
A Haar meager set that is not strongly Haar meager
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Abstract. Following Darji, we say that a Borel subset B of an abelian Polish
group G is Haar meager if there is a compact metric space K and a continuous
function f : K → G such that the preimage of the translate, f−1(B + g) is
meager in K for every g ∈ G. The set B is called strongly Haar meager if there
is a compact set C ⊆ G such that (B + g)∩C is meager in C for every g ∈ G.
The main open problem in this area is Darji’s question asking whether these
two notions are the same. Even though there have been several partial results
suggesting a positive answer, in this paper we construct a counterexample.
More specifically, we construct a Gδ set in Zω that is Haar meager but not
strongly Haar meager. We also show that no Fσ counterexample exists, hence
our result is optimal.
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1. Introduction

The notion of Haar meager sets in Polish groups was first introduced by Darji
in [2] in 2013 as a topological counterpart to the so-called Haar null sets. Although
in this paper we will only study abelian Polish groups, we note that [3] have gener-
alized this notion for arbitrary Polish groups. For a recent survey about the basic
properties of Haar null sets and Haar meager sets, see [5].
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Definition 1.1. Let (G,+) be an abelian Polish group. A set A ⊆ G is said to
be Haar meager if there are a Borel set B ⊇ A, a nonempty compact metric space
K and a continuous function f : K → G such that f−1(B + g) is meager in K for
every g ∈ G. A function f satisfying this is called a witness function for A.

Haar meager sets form a σ-ideal which is contained in the σ-ideal of meager
sets (see [2, Theorems 2.9 and 2.2]). In a locally compact group, these two ideals
coincide, but if G is not locally compact, then there exists a closed meager set that
is not Haar meager (see [2, Corollary 2.5 and Example 2.6]).

When we prove that a set is Haar meager, it is often possible to use a witness
function which is just the identity of G restricted to some compact subset of G.
This observation yields the following:

Definition 1.2. Let (G,+) be an abelian Polish group. A set A ⊆ G is said to be
strongly Haar meager if there are a Borel set B ⊇ A and a nonempty compact set
C ⊆ G such that (B + g) ∩ C is meager in C for every g ∈ G. A compact set C
satisfying this is called a witness set for A.

Remark. It is easy to see that a set A ⊆ G is strongly Haar meager if and only if
it is Haar meager and has an injective witness function.

One of the most important questions in the topic is [2, Problem 2], which asks
if these two notions are equivalent:

Question 1.3 (Darji). Is every Haar meager set strongly Haar meager?

We remark that in the case of Haar null sets [1, Theorem 4.3] answers the anal-
ogous question affirmatively.

To answer Question 1.3 affirmatively, it would have been a natural idea to prove
that if f : K → G is a witness function for a Haar meager set, then the choice
C = f(K) satisfies the requirements of Definition 1.2. However [3, Example 11]
ruled out this by constructing a Haar meager set where the image of one particular
witness function does not satisfy the requirements of Definition 1.2:

Example 1.4 (Doležal-Rmoutil-Vejnar-Vlasák). There exists a Gδ Haar meager
set A ⊆ R, a compact metric space K and a witness function f : K → R such that
A ∩ f(K) is comeager in f(K).

The result [1, Theorem 5.13] shows that in a certain class of Polish groups the
Haar meager sets and the strongly Haar meager sets coincide:

Definition 1.5. A topological group G is called hull-compact if each compact
subset of G is contained in a compact subgroup of G.

Theorem 1.6 (Banakh-Głąb-Jabłońska-Swaczyna). If the abelian Polish group G
is hull-compact, then every Haar meager subset of G is strongly Haar meager.

Example 1.7. It is not very hard to verify that the abelian Polish group (Q/Z)ω

is hull-compact (where we endow Q with the discrete topology).
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In this paper we answer the question of Darji negatively by constructing a coun-
terexample in the group Zω:

Theorem 1.8. In the abelian Polish group Zω, there exists a Gδ set R that is Haar
meager but not strongly Haar meager.

In Theorem 5.7 we also prove that this counterexample is as simple as possible:
every Fσ Haar meager set is strongly Haar meager. We also note that in Claim 5.5
we prove that our example is in fact a so-called Haar nowhere dense set.

As an additional motivation, we mention that according to part (2) of [1, The-
orem 13.8] the generic variants of these notions (when we require not only one
witness, but comeager many witnesses) do coincide:

Theorem 1.9 (Banakh-Głąb-Jabłońska-Swaczyna). Assume that G is an abelian
Polish group and B ⊆ G is a Borel set. Then the following are equivalent:

(1) in the Polish space C({0, 1}ω, G) of continuous functions from {0, 1}ω to G
(endowed with the compact-open topology) the set

{f ∈ C({0, 1}ω, G) : f witnesses that B is Haar meager} is comeager,

(2) in the Polish space K(G) of nonempty, compact subsets of G

{C ∈ K(G) : C witnesses that B is strongly Haar meager} is comeager.

In (1) we only considered the potential witness functions whose domain is the
Cantor set {0, 1}ω. This is a natural restriction, as according to [4, Proposition 3],
every Haar meager set has a witness function whose domain is {0, 1}ω.

2. Preliminaries

As usual, N and ω will both denote the set of nonnegative integers. We will use
“N” when we use this set as a topological space (with the discrete topology) and
use “ω” when we use it as an ordinal or index set.

We will use some notation related to sequences (i.e. functions s whose domain
is either ω or {0, 1, . . . , n − 1} for some natural number n). As usual, sk denotes
the element of the sequence s with index k (i.e. sk = s(k) for an index k that is
in the domain of s). If S is an arbitrary set, then S<ω =

⋃
n∈ω S

n denotes the set
of finite sequences of elements of S and ∅ denotes the empty sequence ∅ ∈ S0. For
s ∈ S<ω, |s| denotes the length of s.

If s and s′ are two sequences and s is finite (s′ may be infinite), then sa s′

denotes concatenation of s and s′. In particular if s ∈ S<ω and ` ∈ S is an
additional element, then sa ` denotes the sequence of length |s|+ 1 which consists
of the elements of s followed by ` as the last element. If x is a (finite or infinite)
sequence of length at least n, then x �n denotes the sequence formed by the first n
elements of x.

If s, s′ are two sequences then we say that s ⊆ s′ if there is a sequence t such
that s′ = sa t (if we consider functions and sequences as sets of pairs, this is just
the usual inclusion relation). For a sequence s ∈ S<ω, let [s] ⊆ Sω be the set of
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sequences which have s as an initial segment, i.e.

[s] = {x ∈ Sω : s ⊆ x}.

We say that a set A ⊆ S<ω is cofinal if for every s ∈ S<ω there exists an a ∈ A
such that s ⊆ a (i.e. s is an initial segment of a).

We will use K(X) to denote the nonempty compact sets of a space X, equipped
with the Vietoris topology. The well-known result [7, Theorem 4.25] states that if
X is Polish, then K(X) is also Polish. We will also use the following fact:

Fact 2.1 (Michael [8, 4.13.1]). If X is a zero-dimensional Polish space (that is,
X is Polish and has a basis consisting of clopen sets), then K(X) is also zero-
dimensional.

A standard reference book for notions in descriptive set theory is [7].

3. Translating the compact sets apart

This section is motivated by the results and ideas in [6, 9, 10]. These papers
prove slightly weaker claims than our Theorem 3.1, but work in a more general
setting. (Our proof relies on the structure of Zω to make the calculations shorter
and simpler.)

Let
H = {(K,x) ∈ K(Zω)× Zω : x ∈ K}.

Note that H is a closed set in the product space K(Zω)× Zω.

Theorem 3.1. There exists a map t : K(Zω) → Zω so that the map T : H → Zω

defined by
T (K,x) = x+ t(K)

is a homeomorphism between H and the set

F = T (H) =
⋃

K∈K(Zω)

(K + t(K)),

where the union is disjoint. Moreover, F is a closed subset of Zω and satisfies that

(K + t(K) + {−1, 0, 1}ω) ∩ F = K + t(K)

for each K ∈ K(Zω).

Proof. As Fact 2.1 states that K(Zω) is zero-dimensional, we may apply [7, Theorem
7.2] to get an embedding

c : K(Zω)→ {−1, 1}ω.
Define the (clearly continuous) function

b : K(Zω)→ ωω, b(K)n = max{|xn| : x ∈ K}+ 1.

For each n ∈ ω let
t(K)n = 3 · b(K)n · c(K)n.

It is clear that both t and

T : H → Zω, T (K,x) = x+ t(K)

are continuous.
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Fact 3.2. Assume that (K,x) ∈ H, y = T (K,x) and n ∈ ω. Then it is easy to
verify that

(1) |yn| > b(K)n and

(2) c(K)n =

{
+1 if yn > 0,

−1 if yn < 0.

Claim 3.3. T is injective.

Proof. Assume that (K,x), (K ′, x′) ∈ H and T (K,x) = T (K ′, x′). Using Fact 3.2
part (2), c(K) = c(K ′), but then K = K ′, as c is injective. This also implies that

x = T (K,x)− t(K) = T (K ′, x′)− t(K ′) = x′. �

Claim 3.4. F = T (H) is closed and the map T−1 : F → H is continuous.

Proof. Assume that y(m) ∈ F for each m ∈ ω and this sequence converges to some
y∗ ∈ Zω. As F = T (H), there are compact sets K(m) ∈ K(Zω) and sequences
x(m) ∈ K(m) such that y(m) = T (K(m), x(m)) for each m ∈ ω. It is sufficient to
prove that

(
(K(m), x(m))

)
m∈ω converges to some (K∗, x∗) ∈ H. (If this holds, then

y∗ = T (K∗, x∗) ∈ F also demonstrates that F is closed.)
Using Fact 3.2 part (2) and the convergence of y(m) yields that

(
c(K(m))

)
m∈ω

converges to some element γ ∈ {−1, 1}ω. Our next step is to prove that γ is
contained in the image of c.

Notice that
f : ω → ω, f(n) = sup

m∈ω
|y(m)
n |

is a well-defined function, because for each n ∈ ω the sequence
(
|y(m)
n |

)
m∈ω is

convergent and therefore bounded. Using Fact 3.2 part (1),

f(n) ≥ |y(m)
n | > b(K(m))n for each n,m ∈ ω.

Applying the definition of b, this implies that for each m ∈ ω,

K(m) ∈ K({z ∈ Zω : |zn| < f(n) for each n ∈ ω}︸ ︷︷ ︸
compact

).

As the (nonempty) compact subsets of a compact space form a compact space
themselves,

(
K(m)

)
m∈ω has a subsequence that converges to some compact set K∗.

Applying this, the continuity of c and the fact that limm∈ω c(K
(m)) = γ exists, we

obtain that
γ = lim

m∈ω
c(K(m)) = c(K∗).

As c was an embedding, this implies that K(m) converges to K∗ (when m→∞).
As t is continuous and y(m) is convergent, this implies that x(m) = y(m)−t(K(m))

is also convergent to some x∗ ∈ Zω. Finally (K∗, x∗) ∈ H follows from the fact
that (K(m), x(m))→ (K∗, x∗) and H is a closed set. �

This claim implies that F is closed and T is a homeomorphism between H and
F . It is clear that

F =
⋃

K∈K(Zω)

(K + t(K)).
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To conclude the proof, we will fix an arbitrary K ∈ K(Zω) and show that

(K + t(K) + {−1, 0, 1}ω) ∩ F = (K + t(K)).

Fix an arbitrary z ∈ (K+t(K)+{−1, 0, 1}ω)∩F . There are x ∈ K, ε ∈ {−1, 0, 1}ω,
K ′ ∈ K(Zω) and x′ ∈ K ′ such that

z = x+ t(K)︸ ︷︷ ︸
=H(K,x)

+ε = x′ + t(K ′)︸ ︷︷ ︸
=H(K′,x′)

.

Using both parts of Fact 3.2 and the fact that b(K)n ≥ 1 for each n ∈ ω it is easy
to verify that

c(K)n = 1 ⇔ zn > 0 ⇔ c(K ′)n = 1 for each n ∈ ω.

As c is injective, this means that K ′ = K, so z ∈ K + t(K), as claimed. �

Remark. An analogous proof would work in the case when {−1, 0, 1}ω is replaced
in the statement by any other compact subset C ⊆ Zω that contains the all zero
sequence.

4. Construction of the witness function

The goal of this section is to construct a compact metric space K0 and a function
f0 : K0 → Zω that will witness the Haar meagerness of our example. In order to
do this, we will introduce some structures and prove elementary claims about their
properties.

We say that a sequence s is m-segmented if it is the concatenation of constant
sequences of length 2m. More formally, this means the following:

Definition 4.1. Let S be an arbitrary set and m ∈ N be a nonnegative integer. An
infinite sequence s ∈ Sω is m-segmented if sq·2m+r1 = sq·2m+r2 for all integers q ∈ N
and 0 ≤ r1, r2 < 2m. A finite sequence s ∈ S<ω is m-segmented if |s| = Q · 2m for
some Q ∈ N and sq·2m+r1 = sq·2m+r2 for all integers 0 ≤ q < Q and 0 ≤ r1, r2 < 2m.

Notice that an m-segmented sequence is also m′-segmented for all 0 ≤ m′ ≤ m.

Definition 4.2. Let us fix a sequence bs ∈ {0, 1}<ω for each s ∈ ω<ω in a way that
it satisfies the following properties:

(1) b∅ = ∅,
(2) |bs| is divisible by 2|s|,
(3) if s ∈ ω<ω and β is a nonempty finite |s|-segmented sequence such that
|bs| + |β| is divisible by 2|s|+1, then there is exactly one ` ∈ ω such that
bsa ` = bs

a β,
(4) conversely, if s ∈ ω<ω and ` ∈ ω, then bsa ` can be written as bsa ` = bs

a β

where β is a nonempty finite |s|-segmented sequence satisfying that |bs|+|β|
is divisible by 2|s|+1.

It is clear that using recursion we can choose a system {bs}s∈ω<ω that satisfies
these properties.
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Definition 4.3. Define the set Cs ⊆ {0, 1}ω ⊆ Zω by

Cs = {bs a x : x ∈ {0, 1}ω and x is |s|-segmented}.

Fact 4.4. The sets Cs have the following properties:
(1) C∅ = {0, 1}ω,
(2) Cs is compact for each s ∈ ω<ω,
(3) if s ⊆ s′, then Cs ⊇ Cs′ .

Proof. Properties (1) and (2) are trivial, property (3) can be proved by using in-
duction on the value of (|s′| − |s|) and applying property (4) of Definition 4.2. �

Claim 4.5. Assume that s ∈ ω<ω and U is a nonempty relatively open subset of
Cs. Then there are infinitely many indices ` ∈ ω such that Csa ` ⊆ U .

Proof. Fix an arbitrary element u ∈ U . As U is relatively open, there exists an
n0 ∈ ω such that Cs ∩ [u �n] ⊆ U for each n ≥ n0. We may also assume that
n0 > |bs|.

Let us define the infinite set

N = {n ∈ ω : n ≥ n0 and 2|s|+1 divides n}

and consider an arbitrary n ∈ N .
As U ⊆ Cs, the sequence u can be written as bs a x where x ∈ {0, 1}ω is an

|s|-segmented sequence. Using property (2) of Definition 4.2, 2|s| divides n − |bs|,
therefore it is clear that β = x �(n − |bs|) is |s|-segmented. Also notice that β is
nonempty because n ≥ n0 > |bs| and |bs| + |β| = n is divisible by 2|s|+1, and thus
by property (3) of Definition 4.2, there exists an index `n ∈ ω such that

u �n = bs
a(x �(n− |bs|)) = bs

a β = bsa `n .

Clearly Csa `n ⊆ [bsa `n ] and according to property (3) of Fact 4.4 Csa `n ⊆ Cs,
therefore Csa `n ⊆ U . This is sufficient, because property (3) of Definition 4.2
implies that `n 6= `n′ if n 6= n′. �

We will also use the following encoding of ω<ω in {0, 1}<ω:

Definition 4.6. For n ∈ ω, let h(n) = (0, 0, . . . , 0, 1) ∈ {0, 1}n+1 be the sequence
consisting of n zeroes and then “1” as the last element. Generalizing this, for a finite
sequence s = (s0, s1, . . . , sk−1) ∈ ω<ω, let h(s) = h(s0)

a h(s1)
a . . .a h(sk−1).

Let h0(s) ∈ {0, 1}ω denote the infinite sequence h(s)a(0, 0, . . .) (that is, h(s)
extended to infinite length by appending zeroes).

Fact 4.7. The functions h : ω<ω → {0, 1}<ω and h0 : ω<ω → {0, 1}ω have the
following properties:

(1) h and h0 are both injective,
(2) if s, s′ ∈ ω<ω, then

s ⊆ s′ ⇔ [h(s)] ⊇ [h(s′)] ⇔ [h(s)] 3 h0(s′),

(3) if s ∈ ω<ω, k ∈ ω and ` ∈ ω is large enough, then [h(sa `)] ⊆ [h0(s) � k].
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Intuitively we will use h0(s) as a “height” assigned to the sequence s: when we
construct the compact metric space K0, we will “lift” a copy of Cs to height h0(s)
for each s ∈ ω. More precisely, this means the following:

Definition 4.8. Let K0 be the closure of the set⋃
s∈ω<ω

Cs × {h0(s)}

in the space Zω × {0, 1}ω and let f0 : K0 → Zω be the restriction of the projection
Zω × {0, 1}ω → Zω to the set K0.

Claim 4.9. K0 is compact.

Proof. According to Definition 4.3, Cs ⊆ {0, 1}ω ⊆ Zω for each s ∈ ω<ω. This
clearly implies that the closed set K0 is a subset of {0, 1}ω × {0, 1}ω, a compact
set. �

To study the structure of the set K0, we introduce

Ds =
⋃

σ∈ω<ω

σ⊇s

Cσ × {h0(σ)} ⊆ Zω × {0, 1}ω.

Using this notation, the definition of K0 can be written as K0 = D∅. It is clear
that if s ⊇ s′ then Ds ⊆ Ds′ , and in particular Ds ⊆ D∅ ⊆ K0 holds for each
s ∈ ω<ω.

Claim 4.10. For each s ∈ ω<ω,

Ds = K0 ∩ (Zω × [h(s)]) = K0 ∩ (Cs × [h(s)])

and therefore Ds is relatively clopen in K0.

Proof. By property (2) of Fact 4.7, s ⊆ σ if and only if h0(σ) ∈ [h(s)], so

D∅ ∩ (Zω × [h(s)]) = Ds.

Elementary calculations show that if A,B are two subsets of a topological space
and B is clopen, then A ∩B = A ∩ B. Using this for the clopen set Zω × [h(s)]

yields that
K0 ∩ (Zω × [h(s)]) = Ds.

This clearly shows that Ds is relatively open in K0.
To prove the second equality, notice that Cσ ⊆ Cs for any sequence σ ⊇ s

and thus Ds ⊆ Cs × {0, 1}ω. Taking closure and then intersecting with Ds =

K0 ∩ (Zω × [h(s)]) yields that Ds = K0 ∩ (Cs × [h(s)]), as stated. �

We will use the following lemma to prove that certain subsets of K0 are meager
(and in fact, nowhere dense):

Lemma 4.11. If X ⊆ Zω satisfies that

{s′ ∈ ω<ω : X ∩ Cs′ = ∅} is cofinal in ω<ω,

then f−10 (X) is nowhere dense in K0.
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Proof. Let U be an arbitrary nonempty, relatively open subset of K0. Then U can
be written as U = K0 ∩ V where V is open (in Zω × {0, 1}ω).
K0 = D∅ and K0 intersects the open set V , therefore D∅ also intersects V .

This implies that there is a sequence s ∈ ω<ω and a point x ∈ Cs such that
(x, h0(s)) ∈ V .

As V is an open set in the product space Zω × {0, 1}ω, there are n, k ∈ ω such
that [x �n]× [h0(s) � k] ⊆ V .

As Cs∩[x �n] is a nonempty relatively open subset of Cs, we may apply Claim 4.5
to get an infinite set L ⊆ ω of indices such that Csa ` ⊆ Cs ∩ [x �n] for each ` ∈ L.
Property (3) of Fact 4.7 implies we may choose an index ` ∈ L which also satisfies
that [h(sa `)] ⊆ [h0(s) � k].

Using the condition of the lemma we can find an s′ ∈ ω<ω such that s′ ⊇ sa `

and X ∩ Cs′ = ∅. Claim 4.10 states that Ds′ = K0 ∩ (Cs′ × [h(s′)]) is a relatively
clopen subset ofK0. This implies that f0(Ds′) ⊆ Cs′ , but then applyingX∩Cs′ = ∅
yields f−10 (X) ∩Ds′ = ∅. Also notice that

Ds′ = K0 ∩ (Cs′ × [h(s′)]) ⊆ K0 ∩ (Csa ` × [h(sa `)]) ⊆
⊆ K0 ∩ ([x �n]× [h0(s) � k]) ⊆ K0 ∩ V = U.

This means that in an arbitrary nonempty, relatively open subset U of K0 we
found a (clearly nonempty) subset Ds′ that is relatively open in K0 and disjoint
from f−10 (X). This implies that f−10 (X) is nowhere dense in K0. �

5. Construction of the example and proof of the main result

Now we are ready to prove our main result:

Theorem 1.8. In the abelian Polish group Zω, there exists a Gδ set R that is Haar
meager but not strongly Haar meager.

Proof. Fix a map t : K(Zω) → Zω which satisfies the conditions of Theorem 3.1.
Recall that

H = {(K,x) ∈ K(Zω)× Zω : x ∈ K}
is a closed set and according to Theorem 3.1 the map

T : H → Zω, T (K,x) = x+ t(K)

is a homeomorphism between H and the closed set F = T (H) ⊆ Zω, and this set
F satisfies that

(K + t(K) + {−1, 0, 1}ω) ∩ F = K + t(K)

for each K ∈ K(Zω). As

{−1, 0, 1}ω = {0, 1}ω − {0, 1}ω = C∅ − C∅,

we can reformulate this fact:

Fact 5.1. The set F satisfies that

(K + t(K) + C∅ − C∅) ∩ F = K + t(K) for each K ∈ K(Zω).

We will use the following definition:
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Definition 5.2. If s ∈ ω<ω, then let Ts = {t ∈ Zω : t+ Cs ⊆ F} denote the set of
translations which move Cs into F .

Claim 5.3. Ts is closed for each s ∈ ω<ω.

Proof. We prove that for an arbitrary s ∈ ω<ω, the set Ts contains all of its limit
points. Assume that ti ∈ Ts for each i ∈ ω and t∗ = limi→∞ ti exists. We know
that if c ∈ Cs and i ∈ ω, then ti + c ∈ F . As F is closed, this implies that if
c ∈ Cs, then limi→∞(ti + c) = t∗ + c ∈ F . This shows that t∗ ∈ Ts, concluding the
proof. �

Using these sets of translations, we can define the set R:

Definition 5.4. Let
R = F \

⋃
s∈ω<ω

⋃
`∈ω

(Ts + Csa `).

It is clear from this definition that R is Gδ and R ⊆ F .
The rest of the proof consists of two parts: We will first prove Claim 5.5, which

will imply that R is Haar meager, then we will prove Claim 5.6, which will imply
that R is not strongly Haar meager.

Claim 5.5. For the compact metric space K0 and function f0 defined in Defini-
tion 4.8, if g ∈ Zω, then f−10 (R + g) is a nowhere dense subset of K0. (Using the
terminology of [1], this states that R is Haar nowhere dense.)

Proof. Fix an arbitrary g ∈ Zω. According to Lemma 4.11, it is sufficient to prove
that

{s′ ∈ ω<ω : (R+ g) ∩ Cs′ = ∅} is cofinal in ω<ω.
We fix an arbitrary s ∈ ω<ω and prove that there exists a s′ ∈ ω<ω such that s′ ⊇ s
and (R+ g) ∩ Cs′ = ∅. Clearly (R+ g) ∩ Cs′ = ∅ if and only if R ∩ (Cs′ − g) = ∅.

We distinguish two cases:
Case 1: Cs − g ⊆ F .

In this case Definition 5.2 implies that −g ∈ Ts. Pick an arbitrary ` ∈ ω (for
example, let ` = 0) and let s′ = sa `. Then

Cs′ − g ⊆ Ts + Cs′ = Ts + Csa ` ⊆
⋃

σ∈ω<ω

⋃
`∈ω

(Tσ + Cσa `)

and therefore Definition 5.4 implies that (Cs′ − g) ∩R = ∅.
Case 2: Cs − g * F .

In this case the set U = Cs \(F +g) is nonempty and relatively open in Cs (because
F is a closed subset of Zω). Applying Claim 4.5 we can select an index ` ∈ ω such
that Csa ` ⊆ U . This means that s′ = sa ` is a good choice:

Cs′ − g ⊆ U − g = (Cs − g) \ F ⊆ (Cs − g) \R

using the fact that R ⊆ F . �

Claim 5.6. If K ⊆ Zω is a nonempty compact set, then there is an element g ∈ Zω

such that (R+ g) ∩K is a comeager subset of K.
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Proof. Fix a nonempty compact set K ∈ K(Zω). We will prove that g = −t(K)

satisfies that (R − t(K)) ∩ K is a comeager subset of K. (Recall that we fixed
a map t that satisfies the conditions of Definition 5.2.) As x 7→ x + t(K) is a
homeomorphism from K to K + t(K), it is enough to prove that R∩ (K + t(K)) is
a comeager subset of K + t(K).

Recall that according to Definition 5.4,

R = F \
⋃

s∈ω<ω

⋃
`∈ω

(Ts + Csa `).

It is clear that K + t(K) ⊆ F , therefore

R ∩ (K + t(K)) = (K + t(K)) \
⋃

s∈ω<ω

⋃
`∈ω

(Ts + Csa `) =

=
⋂

s∈ω<ω

⋂
`∈ω

((K + t(K)) \ (Ts + Csa `)).

To prove that this countable intersection is comeager in K + t(K), it is enough to
prove that if we fix s ∈ ω<ω and ` ∈ ω, then the set (K + t(K)) \ (Ts + Csa `) is
comeager in K+ t(K). This set is clearly relatively open, because Csa ` is compact
and Claim 5.3 states that Ts is closed. Therefore it is enough to prove that this set
is dense in K + t(K). If we fix an arbitrary nonempty relatively open subset U of
K + t(K), then we need to check that

U ∩ ((K + t(K)) \ (Ts + Csa `)) = U \ (Ts + Csa `) 6= ∅.

Fix an arbitrary u ∈ U . As U is relatively open, we may find an index n ∈ ω
such that [u �n] ∩ (K + t(K)) ⊆ U . We will use recursion to define a sequence
x ∈ K + t(K) ⊆ Zω. First let

(1) x �n = u �n.
After this we will select the elements of the sequence x one by one. Assume that
we already defined x � j for an index j ≥ n and

(2) if j ≡ 0 (mod 2|s|+1), then let

xj = min{yj : y ∈ (K + t(K)) ∩ [x � j]},

(3) if j ≡ 2|s| (mod 2|s|+1), then let

xj = max{yj : y ∈ (K + t(K)) ∩ [x � j]},

(4) otherwise, choose an arbitrary element xj which satisfies that

xj ∈ {yj : y ∈ (K + t(K)) ∩ [x � j]}.

It is easy to check that (K+ t(K))∩ [x � j] remains nonempty during this procedure
and therefore x ∈ K + t(K). Note that in conditions (2) and (3) the minimum and
maximum are well-defined because (K + t(K)) ∩ [x � j] is compact.

Property (1) implies that x ∈ U , we wish to prove that x /∈ Ts +Csa `. Assume
for the contrary that x = t∗ + c∗ for some elements t∗ ∈ Ts and c∗ ∈ Csa `.

Recall that

Ts = {t ∈ Zω : t+ Cs ⊆ F} (Definition 5.2)
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and

Cs = {bs a x : x ∈ {0, 1}ω and x is |s|-segmented} (Definition 4.3).

t∗ ∈ Ts means that t∗ + Cs = x− c∗ + Cs ⊆ F . As x ∈ K + t(K), c∗ ∈ Csa ` ⊆ C∅
and Cs ⊆ C∅, we know that x − c∗ + Cs ⊆ K + t(K) + C∅ − C∅. According to
Fact 5.1,

(K + t(K) + C∅ − C∅) ∩ F = K + t(K),

therefore t∗ + Cs = x− c∗ + Cs ⊆ K + t(K).
For each index j ∈ ω, consider the sequences

r(j, 0) = (c∗ � j)a(0, 0, . . .) and r(j, 1) = (c∗ � j)a(1, 1, . . .)

consisting of the first j elements of c∗, followed by zeroes and ones respectively.
If j ≥ |bs| and j is divisible by 2|s| then it is straightforward to check that
r(j, 0), r(j, 1) ∈ Cs (using Definition 4.3 and the fact that c∗ ∈ Csa ` ⊆ Cs).

Fix a j ∈ ω such that j ≡ 0 (mod 2|s|+1) and j > max{n, |bsa `|}. According to
property (2) of x,

xj = min{yj : y ∈ (K + t(K)) ∩ [x � j]}.

Notice that y = x− c∗ + r(j, 0) satisfies that y ∈ x− c∗ +Cs ⊆ K + t(K) (because
r(j, 0) ∈ Cs) and y ∈ [x � j] (because c∗ � j = r(j, 0) � j). This implies that

xj ≤ yj = (x− c∗ + r(j, 0))j = xj − c∗j + 0 ⇒ c∗j ≤ 0.

Now apply an analogous argument for the index j′ = j + 2|s|: According to
property (3) of x,

xj′ = max{yj′ : y ∈ (K + t(K)) ∩ [x � j′]}.

Notice that y = x− c∗+ r(j′, 1) satisfies that y ∈ x− c∗+Cs ⊆ K + t(K) (because
r(j′, 1) ∈ Cs) and y ∈ [x � j′] (because c∗ � j′ = r(j′, 1) � j′). This implies that

xj′ ≥ yj′ = (x− c∗ + r(j′, 1))j′ = xj′ − c∗j′ + 1 ⇒ c∗j′ ≥ 1.

As c∗ = bsa `
a z for some (|s|+1)-segmented sequence z ∈ {0, 1}ω and the length

of bsa ` is divisible by 2|s|+1, we know that c∗j = c∗
j+2|s|

= c∗j′ . This contradicts that
c∗j ≤ 0 and c∗j′ ≥ 1, proving that our indirect assumption was incorrect.

We proved that x ∈ U and x /∈ (Ts +Csa `), and this implies that (K + t(K)) \
(Ts + Csa `) is indeed a dense subset of K + t(K). �

This concludes the proof of Theorem 1.8. �

The following theorem shows that ourGδ counterexample is as simple as possible:

Theorem 5.7. If G is an abelian Polish group and A ⊆ G is an Fσ Haar meager
subset, then A is strongly Haar meager.

Proof. Assume that the continuous map f : K → G witnesses that A is Haar meager
(where K is a nonempty compact metric space). We show that the compact set
C = f(K) ⊆ G witnesses that A is strongly Haar meager. Assume that the set B
is a translate of A (that is, B = A + g for some g ∈ G). It is clearly enough to
prove that B ∩ C is meager in C.



A Haar meager set that is not strongly Haar meager 13

We will use the following facts which are all well-known and easy to prove:
(1) an Fσ set is meager if and only if it has empty interior,
(2) the preimage of an Fσ set under a continuous function is also Fσ,
(3) if the preimage of a set X under a continuous function has empty interior,

then the set X itself has empty interior relative to the image of the function.
As B is an Fσ set, (2) yields that f−1(B) is also Fσ. As f was a witness

function, f−1(B) is meager, but then (1) yields that f−1(B) has empty interior.
But f−1(B) = f−1(B ∩ C) because C is the image of f , therefore (3) yields that
B ∩ C has empty interior relative to C. Using (1) again (B ∩ C is an Fσ subset of
C), this yields that B ∩ C is indeed a meager subset of C. �

Remark. This proof also works when the Polish group G is not necessarily abelian.
For the definition of Haar meager and strongly Haar meager sets in this more general
setting, see e.g. the survey paper [5].

6. Open questions

As we answered Question 1.3 negatively, constructing a Haar meager but not
strongly Haar meager set in Zω, only the following open-ended question remains of
Question 1.3:

Question 6.1. What can we say about the (abelian) Polish groups where every
Haar meager set is strongly Haar meager?

Notice that both Example 1.7 and Theorem 1.8 studied groups that can be
written as countable products of countable discrete groups. In fact, our ideas allow
us to describe the situation in this frequently studied, simple class of Polish groups:

Claim 6.2. Consider a group G =
∏
i∈ω Gi where each (Gi,+) is a countable

abelian group endowed with the discrete topology. Then the following are equivalent:
(1) every Haar meager subset of G is strongly Haar meager,
(2) every compact subset of G is contained in a locally compact subgroup,
(3) for all but finitely many i ∈ ω the group Gi is a torsion group.

We do not include a proof of this claim, as our proof involves proving general-
izations of Theorem 3.1 and Claim 5.6 that are more complicated and harder to
understand, but do not require additional interesting ideas.

Remark. In the previous claim the implication (2) ⇒ (1) remains true for any
abelian Polish group G. This can be proved by slightly modifying the proof of [1,
Theorem 5.13].

In addition to Question 1.3 the paper [2] contains another problem about strongly
Haar meager sets, [2, Problem 3]:

Question 6.3 (Darji). Does the collection of strongly Haar meager sets form a
σ-ideal?

In fact, even the following variant of this question seems to be open:
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Question 6.4. Does the collection of strongly Haar meager sets form an ideal? (Or
equivalently, is the union of two strongly Haar meager sets strongly Haar meager?)

As the Haar meager sets form a σ-ideal, the interesting case for these questions
is studying groups that contain Haar meager, but not strongly Haar meager sets.

References

[1] T. Banakh, S. Głąb, E. Jabłońska, J. Swaczyna, Haar-I sets: looking at small sets in Polish
groups through compact glasses. Available at arXiv:1803.06712.

[2] U. B. Darji, On Haar meager sets, Topology Appl. 160 (18) (2013) 2396–2400.
[3] M. Doležal, M. Rmoutil, B. Vejnar, V. Vlasák, Haar meager sets revisited, J. Math. Anal.

Appl. 440 (2016), no. 2, 922–939.
[4] M. Doležal, V. Vlasák, Haar meager sets, their hulls, and relationship to compact sets, J.

Math. Anal. Appl. 446 (2017), no. 1, 852–863.
[5] M. Elekes, D. Nagy, Haar null and Haar meager sets: a survey and new results. Available at

arXiv:1606.06607.
[6] M. Elekes, Z. Vidnyánszky, Haar null sets without Gδ hulls, Israel J. Math. 209 (1) (2015)

199–214.
[7] A. S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156, Springer-

Verlag, New York, 1995.
[8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152–182.
[9] S. Solecki, On Haar null sets, Fund. Math. 149 (1996), 205–210.

[10] S. Solecki, Haar null and non-dominating sets, Fund. Math. 170 (2001), 197–217.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box
127, 1364 Budapest, Hungary and Eötvös Loránd University, Institute of Mathemat-
ics, Pázmány Péter s. 1/c, 1117 Budapest, Hungary

E-mail address: elekes.marton@renyi.mta.hu
URL: http://www.renyi.hu/∼emarci

Eötvös Loránd University, Institute of Mathematics, Pázmány Péter s. 1/c, 1117
Budapest, Hungary

E-mail address: nagdon@bolyai.elte.hu

Eötvös Loránd University, Institute of Mathematics, Pázmány Péter s. 1/c, 1117
Budapest, Hungary

E-mail address: sokmark@gmail.com

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Wäh-
ringer Strasse 25, 1090 Wien, Austria

E-mail address: zoltan.vidnyanszky@univie.ac.at

https://arxiv.org/abs/1803.06712
https://arxiv.org/abs/1606.06607

	1. Introduction
	2. Preliminaries
	3. Translating the compact sets apart
	4. Construction of the witness function
	5. Construction of the example and proof of the main result
	6. Open questions
	References

