTM and also by the built-in geographical index of
SQL Server.

When dealing with the geographical embedding of social networks, bin-
ning of the data by the coordinates is often necessary. Arbitrarily binning,
however may not be the best way of performing an analysis, as bins may cut
socially uniform areas, while other, socially diverse areas might be binned
together. It is certainly not the best solution, but we decided to bin data
according to administrative regions (countries, states, counties, etc.). For
this purpose, we used the maps of administrative regions of the world from
gadm.org, see Sec. 4.4.

Converting the maps to be used in the database is straightforward, finding
the encompassing regions for tens of millions of GPS coordinates, however,
is not. Looking up the geographic region containing a pair of coordinates is
done by the server using spatial indices. First, the spatial index is used for
coarse pre-filtering of the potential results, but however good the index im-
plementation is, verifying the exact containment of a point inside a complex
spherical polygon is a computationally intensive task. It turned out, that
significant simplification of the region boundaries is necessary to make this
task feasible, especially in the case of regions with seashores. Simplification
of the region polygons, on the other hand, makes the boundaries “fuzzy”. We
may hope that erroneously classified coordinates will not effect the statistics
of the regions as much as exact but arbitrarily chosen geographic binning.

4.4 Importing the gadm.org database

To organize users according to political administrative regions, we down-
loaded the entire set of maps from gadm.org. The atlas contains all ad-
ministrative regions of the world from the country level, sometimes down
to the smallest villages. For our purposes, country, state and county lev-
els are the most relevant. To load the map shapefiles into the database
we used a freeware tool1 and relied on the geographical extensions of Mi-

1Shape2SQL http://sharpgis.net/page/Shape2SQL.aspx

13

gadm.org
gadm.org
http://sharpgis.net/page/Shape2SQL.aspx

crosoft SQL Server 2012.

4.5 Users with unknown locations

Only about 1.5% of Twitter users publish GPS coordinates. To determine
the approximate location of users without GPS information statistically, one
can rely on the geospatial information of the neighboring nodes of the so-
cial network [1]. Users can specify their locations in a textual form on the
user profiles which, after careful filtering, can be also used to further refine
geolocation estimates. Also, references to geographic locations within the
tweets can be extracted and used. We will address this problem in details in
a future paper.

5 Data access and visualization

To simplify access to the database within our group, we adopted the web-
based batch query system called CasJobs [16], originally developed for the
astronomical database SkyServer, and implemented several extensions to it
that will eventually become part of CasJobs code base. To support our
specific needs, we extended CasJobs with a schema browser to display the
database structure and a new scriptable plotting tool. Due to legal reasons,
access to the accumulated Twitter data is currently limited to research group
members only.

5.1 Adopting CasJobs

CasJobs allows concurrent access to the data warehouse for multiple users
via a batch system that can efficiently schedule long-running SQL queries. In
CasJobs, users formulate their data reduction and analysis problems entirely
in SQL, hence computations happen completely on the database server. This
method helps avoid replicating the large datasets locally. The CasJobs in-
frastructure is hosted by a dedicated server containing a database for the
SQL query batch service, the batch service itself, and sandbox databases of
registered users called MyDBs. Query results automatically get stored in the
MyDB, but users can also upload their own data to MyDB directly. Tables
of the MyDB can be downloaded in various data formats.

14

5.2 Visualization extensions to CasJobs

The plotting tool developed by us is built around gnuplot2 and allows users
to directly plot results of SQL queries by using a slightly extended syntax
of gnuplot scripts. This really makes the life of the data scientist easier be-
cause plots are generated on the database server, thus data do not have to be
downloaded beforehand. Plotting scripts can also be saved which makes re-
production of plots much easier than with form-based graphic user interfaces.
As the visualization module is based on gnuplot, almost all graphics formats
supported by gnuplot are available, including postscript, JPEG, PNG and
the “canvas” format which displays results as interactive HTML5 graphics.

5.3 Map visualization in HTML5

Along with the scriptable plotting tool, we also created a HTML5-based
map display tool that enables us to interactively visualize and animate tens
of thousands of tweets plotted over the map of a selected region of the world.
The tool consists of a query panel where filtering of tweets can be specified,
and a map view where the geographic and temporal distributions of the
tweets are displayed. As with most browser-based client software, data is first
downloaded from the data warehouse via a REST interface and displayed
using client-side resources only. In our map visualisation tool, instead of
bitmaps, map data is represented as polygons which allows for arbitrary
projections and zooming on the client side, without transferring large amount
of data from the server. A link to the map visualization tool is available on
the website mentioned in the introduction.

6 Sample queries

To demonstrate the usefulness of the database, we consider a few queries
calculating different statistical quantities of the streams and the networks.
The first query simply determines the hourly distribution of tweets. The
filter on the column “run id” restricts searches to the geo-tagged stream.
The query obviously results in a table scan and executes in 2:01 with a
sustained disc read of 950 MB s−1.

SELECT DATEPART(hour , created_at), COUNT (*)

2http://www.gnuplot.info

15

http://www.gnuplot.info

FROM tweet WHERE run_id = 1004

GROUP BY DATEPART(hour , created_at)

ORDER BY DATEPART(hour , created_at)

The second query computes the histogram of the occurrence of the word
“network”, binned by days. This query benefits from the full-text index built
on the “text” field of the “tweet” table. The query results in a series of index
seeks and executes in 0:41.

SELECT CAST(created_at AS date), COUNT (*)

FROM tweet WHERE run_id = 1004 AND

CONTAINS(text , ’network ’)

GROUP BY CAST(created_at AS date)

ORDER BY CAST(created_at AS date)

The third query determines the degree distribution of outgoing edges of
the “mention” graph. The simplicity of the query really shows the power of
SQL for statistical purposes. This particular query translates into an index
scan operation that can be readily aggregated. It completes in 5:57 for a
graph with 765 million edges at a sustained read of 150 MB s−1.

WITH degree_dist AS (

SELECT user_id , COUNT (*) AS deg

FROM tweet_user_mention WHERE run_id = 1004

GROUP BY user_id)

SELECT deg , COUNT (*) FROM degree_dist

GROUP BY deg ORDER BY deg

The fourth query calculates the number of tweets around New York City
in a radius of 10 arc minutes. This query uses the HTM index and requires
a hint to achieve the best performance. Query execution results in an index
scan and an aggregation and completes in mere 2 seconds.

SELECT COUNT (*)

FROM dbo.fHtmCoverCircleEq (-74, 40.72, 10) htm

INNER JOIN tweet t

WITH (FORCESEEK(IX_tweet_htm(run_id , htm_id)))

ON t.htm_id BETWEEN

htm.HtmIDStart AND htm.HtmIDEnd

WHERE t.run_id = 1004

16

7 Conclusions

We have built a data warehouse of archival twitter data for data mining
purposes. As an important feature, the database system supports efficient
merging of new data with terabytes of existing data. We have shown that
geo-tagged data can be successfully handled by the combination of the HTM
indexing technique and the built-in geographic tools of Microsoft SQL Server.

Acknowledgment

The authors thank the partial support of the European Union and the Euro-
pean Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013), the OTKA 7779 and the NAP 2005/KCKHA005
grants. EITKIC 12-1-2012-0001 project was partially supported by the Hun-
garian Government, managed by the National Development Agency, and fi-
nanced by the Research and Technology Innovation Fund and the MAKOG
Foundation.

References

[1] L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improv-
ing geographical prediction with social and spatial proximity. In 19th
international conference on World wide web, pages 61–70. ACM, 2010.

[2] J. Benhardus and J. Kalita. Streaming trend detection in twitter.
IJWBC, pages 122–139, 2013.

[3] A. Bruns and Y. E. Liang. Tools and methods for capturing twitter data
during natural disasters. First Monday, 2012.

[4] T. Budavári, A. S. Szalay, and G. Fekete. Searchable Sky Coverage of
Astronomical Observations: Footprints and Exposures. Publications of
the Astronomical Society of the Pacific, 122:1375–1388, Nov. 2010.

[5] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user
movement in location-based social networks. In 17th ACM SIGKDD,
pages 1082–1090. ACM, 2011.

17

[6] S. Cohen, L. Ebel, and B. Kimelfeld. A social network database that
learns how to answer queries. In CIDR, 2013.

[7] I. Csabai, M. Trencseni, G. Herczegh, L. Dobos, P. Jozsa, N. Purger,
T. Budavari, and A. S. Szalay. Spatial indexing of large multidimensional
databases. CoRR, abs/1209.6490, 2012.

[8] L. Dobos, T. Budavari, N. Li, A. S. Szalay, and I. Csabai. Skyquery:
An implementation of a parallel probabilistic join engine for cross-
identification of multiple astronomical databases. In SSDBM, pages
159–167, 2012.

[9] L. Dobos et al. Array requirements for scientific applications and an im-
plementation for microsoft sql server. In EDBT/ICDT Array Databases
Workshop, pages 13–19, 2011.

[10] M. Hu, S. Liu, F. Wei, Y. Wu, J. T. Stasko, and K.-L. Ma. Breaking
news on twitter. In CHI, pages 2751–2754, 2012.

[11] J. P. Huchra and M. J. Geller. Groups of galaxies. i - nearby groups.
Astrophysical Journal, 257:423–437, June 1982.

[12] P. Kunszt, A. Szalay, and A. Thakar. The hierarchical triangular mesh.
In A. Banday, S. Zaroubi, and M. Bartelmann, editors, Mining the Sky,
pages 631–637. Springer Berlin Heidelberg, 2001.

[13] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? In Proceedings of the 19th international
conference on World wide web, pages 591–600. ACM, 2010.

[14] P. Matray, I. Csabai, P. Hága, J. Steger, L. Dobos, and G. Vattay.
Building a prototype for network measurement virtual observatory. In
MineNet, pages 23–28, 2007.

[15] D. Mocanu, A. Baronchelli, B. Gonalves, N. Perra, and A. Vespignani.
The twitter of babel: Mapping world languages through microblogging
platforms. CoRR, 2012.

[16] W. O’Mullane, N. Li, M. A. Nieto-Santisteban, A. S. Szalay, and
A. Thakar. Batch is back: Casjobs, serving multi-tb data on the web.
In ICWS, pages 33–40, 2005.

18

[17] M. Oussalah, F. Bhat, K. Challis, and T. Schnier. A software architec-
ture for twitter collection, search and geolocation services. Knowl.-Based
Syst., pages 105–120, 2013.

[18] M. A. Smith and V. Barash. Social sql: Tools for exploring social
databases. IEEE Data Eng. Bull., pages 50–57, 2008.

[19] A. S. Szalay, J. Gray, G. Fekete, P. Z. Kunszt, P. Kukol, and A. Thakar.
Indexing the sphere with the hierarchical triangular mesh. CoRR, ab-
s/cs/0701164, 2007.

[20] L. Wycislik and L. Warchal. Using oracle 11.2g database server in social
network analysis based on recursive sql. In CN, pages 139–143, 2012.

19

	1 Introduction
	2 Twitter data
	2.1 Retweets and geo-tagged streams
	2.2 Network data in the streams
	2.3 Follower graph discovery

	3 Database
	3.1 Database schema
	3.2 Data loading procedure
	3.3 Indexing data
	3.4 Free text search
	3.5 Language identification

	4 Handling geo-tagged data
	4.1 Spatial indexing of tweets
	4.2 Clustering coordinates
	4.3 Putting users on the map
	4.4 Importing the gadm.org database
	4.5 Users with unknown locations

	5 Data access and visualization
	5.1 Adopting CasJobs
	5.2 Visualization extensions to CasJobs
	5.3 Map visualization in HTML5

	6 Sample queries
	7 Conclusions

