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dynamics,7 where noisy concentration profiles are generated
as a result of atomistic simulations, and one needs to deduce
the relevant microkinetic mechanism. These approaches are
all based on detailed chemical knowledge upon the possible
type of species and reactions and estimate rate coefficients by
applying rate theories or analogues. In contrast, we propose a
procedure for model development that does not use any spe-
cific microscopic chemical information on the system, and the
rate parameterization is also done fully empirically, by fitting
the model results to previously determined concentration data.

Fitting kinetic models requires nonlinear parameter estima-
tion, which has a rich literature. Reference 8 is a classic book,
and Refs. 9 and 10 are recent monographs. The first pioneer-
ing works aimed at the special problem of estimating reaction
rate coefficients in detailed reaction mechanisms were pub-
lished in combustion chemistry.11,12 Recent works on kinetic
parameter estimations are Refs. 13 and 14 and Refs. 15,16,
and 17. The latter three papers describe an efficient way for
determining Arrhenius parameters, which define the temper-
ature dependence of the rate coefficient.

Thus, given are concentrations as functions of time, and
our task is to find the best-fitting model (or models), a kinetic

reaction mechanism, that is a set of reaction steps (also called
complex chemical reaction, reaction network, or simply reac-
tion) endowed with mass action type kinetics and with appro-
priate reaction rate coefficients from the set of all possible
models. We show how the method works by testing on two
examples: on noisy simulated data and also a set of real-life
data: measurements on the salicylic acid transport, which can
be formally treated as a reaction kinetic problem. In the for-
mer example, we also demonstrate a type of indistinguisha-
bility of kinetic models18–21 by showing that multiple mech-
anisms can perform equally well if the noise on the simulated
data increased sufficiently. In the second one, not all the con-
centrations are measured and it serves as an example for the
introduction of fictitious species.

The structure of our paper is as follows: Section 2 offers a
possible scenario to construct candidate reaction mechanisms,
which are to describe the concentration versus time curves.
Section 3 shows the applicability of the method on two exam-
ples. The last section is about possible extensions and for-
mulates some open problems related to the applicability of
the method.

2 A SET OF CHEMICALLY

REASONABLE RESTRICTIONS

Basic concepts of formal reaction kinetics are presented here
briefly; for the formal and detailed expansion, we propose the
use of, for example, Ref. 22 or 23. Notations for the number
of species, complexes, steps, etc. are summarized in Table 1
to aid the reader.

T A B L E 1 Notations

Notation in

formal kinetics Meaning

X,Y,Z,… ,X𝑚 Species

𝐿 Number of linkage classes

𝑀 Number of species

𝑁 Number of complexes

𝑃 Number of reaction steps = 2 rev. pairs +
irreversible steps

𝑅 Number of reversible pairs of reactions

𝑆 Number of independent reactions = rank 𝜸

𝑀rel(X𝑚) Relative molecular mass of species X𝑚

𝛼𝑚𝑟 Stoichiometric coefficient of species X𝑚 on
the left side of reaction step 𝑟

𝛽𝑚𝑟 Stoichiometric coefficient of species X𝑚 on
the right side of reaction step 𝑟

𝛾𝑚𝑟 𝛽𝑚𝑟 − 𝛼𝑚𝑟

𝑘𝑟, 𝑘
+
𝑟

Rate coefficient of the forward direction of
reaction step 𝑟

𝑘−𝑟, 𝑘
−
𝑟

Rate coefficient of the backward direction
of reaction step 𝑟

𝐾𝑟 Equilibrium constant of reversible reaction
step 𝑟

𝑐𝑚 Concentration of species X𝑚

2.1 Species

First, we have to fix 𝑀 , the number of species. In our illustrat-
ing examples, it will usually be two or three; in applications,
this may be equal to the number of measured concentrations
or can be more by introducing further unmeasured (real or fic-
titious) species.

2.2 Complexes

In formal reaction kinetics, the linear combinations of species
with stoichiometric coefficients (or stoichiometric numbers)
on the sides of the reactions are called complexes, a slightly
unfortunate name, because this word is used in chemistry
with a completely different meaning. Their number is usu-
ally denoted by 𝑁 . The stoichiometric coefficient of the 𝑚th
species (X𝑚) on the left side of the 𝑟th reaction is denoted by
𝛼𝑚𝑟, that on the right side by 𝛽𝑚𝑟, thus the general form of the
𝑟th reversible reaction step in our mechanism is

𝑀
∑

𝑚=1

𝛼𝑚𝑟X𝑚 ⇌

𝑀
∑

𝑚=1

𝛽𝑚𝑟X𝑚. (1)

2.2.1 Mass conservation

As a consequence of mass conservation 𝑀 = 1 is imme-
diately excluded, because, for example, the reaction step
X ⇌ 2X is not allowed. Also excluded is the empty com-

plex 0, as it immediately leads to mass destruction or mass
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creation. Still, in other contexts, the empty complex may
be useful either to describe the sticking of a species to the
wall or its departure in any other way, or to express an
inflow or outflow in formal reactions, for example, 0 ←→ X or
X + Y ←→ 0.

2.2.2 Short complexes

In most cases reaction steps containing complexes longer than
two, are not allowed; here we follow this practice. In other
words, we only allow short complexes, complexes of the form
in which no more than two species take part. In the case
when 𝑀 = 2, we have thus X,Y,2X,2Y,X + Y (zero complex
excluded from the beginning). Their number in the general
case, as it can be immediately seen, is

𝑁(𝑀) = 𝑀 +𝑀 +

(

𝑀

2

)

=
𝑀(𝑀 + 3)

2
. (2)

Let us mention in passing that the concept of short complexes
proved to be really useful when the dynamic behavior of small
reaction mechanisms are investigated.24

If a formal reaction represents an elementary chemical
reaction then the length of the left-side complex (ie, Σ𝑀

𝑚=1
𝛼𝑚𝑟)

is equal to the molecularity of the reaction. Consequently,
a reaction mechanism built up from reversible steps of
short complexes (ie, 1 ≤ Σ𝑀

𝑚=1
𝛼𝑚𝑟 ≤ 2 and 1 ≤ Σ𝑀

𝑚=1
𝛽𝑚𝑟 ≤ 2)

can describe reacting systems involving only unimolecular
and bimolecular elementary reactions. However, our present
restriction does not mean that termolecular reactions are
unimportant. In the gas phase, reactions like

2NO + O2 ←→ 2NO2

are quite common (see, eg, Ref. 25). To take these into con-
sideration one should also include 3X, 2X + Y,…, X + Y +
Z, the total number of which is

𝑀 +𝑀(𝑀 − 1) +

(

𝑀

3

)

=
𝑀(𝑀 + 1)(𝑀 + 2)

6

=

(

𝑀 + 2

3

)

. (3)

Note that the result is actually the formula for the number of
three-combinations of 𝑀 species when repetition is allowed.

2.3 Reaction steps

Considering the transformation of two complexes into each
other gives a reaction step. In formal reaction kinetics, no
duplicate of a reaction step is allowed as repeated steps can be
combined into a single step whose rate coefficient is the sum
of individual rate coefficients. Furthermore, if both directions
of a reaction are present in the mechanism then they are always
written as a single reversible step, and thus irreversible steps
cannot have a reverse pair in the mechanism.

2.3.1 Reversibility

In chemistry, all elementary reactions are strictly reversible
due to microscopic reversibility. However, in practical appli-
cations at certain conditions (eg, concentrations, temperature,
and pressure), the rate of the forward or the backward reaction
can become negligible, thus this direction can be omitted from
the model without inducing significant error and the retained
direction can be considered as an irreversible step.

Accordingly, in widely accepted detailed combustion mod-
els some irreversible steps are also used, for example,

• in hydrogen combustion26

H2O2 + O ←→ HO2 + OH,

• in carbon monoxide combustion26

HCO + HO2 ←→ CO2 + H + OH.

Nevertheless, during model construction we assume that
the reaction steps are reversible. The advantage of this
approach during model building is that the number of possi-
ble reaction steps (and that of models) is less than when both
reversible and irreversible reactions are considered; further-
more, the omission of one of the directions can be investigated
a posteriori using mechanism reduction techniques (see, eg,
Refs. 27,28, and 16). Leaving out either the forward direction
or the backward direction will increase the number of possible
steps by a factor of three (ie, leave out forward or backward
step or none) per each reversible step.

2.3.2 Macroscopic chemical change

Certainly there is no reason to include reaction steps like
X ⇌ X, 2X ⇌ 2X, X + Y ⇌ X + Y, which do not affect con-
centrations (ie, make no macroscopic change) despite that
they may take place microscopically.

2.3.3 Mass conservation

From the chemical point of view, it is quite reasonable to
require that the total mass in both sides of reaction (1) be the
same. This can be formalized in such a way that using the rel-
ative molecular masses 𝑀rel(X𝑚) of species X𝑚 the following
equality should hold for the 𝑟th reaction:

𝑀
∑

𝑚=1

𝛼𝑚𝑟𝑀rel

(

X𝑚

)

=

𝑀
∑

𝑚=1

𝛽𝑚𝑟𝑀rel

(

X𝑚

)

. (4)

Mass conservation is a consequence of a fundamental prop-
erty of chemical reactions, the law of atomic balance, which
requires the conservation of the number of various atomic
nuclei and charge (ie, the number of electrons, thus their
masses, too) in a chemical reaction.

In systems where either the molar number of species mat-
ters or mass transport is modeled, and chemical reactions sig-
nificantly modify the mole fraction of species (eg, changes
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are larger than 0.01); mass conservation in each reaction steps
has to be strictly fulfilled for accurate simulation results. In
most applications, one can neglect this restriction; however,
for example, in combustion modeling it is usually needed. We
shall also consider mass conservation here to reduce the num-
ber of possible reactions and mechanisms (see later).

Why should one consider reactions that are not mass con-
serving? In heterogeneous systems in the presence of a wall,
an adsorbing material or a heterogeneous catalyst, adsorp-
tion, desorption of a bulk species, or its reaction with an
adsorbed species can take place, which all lead to mass-
violating bulk-phase reactions likeX ←→ 0, 0 ←→ X orX ←→ Y,
where 𝑀rel(X) ≠ 𝑀rel(Y), respectively. It is quite a common
modeling tool to use steps like 0 ←→ X to describe inflow,
steps likeX ←→ 0 to represent outflow, or abbreviate a step like
A + X ←→ 2X asX ←→ 2X if the concentration of the species A
is so large that it practically does not change during the time
we are interested in. For example, this is the case in atmo-
spheric chemistry, where models often contain reaction steps
of trace gases that produce major components of air (eg, N2,
O2, CO2 in tropospheric chemistry models) and the latter are
simply omitted from the reaction as only negligible change in
their concentration is induced by the step. Steps like X ⇌ 2X,
X ⇌ X + Y, which obviously violate the law of mass conser-
vation, may be quite useful in model construction in chemi-
cal kinetics. For example, the Lotka-Volterra reaction, which
can be used for approximately describing oscillations in cold
flames,29 contains steps like X ←→ 2X and Y ←→ 0.

Still, in the present example we shall take a more standard
(conservative, if you wish) point of view, and we discard steps
like 0 ⇌ X, 0 ⇌ 2X, 0 ⇌ X + Y, X ⇌ 2X, X ⇌ X + Y, as
they obviously violate the law of mass conservation. The num-
ber of possible reaction steps is less in this case, and one
still has the a posteriori opportunity to remove bulk species
with constant concentration (ie, incorporate their concentra-
tion into the rate coefficient) or to remove those product
species from a step whose concentration is affected negligi-
bly by the step using mechanism reduction methods.16,27,28

Let us mention in passing that chemical reactions are not
perfectly mass-conserving. and there is a practically unde-
tectable mass change arising in them due to the accompa-
nied energy change as known from relativity theory (ie, mass-
energy equivalence formula of Einstein30). On the other hand,
while the kinetics of nuclear reactions (eg, radioactive decay,
chain reactions) can also be formally described as that of
chemical reactions, they do not fulfilled atomic balance and
even mass conservation can break down badly in them due to
the large energy changes.

2.3.4 Symmetric self-reactions

In models, it is rare to see steps like 2X ⇌ 2Y. However,
studying the literature of atmospheric chemistry one can find

T A B L E 2 Species, complexes, and reaction steps in the case

𝑀 = 2

Species X, Y 𝑀 = 2

Complexes X, Y, 2X, 2Y, X + Y 𝑁(2) = 5

Reaction steps X ⇌ Y, X ⇌ 2Y, Y ⇌ 2X, 𝑅(2) = 5

2X ⇌ X + Y, 2Y ⇌ X + Y

T A B L E 3 Species, complexes, and reaction steps in the case

𝑀 = 3

Species X, Y, Z 𝑀 = 3

Complexes X, Y, Z, 2X, 2Y, 2Z, 𝑁(3) = 9

X + Y, Y + Z, Z + X

Reaction steps X ⇌ Y, X ⇌ Z, Y ⇌ Z, 𝑅(3) = 24

X ⇌ 2Y, X ⇌ 2Z, Y ⇌ 2X,

Y ⇌ 2Z, Z ⇌ 2X, Z ⇌ 2Y,

X ⇌ Y + Z, Y ⇌ X + Z,

Z ⇌ X + Y, 2X ⇌ X + Y,

2X ⇌ X + Z, 2X ⇌ Y + Z,

2Y ⇌ X + Y, 2Y ⇌ X + Z,

2Y ⇌ Y + Z, 2Z ⇌ X + Y,

2Z ⇌ X + Z, 2Z ⇌ Y + Z,

X + Y ⇌ X + Z, X + Y ⇌ Y + Z,

X + Z ⇌ Y + Z

similar steps: the self-reaction of peroxy radicals, like

2CH3O2 ⇌ 2CH3O (+O2),

or

2CH3CH2O2 ⇌ 2CH3CH2O (+O2),

(see Refs. 31 and 32). Both steps are of the form 2X ⇌ 2Y

(+Z) and are mass conserving—only if Z (ie, O2) is taken into
consideration. As discussed before, one can omit the form-
ing O2 in atmospheric (eg, tropospheric) chemistry as it is a
major constituent of air and its concentration will be negligi-
bly affected by this and similar transformations.

Both steps are of the form 2X ⇌ 2Y (+Z) (and are mass
conserving—if O2 is taken into consideration—as they ful-
filled the law of atomic balance).

2.3.5 Reactions passing all the criteria

The species, complexes, and reaction steps for 𝑀 = 2 and
𝑀 = 3 are shown in Tables 2 and 3, respectively.

Now the interesting (from the combinatorial point of view)
question arises: What is the number of reactions fulfilling the
requirements formulated above? Beyond combinatorics, the
formula is of practical relevance too: it gives us a hint if it
is possible to deal with all the systems constructed in this
way within a tolerable time. We enumerated the steps from
𝑀 = 1 up to 𝑀 = 20 and have found the following cardinal-
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T A B L E 4 Number of reaction steps of different type

No. Type of step 𝑴 = 2 3 4

1 X ⇌ Y
𝑀(𝑀−1)

2
1 3 6

2 X ⇌ 2Y 𝑀(𝑀 − 1) 2 6 12

3 2X ⇌ X + Y 𝑀(𝑀 − 1) 2 6 12

4 X + Y ⇌ Z
𝑀(𝑀−1)

2
(𝑀 − 2) 0 3 12

5 X + Y ⇌ 2Z
𝑀(𝑀−1)

2
(𝑀 − 2) 0 3 12

6 X + Y ⇌ X + Z
𝑀(𝑀−1)

2
(𝑀 − 2) 0 3 12

7 X + Y ⇌ Z + A
1

2

𝑀(𝑀−1)

2

(𝑀−2)(𝑀−3)

2
0 0 3

1-7 All types (𝑀−1)𝑀(𝑀2+7𝑀+2)

8
5 24 69

ities: 0, 5, 24, 69, 155, 300, 525, 854,… . How to learn if there
is a certain regularity in the sequence? The best way is to go
to The On-Line Encyclopedia of Integer Sequences initiated
by Neil James Alexander Sloane33 and ask if it contains our
sequence. In this case, the answer was yes, and the formula
(𝑀 − 1)𝑀(𝑀2 + 7𝑀 + 2)∕8 is provided to give the number
of reaction steps of the given type. From the strict mathemat-
ical point of view, this statement is only a conjecture, but it
can be rigorously proved, as well.

Statement 1. Suppose the number of species, 𝑀 , is larger
than one. Then, the number of reversible, mass conserving
reaction steps excluding steps of the form

X ⇌ X, 2X ⇌ 2X and 2X ⇌ 2Y

is

𝑅(𝑀) ∶=
(𝑀 − 1)𝑀(𝑀2 + 7𝑀 + 2)

8
. (5)

Proof. The formula is proved by determining the number of
different types of steps that can be constructed using combina-
torics and summing them up. Table 4 shows the seven types of
reactions that can be stated with short complexes, and it also
contains their number in the general case and for 𝑀 = 2, 3, 4.
The total number of possibilities equals the empirically deter-
mined formula, which proves the statement. □

2.4 Reaction mechanisms

A set of reaction steps is usually called a (reaction) mecha-

nism. If rate coefficients of the steps are also provided, it is
called a kinetic reaction mechanism. In formal reaction kinet-
ics, alternative names (complex chemical) reaction, or reac-

tion network are also used.

2.4.1 Mechanisms containing exactly 𝑴
species

We may start from three species (eg, X, Y, Z) and generate
all possible models by taking all combination of the possible
reactions, then we may arrive at a mechanism with only two

T A B L E 5 Number of mechanisms containing different number of

reaction steps

Number of steps (𝑹)Number of

species 1 2 3 4 5 6 ≥ 𝟔

𝑀 ≤ 3 24 276 2024 10 626 42 504 134 596
(

𝑅(3)

𝑅

)

𝑀 = 3 9 246 1994 10 611 42 501 134 596 𝑅̃(3)

species, X and Y, as, for example,

X ⇌ Y,X ⇌ 2Y,Y ⇌ 2X.

It would be desirable to exclude such cases.
Let 𝑅̃(𝑀,𝑅) denote the number of mechanisms having

exactly 𝑅 reactions and exactly 𝑀 species. Suppose we have
𝑀 = 3 species, then the number of mechanisms with at most
three species and with exactly three species, and having vari-
ous number (up to six) of reactions are shown in Table 5.

In the case when we have at most three species, it may hap-
pen that we only have two, thus the number of mechanisms

with exactly three species is 𝑅̃(3, 𝑅) =
(𝑅(3)

𝑅

)

−
(𝑅(2)

𝑅

)(3

2

)

,

because one can select any two of the three species in
(3

2

)

different ways. The last and following elements (ie, 𝑅 = 6

and 𝑅 > 6) in the two rows of the table are equal, as one can
only have five reaction steps with two species (𝑅(2) = 5; see
Table 2). Let us formulate the corresponding obvious and gen-
eral statement.

Statement 2. Suppose the number of species, 𝑀 , is larger
than one. Then, the number of mechanisms that consist of
𝑅 reversible, mass conserving reaction steps, excluding steps
of the form X ⇌ X, 2X ⇌ 2X, and 2X ⇌ 2Y, and contain
exactly 𝑀 species is

𝑅̃(𝑀,𝑅) ∶=

(

𝑅(𝑀)

𝑅

)

−

𝑀−1
∑

𝑖=2

𝑅̃(𝑖, 𝑅)

(

𝑀

𝑖

)

=

(

𝑅(𝑀)

𝑅

)

−

(

𝑅(𝑀 − 1)

𝑅

)(

𝑀

𝑀 − 1

)

+

(

𝑅(𝑀 − 2)

𝑅

)(

𝑀

𝑀 − 2

)

−⋯

=

𝑀−2
∑

𝑖=0

(−1)𝑖
(

𝑅(𝑀 − 𝑖)

𝑅

)(

𝑀

𝑀 − 𝑖

)

. (6)

Consequently, in case 𝑅 > 𝑅(𝑀 − 𝑖) one only has the pre-
ceding terms.

Proof. The first expression counts the mechanisms by exclud-
ing cases with exactly𝑀 − 1,𝑀 − 2,… species from all pos-
sible models with at most 𝑀 species. The second expres-
sion gives the number of such models with a series of exclu-
sions and inclusions based on the sieve formula (see, eg,
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F I G U R E 1 The Wegscheider mechanism [Color figure can be

viewed at wileyonlinelibrary.com]

Ref. 34, Section 2). To understand the need for terms beyond
the second, take the case of 𝑀 = 4: the number of models
with at most four species, {X,Y,Z,V}, has to be reduced by
the number of models with at most three species: {X,Y,Z},
{X,Y,V}, {X,Z,V}, and {Y,Z,V}. However, when we do
this, each two-species subset of them is actually excluded
twice (eg, both {X,Y,Z} and {X,Y,V} have subset {X,Y})
thus they have to be included once again. For larger 𝑀 (> 4),
multiple inclusions can occur, which has to be corrected with
exclusions and so on, leading to a series of terms with alternat-
ing signs, which is finally given in a compact sum form. □

2.4.2 Mass conservation

Even if the steps are mass conserving, the mechanism may not
be as example {X ⇌ Y, X ⇌ 2Y} shows.

Definition 1. A reaction mechanism consisting of 𝑅 reaction
steps (see Equation 1; 𝑟 = 1,… , 𝑅) is said to be mass con-

serving if there exists a positive relative mass vector 𝐌rel =

(𝑀rel(X1),… ,𝑀rel(X𝑀 ), ) so that Equation 4 holds for all
steps, which can be written shortly as a system of homoge-
neous linear equations for 𝐌rel:

𝟎 = 𝐌rel(𝜷 − 𝜶) = 𝐌rel𝜸 (7)

with stoichiometric coefficient matrices 𝜶 ∶= (𝛼𝑚𝑟),
𝜷 ∶= (𝛽𝑚𝑟), and 𝜸 ∶= 𝜷 − 𝜶.

To check this property is not a trivial problem, we do this
using our program ReactionKinetics described in Chap. 4
of Ref. 22, where the reader can also find relevant references
as well. It is important to point out that this is a formal require-
ment that can even be stated for reactions involving ficti-
tious species.

2.4.3 Detailed balancing

Following Section 7.8 of Ref. 22, we review the history of
detailed balancing shortly.

After such men as Maxwell35 and Boltzmann,36 and before
Einstein,37 at the beginning of the twentieth century, it was
Wegscheider38 who constructed the reaction mechanism in
Figure 1 to show that in a closed system in some cases the exis-
tence of a positive stationary state (ie, when all steady-state

F I G U R E 2 The reversible triangle reaction [Color figure can be

viewed at wileyonlinelibrary.com]

concentrations are positive) alone does not imply the equal-
ity of all the individual forward and backward reaction rates:
A relation (in this case 𝑘−1𝑘2 = 𝑘−2𝑘1) should hold between
the reaction rate coefficients to ensure this. Equalities of this
kind will be called (and later exactly defined as) spanning

forest conditions below. Let us emphasize that violation of
this equality between the reaction rate coefficients does not
exclude the existence of a positive stationary state; it can be
shown to exist and be unique for all values of the reaction
rate coefficients. (Problem 7.12 of Ref. 22 proves both state-
ments.)

Here we mention that Figures 1–4 show the Feinberg-Horn-
Jackson graph (see, eg, Ref. 39 or Chap. 3 in Ref. 22) of three
simple mechanisms, which is a directed graph with the com-
plexes as vertices and with the reaction step arrows as directed
edges. In this graph, each different complex of all the consti-
tuting reactions of the mechanism appears exactly once. The
number of complexes is denoted by 𝑁 , the number of con-
nected components of the Feinberg-Horn-Jackson graph is 𝐿,
whereas the number of independent reaction steps (the rank
of 𝜸) is 𝑆.

A similar statement holds for the reversible triangle reac-
tion in Figure 2. The necessary and sufficient condition for the
existence of such a positive stationary state for which all the
reaction steps have the same rate in the forward and backward
direction (a detailed balanced stationary state) is now that the
product of the reaction rate coefficients is the same if taken in
either direction: 𝑘1𝑘2𝑘3 = 𝑘−1𝑘−2𝑘−3. Equalities of this kind
will be called as circuit conditions below. Again, violation of
this equality does not exclude the existence of a positive sta-
tionary state; it can again be shown to exist and be unique for
all values of the reaction rate coefficients. (Problem 7.11 of
the reference mentioned shows both statements.)
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F I G U R E 3 Unconditionally detailed balanced reaction mechanism: It is detailed balanced no matter what the values of the reaction rate

coefficients are [Color figure can be viewed at wileyonlinelibrary.com]

These examples are qualitatively different from, for exam-

ple, the simple one-step mechanism X + Y
𝑘1
⇌
𝑘−1

Z, which has

the same stationary reaction rate in both directions no mat-
ter what the values of the reaction rate coefficients are (see
Problem 7.10 in Ref. 22). To put it another way, this mecha-
nism is unconditionally detailed balanced whereas the previ-
ous examples were conditionally detailed balanced (ie, being
detailed balanced only if some equalities are fulfilled). A less
trivial example is shown in Figure 3.

A quarter of a century after Wegscheider, Fowler and
Milne40 formulated a general principle in a very vague form
called the principle of detailed balance stating that in real
thermodynamic equilibrium, all the subprocesses should be
in dynamic equilibrium separately in such a way that they do
not stop but proceed with the same velocity in both directions.
Obviously, this also means that time is reversible at equilib-
rium; that is why this property may also be called microscopic

reversibility, although it may be appropriate to reserve this
expression for a similar property of the stochastic model (see
Chap. 10 of Ref. 22). A relatively complete summary of the
early developments was given by Tolman.41 The modern for-
mulation of the principle accepted by IUPAC42 essentially
means the same (given that the principle of charity is applied
when reading): “The principle of microscopic reversibility at
equilibrium states that, in a system at equilibrium, any molec-
ular process and the reverse of that process occur, on the aver-
age, at the same rate.”

Now we give a precise formulation of the concept in such
a way that at a detailed balanced stationary point (which can
only exist in a reversible reaction), the forward and reverse
reactions of each reversible pair proceed with the same rate.

The reaction mechanism we study here consists of 𝑅

reversible pairs of reaction steps like Equation 1 and their
usual induced kinetic differential equations assuming mass
action type kinetics (and disregarding the change of tempera-
ture, pressure, and reaction volume) is

𝑐̇𝑚 =

𝑅
∑

𝑟=1

(𝛽𝑚𝑟 − 𝛼𝑚𝑟)

(

𝑘+
𝑟

𝑀
∏

𝑝=1

𝑐
𝛼𝑝𝑟
𝑝 − 𝑘−

𝑟

𝑀
∏

𝑝=1

𝑐
𝛽𝑝𝑟
𝑝

)

, (8)

where 𝑐𝑚(𝑡) ∶= [X𝑚](𝑡) is the concentration of species X𝑚.
(Note that 𝑃 denotes the total number of reaction steps and
we reserve notation 𝑅 for the half of the number of reaction
steps, or the number of reversible pairs. Thus, in the case of
reversible steps 𝑃 = 2𝑅.) Shortly,

𝐜̇ = 𝜸(𝐤+ ⊙ 𝐜𝜶 − 𝐤− ⊙ 𝐜𝜷 ) (9)

with notation (𝐜𝜶)𝑟 ∶=
∏𝑀

𝑝=1
𝑐
𝛼𝑝𝑟
𝑝 , and with the component-

wise (or Schur) product ⊙ of vectors: (𝐤+ ⊙ 𝐜𝜶)𝑟 = 𝑘+
𝑟
(𝐜𝜶)𝑟.

Here the positive numbers 𝑘±
𝑟

are the reaction rate coeffi-

cients; the vectors formed from them are 𝐤±. The reaction is
detailed balanced at the positive stationary concentration 𝐜∗ if
all the steps proceed with the same rate in both directions, or,
to put it another way

𝜸(𝐤+ ⊙ 𝐜𝜶
∗
− 𝐤− ⊙ 𝐜

𝜷
∗ ) = 𝟎 implies (10)

𝐤+ ⊙ 𝐜𝜶
∗
= 𝐤− ⊙ 𝐜

𝜷
∗ or 𝜸⊤ log(𝐜∗) = log(𝐊), (11)

where 𝐊 ∶=
𝐤+

𝐤−
, which is also evaluated componentwise.

Detailed balance may hold

• at any (positive) values of the reaction rate coefficients
(unconditionally detailed balanced) or

• only if the values of the rate coefficients fulfilled cer-
tain conditions—for example, circuit or spanning tree
conditions—(conditionally detailed balanced).

What are the necessary and sufficient conditions of this
property? First we give an algebraic characterization that can
be proved using Fredholm’s alternative theorem.

Theorem 1 (see Refs. 22 and 43). The reaction mechanism

is detailed balanced, if and only if for all nonzero vector solu-

tions to the system of linear equations 𝜸𝐚 = 𝟎 one has

𝐊𝐚 = 𝟏. (12)

As the elements of 𝜸 are integers and the vectors 𝐚 are
solutions of a system of homogeneous linear equations, their
coordinates can supposed to be integers. The theorem can be
recomposed for the chemist in a rather intuitive form: A reac-
tion mechanism is detailed balanced, if and only if for all inde-
pendent linear combinations of reactions steps (ie, “

∑𝑅

𝑟=1
𝑎𝑟 ⋅

{
∑𝑀

𝑚=1
𝛼𝑚𝑟X𝑚 ⇌

∑𝑀

𝑚=1
𝛽𝑚𝑟X𝑚.}”) that express no chemical

change (ie,
∑𝑅

𝑟=1
𝑎𝑟 ⋅ (𝛽𝑚𝑟 − 𝛼𝑚𝑟) = 0 for 𝑚 = 1,… ,𝑀), the

corresponding equilibrium constants, which are the products
of equilibrium constants raised to the powers of the respective
linear weights, are one (ie,

∏𝑅

𝑟=1
𝐾

𝑎𝑟
𝑟 = 1).

Next we cite a pair of structural criteria showing what the
reasons of detailed balancing are. To formulate this, we need
a few concept and also a few formal definitions.
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Definition 2. The circuit conditions are that the product of
reaction rate coefficients along any set of independent cycles
is the same in both directions.

Definition 3. Let us take a spanning forest of the
Feinberg-Horn-Jackson graph, and let the corresponding
reaction step vectors be 𝜸.,𝑢 (𝑢 = 1, 2,… , 𝑁 − 𝐿). Then,
∑𝑁−𝐿

𝑢=1
𝑎𝑢𝜸.,𝑢 = 𝟎 has 𝑁 − 𝐿 − 𝑆 independent solutions.

With these
∏𝑁−𝐿

𝑢=1
(
𝑘+
𝑢

𝑘−
𝑢

)𝑎𝑢 = 1 should hold: These are the span-

ning forest conditions.

Note that the number of the edges of the spanning tree is
𝐿 less than the number of its vertices (N), if again 𝐿 is the
number of the connected components of the Feinberg-Horn-
Jackson graph.

Theorem 2 (Ref. 44). The mechanism is detailed balanced,

if and only if the circuit conditions and the spanning forest
conditions hold.

An application of Feinberg’s theorem (and also the detailed
description with examples of the concepts) can be found in
Ref. 45.

Example 1. An unconditionally detailed balanced reaction
can be seen in Figure 3.

The reason is that both structural conditions are empty:

1. It does not contain cycles.

2. Its deficiency (∶= 𝑁 − 𝐿 − 𝑆 = 3 − 1 − 2) is zero, thus
no spanning forest conditions are to be considered.

With the approach of applying Theorem 1, one sees that
𝜸𝐚 = 𝟎 has no nonzero solutions, or the kernel of the linear
map 𝜸 only contains the zero vector.

Example 2. A conditionally detailed balanced mechanism is
shown in Figure 4. Here the spanning forest conditions (their
number is 𝑁 − 𝐿 − 𝑆 = 5 − 2 − 1 = 2) are as follows:

1 = 𝐾2
1
𝐾−1

3
=

𝑘2
1
𝑘−3

𝑘2
−1
𝑘3

, 1 = 𝐾1𝐾
−1
2

=
𝑘1𝑘−2

𝑘−1𝑘2
. (13)

We also have the circuit conditions:

1 = 𝐾2𝐾
−1
3

𝐾4 =
𝑘2𝑘−3𝑘4

𝑘−2𝑘3𝑘−4
. (14)

Let us try to discuss unconditionally and conditionally
detailed balanced reactions in a more systematic way.

If M = 2, R = 2 , then the following three mass conserving
mechanisms remain:

X
𝑘1
⇌
𝑘−1

Y, 2X
𝑘2
⇌
𝑘−2

X + Y, 𝑘−2 =
𝑘−1𝑘2

𝑘1
(15)

F I G U R E 4 Conditionally detailed balanced reaction mechanism:

It is detailed balanced if the system of equalities (13) and (14) holds

[Color figure can be viewed at wileyonlinelibrary.com]

X
𝑘1
⇌
𝑘−1

Y, 2Y
𝑘2
⇌
𝑘−2

X + Y, 𝑘−2 =
𝑘1𝑘2

𝑘−1
(16)

2X
𝑘1
⇌
𝑘−1

X + Y, 2Y
𝑘2
⇌
𝑘−2

X + Y 𝑘−2 =
𝑘1𝑘2

𝑘−1
. (17)

They are all conditionally detailed balanced. (One can easily
show that with two species and two reversible steps there are
no unconditionally detailed balanced mechanisms.) They con-
tain no circles, thus only the spanning forest conditions should
hold, and these are shown in the second column above.

If M = 3, R = 2 , there are nine conditionally detailed bal-
anced (see Equations 18–26) and 189 unconditionally detailed
balanced mechanisms. Let us calculate the number of con-
ditionally and unconditionally detailed balanced mechanisms
for the cases 𝑀 = 3, 4. Then, Table 6 results, where MC
denotes the total number of mass conserving mechanisms, U
is for unconditionally detailed balanced mechanisms, and C
stands for conditionally detailed balanced mechanisms: MC=

U + C. We use detailed balance as a condition during fitting.
Let us mention that our calculations heavily rely on

the program package ReactionKinetics written in Wol-
fram language (Mathematica46) and downloadable from
extras.springer.com using the ISBN number 978-1-4939-
8641-5. This package is aimed at helping the chemist to do
many kinds of symbolic and numerical investigations of reac-
tion mechanisms including solving the induced kinetic dif-
ferential equations or simulating the usual stochastic model,
but excluding parameter estimation. The codes written to the
present paper will be provided to the reader upon request.
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T A B L E 6 The total number of mechanisms (Tot) and the number of mass conserving (MC) and either unconditionally (U) detailed balanced or

conditionally (C) detailed balanced mechanisms with exactly three or four species (𝑀) and one, two, or three reversible reaction steps (𝑅)

Number of steps (𝑹)

𝑴 1 2 3

Tot MC = U + C Tot MC = U + C Tot MC = U + C

3 9 9 = 9 + 0 246 198 = 189 + 9 1994 599 = 0 + 599

4 3 3 = 3 + 0 1302 1254 = 1248 + 6 44 358 28 366 = 24 870 + 3496

3 APPLICATIONS OF THE

METHOD

Instead of demonstrating the method on examples that would
require a field-specific knowledge and additional formula-
tions (eg, in combustion: how do temperature and pressure
change and how do they affect the rate coefficients), we illus-
trate it on two simple applications that employ constant rate
coefficients and require no other state variables beyond con-
centrations. Although we use toy models, we think the results
are promising. The first generated example shows how noise
in “measured” data can impact on model selection, and it picks
the best models from nine mass-conserving, conditionally
detailed balanced models that can be generated with exactly
three species (𝑀 = 3) and two reversible steps (𝑅 = 2). The
second example is based on real-life data: measurements on
the salicylic acid transport, which can be formally treated as
a reaction kinetic problem. It shows an example for the inclu-
sion of fictitious species and demonstrates that if the reaction
network is not-reversible then at certain initial concentrations
an additional filtering criterion may be introduced to drasti-
cally reduce the number of candidate mechanisms.

1. Simulated noisy data. All nine mass conserving, condition-
ally detailed balanced reversible mechanisms were con-
structed with exactly 𝑀 = 3 species and 𝑅 = 2 pairs of
reaction steps (see Equations 18–26).

M1∶ X
𝑘1
⇌
𝑘−1

Y, X + Z
𝑘2
⇌
𝑘−2

Y + Z (18)

M2∶ X
𝑘1
⇌
𝑘−1

Z, X + Y
𝑘2
⇌
𝑘−2

Y + Z (19)

M3∶ Y
𝑘1
⇌
𝑘−1

Z, X + Y
𝑘2
⇌
𝑘−2

X + Z (20)

M4∶ 2X
𝑘1
⇌
𝑘−1

X + Y, X + Z
𝑘2
⇌
𝑘−2

Y + Z (21)

M5∶ 2X
𝑘1
⇌
𝑘−1

X + Z, X + Y
𝑘2
⇌
𝑘−2

Y + Z (22)

M6∶ 2Y
𝑘1
⇌
𝑘−1

X + Y, X + Z
𝑘2
⇌
𝑘−2

Y + Z (23)

M7∶ 2Y
𝑘1
⇌
𝑘−1

Y + Z, X + Y
𝑘2
⇌
𝑘−2

X + Z (24)

M8∶ 2Z
𝑘1
⇌
𝑘−1

X + Z, X + Y
𝑘2
⇌
𝑘−2

Y + Z (25)

M9∶ 2Z
𝑘1
⇌
𝑘−1

Y + Z, X + Y
𝑘2
⇌
𝑘−2

X + Z (26)

These are the simplest three-species models with three
independent rate coefficients. As both reaction steps
within models M1, M2, M3, M4, M5, and M7 describe the
same net change of stoichiometric coefficients, they have
the same equilibrium constant; thus the detailed balance
condition is formally same for them:

1 = 𝐾1𝐾
−1
2

=
𝑘1𝑘−2

𝑘−1𝑘2
. (27)

Whereas for models M6, M8, and M9, the second step
describes a change opposite to that of the first one (ie,
𝛾𝑚1 = −𝛾𝑚2, 𝑚 = 1, 2, 3), thus the detailed balance condi-
tion in their case is different:

1 = 𝐾1𝐾2 =
𝑘1𝑘2

𝑘−1𝑘−2
. (28)

During fitting, one of these equations was used as a con-
straint to determine the value of 𝑘−2 from the other three
rate coefficients.

To generate reference data, first, we solved the deter-
ministic model, the induced kinetic differential equations
of the first mechanism (Equation 18) with the assumed rate
coefficient values:

𝑘1 = 0.1, 𝑘−1 = 0.1, 𝑘2 = 0.1, thus 𝑘−2 = 0.1,

which fulfilled the detailed balance condition in Equa-
tion 27. We have chosen three sets of initial concentrations,
(𝑥(0), 𝑦(0), 𝑧(0)):

{(0.001, 2, 1), (1, 0.001, 2), (2, 1, 0.001)},

which can be obtained from each other by cyclic permu-
tation. Then, we took a sample from the 𝑥(𝑡), 𝑦(𝑡), and
𝑧(𝑡) concentration profiles in the [0,10] time interval at
equidistant discrete times with a sampling step size of 0.2,
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T A B L E 7 Measured concentration values of salicylic acid in the

gastric fluid (𝑥(𝑡)) and in the intestine fluid (𝑧(𝑡)) as a function time

𝒕𝒊 (h) 𝒙(𝒕𝒊) (mol/dm𝟑) 𝒕𝒊 (h) 𝒛(𝒕𝒊) (mol/dm𝟑)

1 0.01579 0 0

2 0.01429 1 0.0003

3 0.01327 2 0.000614

4 0.01230 3 0.000917

5 0.01148 4 0.00143

6 0.01066 5 0.00201

7 0.00988 6 0.00269

8 0.00912 7 0.00338

9 0.00851 8 0.00402

10 0.00791 9 0.00473

giving data series (𝑥
exp
𝑖𝑗

, 𝑦
exp
𝑖𝑗

, 𝑧
exp
𝑖𝑗

), where 𝑖 = 1, 2, 3 and
𝑗 = 0,… , 50. Finally, to mimic experimental error a nor-
mally distributed random noise with 4% and 16% standard
deviation was added to each concentration value as a rela-
tive error.

The program fitted deterministic kinetic models of all
candidate mechanisms separately to both noisy data sets
by finding optimum values for the rate coefficients that
minimize the following summed square relative deviation
objective function:

3
∑

𝑖=1

50
∑

𝑗=0

(

𝑥𝑖𝑗 − 𝑥
exp
𝑖𝑗

𝑥
exp
𝑖𝑗

)2

+

(

𝑦𝑖𝑗 − 𝑦
exp
𝑖𝑗

𝑦
exp
𝑖𝑗

)2

+

(

𝑧𝑖𝑗 − 𝑧
exp
𝑖𝑗

𝑧
exp
𝑖𝑗

)2

(29)

and identified the best models based on the Akaike infor-
mation criterion47 (AIC).

2. Real experimental data. Salicylic acid is an active metabo-
lite of aspirin (acetyl-salicylic acid), which is a common
painkiller drug. Its transport in the digestive system: from
the gastric fluid (ie, stomach acid, species X) to intestine
fluid (species Z) was investigated in a model experiment by
measuring its concentration in the two compartments48 at
every whole hour (at the ith hour: (𝑥exp

𝑖
, 𝑧

exp
𝑖

); see Table 7).
In this example, no chemical reactions are involved, and
the same species in different compartments is denoted with
different letters and its transport between compartments
is described as formal reactions. The single-step X ←→ Z

model did not fit well to the data, and it was found that the
concentration changes could be explained by the simple
consecutive mechanism: X ←→ Y ←→ Z with the assump-
tion of intermediate fictitious formal species (ie, compart-
ment) Y.

As an application of the presented method, we asked
the following question: which of the six kinetic mech-

anisms X
𝑘1
←←←←←←←←←←→ Y

𝑘2
←←←←←←←←←←→ Z, X

𝑘1
←←←←←←←←←←→ Z

𝑘2
←←←←←←←←←←→ Y, etc, generated by

permuting the order of the compartments, can describe the
observed concentration changes without having any fur-
ther information on the nature of the problem. We took
fixed intermediate 𝑥1 = 0.01579 and initial 𝑦0 = 0 and
𝑧0 = 0 concentrations (in mol/dm3 units) and tried to fit
all the six models to the data by minimizing the following
objective function via tuning rate coefficients (𝑘1 and 𝑘2)
of the two consecutive steps:

10
∑

𝑖=2

(𝑥𝑖 − 𝑥
exp
𝑖

)2 +

9
∑

𝑖=1

(𝑧𝑖 − 𝑧
exp
𝑖

)2. (30)

The deterministic kinetic models were integrated using an
automatic method (function NDSolve in Mathematica46 (ver-
sion 12.0)), which chooses between Adams, backward dif-
ferentiation formula, explicit Runge-Kutta, implicit Runge-
Kutta, and symplectic partitioned Runge-Kutta methods.
The optimal parameters of the candidate models were also
determined with an automatic method (function Nonlinear-
ModelFit in Mathematica), which chooses between the fol-
lowing methods: conjugate gradient, gradient, Levenberg-
Marquardt, Newton, Nelder-Mead, differential evolution,
simulated annealing, random search, and quasi-Newton. To
investigate only physically meaningful models, the square root
of rate coefficients was optimized, which, in effect, constrains
them to be nonnegative. The optimizations were started with
multiple different random initial guess values and ended up
in the same minimum, thus we assumed that the global one
was found.

3.1 Simulated noisy data in the 𝑴 = 𝟑, 𝑹 = 𝟐

case

We fitted the models of the nine reaction mechanisms to the
generated data. The estimated values of the parameters with
their standard errors (ie, square root of the estimated error
variance), root-means-square relative deviation (RMSRD),
and the AIC47 values for fits to data with 4% and 16% standard
deviation of the Gaussian noise are shown in Tables 8 and 9,
respectively. Rate coefficient values are given with a precision
of 10−5 as smaller values lead to reaction rates, which cause
negligible concentration change on the investigated timescale
(ie, 101). Figures 5 and 6 show the data and the fitted model
solutions for the two noisy data sets. According to the expec-
tations, the original model (model M1) performs well, stan-
dard errors of parameters are small, and the original values are
within one standard error of the optimal values. Two further
models, M4 and M6, are also qualitatively correct and repro-
duce well the noisy data, whereas the other six models give
qualitatively wrong solutions with large deviations for several
concentration curves. The relative likelihood of model M𝑖 (eg,
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T A B L E 8 The rate coefficients and the RMSRD and AIC value for the nine fitted models

M𝒊 𝒌𝟏 𝒌−𝟏 𝒌𝟐 𝒌−𝟐 RMSRD AIC

M1 0.09720 (0297) 0.09695 (0349) 0.10317 (0512) 0.10291 0.0484 −1300.3

M2 0.00000 (0000) 0.00000 (0000) 0.04895 (0870) 0.21380 0.4316 529.9

M3 0.07527 (2355) 0.04623 (2062) 0.00006 (2235) 0.00004 0.4532 891.9

M4 0.05493 (0210) 0.05558 (0252) 0.16802 (0455) 0.17001 0.0501 −1245.7

M5 0.00000 (0000) 0.00000 (0000) 0.04894 (0870) 0.21380 0.4316 529.9

M6 0.06699 (0182) 0.07084 (0164) 0.12128 (0401) 0.11469 0.0506 −1265.5

M7 0.02554 (1565) 0.00000 (2755) 0.00000 (0043) 0.00000 0.4301 882.3

M8 0.00000 (0010) 0.00000 (0002) 0.04895 (0870) 0.21380 0.4316 529.9

M9 0.03398 (1098) 0.07685 (1484) 0.00000 (0496) 0.00000 0.4187 856.6

Data were generated by adding a normally distributed relative noise with 4% standard deviation to the simulation results of the reference model. The value of 𝑘−2 was

calculated from the respective detailed balance condition (Equation 27 or Equation 28). Standard error of the parameters is given in brackets as an uncertainty in their

last digits.

T A B L E 9 The rate coefficients and the RMSRD and AIC value for the nine fitted models

M𝒊 𝒌𝟏 𝒌−𝟏 𝒌𝟐 𝒌−𝟐 RMSRD AIC

M1 0.09002 (1090) 0.08916 (01279) 0.11167 (02038) 0.11059 0.1790 −27.7

M2 0.00000 (0006) 0.00000 (00029) 0.04688 (00953) 0.21354 0.4491 636.4

M3 0.06554 (2231) 0.04005 (01988) 0.00000 (02127) 0.00000 0.4751 942.8

M4 0.04951 (0691) 0.04947 (00825) 0.17531 (01775) 0.17520 0.1804 −21.6

M5 0.00000 (0003) 0.00000 (00014) 0.04688 (00953) 0.21354 0.4491 636.4

M6 0.06481 (0677) 0.06855 (00611) 0.12128 (01526) 0.11466 0.1784 −30.8

M7 0.02451 (2318) 0.00000 (03736) 0.00000 (18571) 0.00000 0.4595 937.0

M8 0.12637 (3862) 0.37035 (10882) 0.00000 (00165) 0.00000 0.4491 750.5

M9 0.02709 (0993) 0.06592 (01332) 0.00000 (00550) 0.00000 0.4668 913.0

Data were generated by adding a normally distributed relative noise with 16% standard deviation to the simulation results of the reference model. The value of 𝑘−2 was

calculated from the respective detailed balance condition (Equation 27 or Equation 28). Standard error of the parameters is given in brackets as an uncertainty in their

last digits.

M2-M9) with respect to M𝑗 (eg, M1, M6) can be calculated
based on their AIC value differences using the following for-
mula:

𝑃 (M𝑖)

𝑃 (M𝑗)
= exp

(

−
AICM𝑖 − AICM𝑗

2

)

. (31)

According to the AIC differences in Table 8, model M1 is
significantly better than M4 and M6 in the case of 4% noise.
However, in the case of 16% noise the AIC differences in
Table 9 suggest that model M6 is around 5 and 100 times
more probable than models M1 and M4, respectively. Conse-
quently, M6 is significantly better (above 95% of confidence)
than model M4, whereas this cannot be stated with respect to
model M1 (below 95% confidence). Consequently, with the
increase of noise (ie, measurement uncertainty) model M6
cannot be distinguished with enough statistical confidence
from the correct M1 model and further investigation is needed
to decide between them. One possibility to reduce the exper-
imental noise (eg, to 4%) is by applying a better technique or
by multiple measurements. Another possibility is to consider

other initial conditions that can highlight the differences of
similar models.

However, it is not always possible to pick the best model
by reducing experimental noise as models can be structurally
indistinguishable (see, eg, Ref. 18). Another interesting obser-
vation is that models M2 and M5 are effectively identical to

the single-step X + Y
𝑘2
⇌
𝑘−2

Y + Z model as their optimal rate

coefficient values for the first step (𝑘1, 𝑘−1) are negligibly
small, and thereby they provide visually identical simula-
tion results.

3.2 Salicylic acid transport with
𝑴 = 𝟑, 𝑹 = 𝟐 case

After brief inspection of the candidate models, it turns out
that it is unnecessary to fit all models, because mechanisms
Y ←→ Z ←→ X, Z ←→ X ←→ Y, Z ←→ Y ←→ X provide constant
zero concentration for formal species Z, which is known to be
definitely different from zero. Furthermore, due to the 𝑦0 = 0

assumption, case Y ←→ X ←→ Z simplifies to the single-step
X ←→ Z mechanism, which is inappropriate.
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F I G U R E 5 Fitting models M1-M9 (blue solid lines; see Equations 18–26) to data (red dots) simulated by model M1 with an added normally

distributed relative noise with 4% standard deviation, at three initial conditions shown in rows [Color figure can be viewed at wileyonlinelibrary.com]

How can one systematically filter out these cases in more
complex situations? One can use Volpert’s theorem49 as in
Ref. 50 to identify those species that will have strictly posi-
tive concentrations according to a model for all positive times
given a set of species having positive concentrations at zero
time. If the species with measured nonzero concentration are
not among these species, then the corresponding model can-
not be the right one and can be discarded.

Fitting the X
𝑘1
←←←←←←←←←←→ Y

𝑘2
←←←←←←←←←←→ Z model gives good results: Start-

ing from the initial estimates (1 h−1,1 h−1) for the reac-
tion rate coefficients (more precisely, transport coefficients)
gives the results with small standard error {𝑘1 = (0.0787 ±

0.0008) h−1, 𝑘2 = (0.181 ± 0.005) h−1}, a “good”, low corre-
lation value of −0.4997. The fitting can also be considered as
good (see the left panel of Figure 7). However, if one picks the
wrong X ←→ Z ←→ Y mechanism, then the concentrations of
species Z are fitted badly, as seen in the right panel of Figure 7.

4 CONCLUSIONS AND OUTLOOK

In this paper, we presented a methodology for kinetic model
generation and selection using the framework and theorems

of formal reaction kinetics. We demonstrated the method
on two formal examples, and thus we only used chemical
species without knowing or assuming anything on their ele-
mental composition or structure. One can formulate specific
sets of restrictions by taking into consideration the chemical
nature of the problem to reduce the number of possible can-
didate models. From the knowledge of the atomic structure of
the species, further restrictions can be derived. For example,
explicitly stating the molar mass of the species with measured
concentrations reduces the number of mass conserving mech-
anisms. Furthermore, assuming balance of elements in the
reactions, or considering maximum valency of elements when
generating fictitious species, constrains the range of possible
species and reactions, thereby limits the numbers of them and
that of the reaction mechanisms.

We used mass action type kinetics during the integration of
the models, and it was also exploited when constraints for con-
ditionally detailed balanced mechanisms was formulated. It is
quite natural to ask why we do not select complex balanced

reaction mechanisms, because this concept turned out to be
more fundamental during the development of formal reaction
kinetics.23 Furthermore, in the case of mass action type kinet-
ics we have a nice (structural) necessary and sufficient con-
dition (the reaction mechanism should be weakly reversible
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F I G U R E 6 Fitting models M1-M9 (blue solid lines; see Equations 18–26) to data (red dots) simulated by model M1 with an added normally

distributed relative noise with 16% standard deviation, at three initial conditions shown in rows [Color figure can be viewed at

wileyonlinelibrary.com]

F I G U R E 7 Fitting of models X
𝑘1
←←←←←←←←←→ Y

𝑘2
←←←←←←←←←→ Z (left) and X

𝑘1
←←←←←←←←←→ Z

𝑘2
←←←←←←←←←→ Y (right) to experimental data (red dots) on salicylic acid transport between

compartments: from stomach (higher values) to intestine (lower values). Salicylic acid in different compartments is represented by different formal

species: X (stomach, blue solid line), Z (intestine, green dotted line), and Y (fictitious compartment, orange dashed line) [Color figure can be viewed

at wileyonlinelibrary.com]

and should have a zero deficiency 𝛿 ∶= 𝑁 − 𝐿 − 𝑆 = 0), this
property can also be simply tested. Detailed balancing and
complex balancing are not so far from each other as they seem
to be.51–54

While mechanism generation can be done very quickly, the
integration of models multiple times during fitting will take

time. Finding good initial estimates of the parameters is an
important related problem55 as it can accelerate parameter fit-
ting and help find the global minimum of the objective func-
tion, which needs to be done for a large number of candidate
models. Once all models have been integrated, we select the
best fitting reaction mechanisms using AIC and offer them to
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the chemist for further investigations and interpretation. Here
we do not want to spend too much time with the detailed sta-
tistical analysis of simulated data and the fitted models (see
the following books on this topics: Refs. 8,9,16, and 10).

Carefully designed set of restrictions drastically decrease
the number of candidate models, and the increasing speed of
computers allows the treatment of larger and larger number
of candidate models. Depending on the additionally consid-
ered restrictions and efficiency improvements in parameter
estimation, however, sooner or later the combinatorial blow-
up in the number of models wins. Consequently, the proposed
procedures are expected to work for systems that can be effec-
tively modeled with not so many real or fictitious species. Our
immediate goal is to extend and apply the method to multiple
real experimental data sets.

Beyond automatic complete kinetic mechanism generation
and selection, the method can be used as a tool for iden-
tifying missing reaction steps needed for the interpretation
of direct kinetic measurements, which are designed to inves-
tigate the rate of a single or very few reactions. Often the
assumed steps are not enough to explain the observed con-
centration profiles. In such case, the proposed method can
help to interpret the results by the assumption of additional
intermediates or reactions, which may or may not have been
postulated. Formally, this situation was demonstrated in the
salicylic acid transport example, where the need for an inter-
mediate, Y compartment was identified to explain the mea-
sured concentration-time curves. The method presented here
can also be applied as a special kind of lumping.28 Suppose
a big kinetic model is given and we construct and parame-
terize such small models using relevant species (eg, reactants,
major products) of the detailed mechanism and some fictitious
lumped species in the way described above, that can repro-
duce the measured or simulated data obtained with the big
one. We believe that the proposed method can find applica-
tion in a wide range of fields where mulitstep kinetic mod-
els are applied: in gas kinetics: combustion and atmospheric
chemistry, biomass pirolysis,56,57 liquid phase kinetics,58 and
metabolism (including enzyme kinetics).

The calculations (Mathematica notebooks) and data can be
requested from the authors.
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