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Perturbation of infinite networks of resistors
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The resistance between arbitrary nodes of infinite networks of resistors is studied when the network
is perturbed by removing one bond from the perfect lattice. A connection is made between the
resistance and the lattice Green’s function of the perturbed network. Solving Dyson’s equation
the Green’s function and the resistance of the perturbed lattice are expressed in terms of those of
the perfect lattice. Numerical results are presented for a square lattice. Our method of the lattice
Green’s function in studying resistor networks can also be applied in the field of random walks as well
as electrical and mechanical breakdown phenomena in insulators, thin films and modern ceramics.

I. INTRODUCTION

The calculation of the resistance between two arbitrary nodes of infinite networks of resistors is a well studied
subject1–4. Recently, it has been demonstrated how the lattice Green’s functions, as an alternative method to using
the principle of the superposition of current distributions3,4, can be applied to this problem5. The interested readers
will also find several useful references there.

The analytical behavior of the lattice Green’s function has been extensively studied in condensed matter physics
over the past three decades6,7; impurities are often modeled by a simple forms of perturbations (see Eq. (13) below).
Thus, the resistor network problem can be successfully tackled by utilizing the strong connection between the two
fields, in particular through the use of the lattice Green’s function5. Our approach may also serve as a didactic
introduction of the Green’s function method used in solid state physics as well as field theory. The perturbation series
that show up in these fields are, in general, infinite and need to undergo a tedious renormalization procedure. In
contrast, the perturbative solutions of the Dyson equation can be summed up in closed form in our case, due to the
special form (13) of the perturbation. Studying the analytical behavior of the closed-form Green’s function has also
proven pedagogically useful in introductory courses on solid state physics and field theory.

The conductivity of lattices with randomly distributed defects has also been thoroughly investigated in the past
25 years within the framework of effective medium theories8,9 and by using the position-space renormalization-group
method10. Below, we shall use the Green’s function approach to study a special case, i.e. to determine the resistance
for a so-called perturbed lattice that is obtained by removing one bond from the perfect lattice (corresponding to
“simple perturbation” mentioned in the previous paragraph). Although this system is much less complex than those
studied previously, it has the great advantage of being analytically treatable and leading to closed-form expressions
for the resistances.

As an example (see Fig. 1), consider an infinite square lattice whose edges represent identical resistances R. Re-
moving one edge (bond) from this perfect lattice results in a perturbed lattice.
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FIG. 1. Perturbation of an infinite square lattice by removing one edge between sites ri0 and rj0 . Each edge represents a
resistance R. The resistance R(i, j) is measured between arbitrary lattice points ri and rj .

Then, one can ask the resistance between two arbitrary nodes. It is simple to find the resistance between the two
ends of the missing bond. On one hand it is well known (see e.g. Aitchison’s paper11) that for a perfect square lattice
the resistance between adjacent nodes is R/2. On the other hand this resistance equals the parallel resultant of R
and the resistance we wish to find. Thus, it is obvious that the resistance between the two ends of the missing bond
in the perturbed lattice is R.

Finding the resistance between two arbitrary nodes in the perturbed lattice is much more difficult. In this paper we
present a further application of the Green’s function method5 to answer this question. Our treatment of the problem is
based on the idea used by Kirkpatrick8 for studying the transport in inhomogeneous conductors. The Dirac notation
of the vectors is used throughout this paper. Note that the derivation and our formulas presented below can be
straightforwardly expressed by the usual matrix-element formalism. However, the Dirac notation seems to provide
the most powerful and elegant formulation of the problem. The readers who are unfamiliar with this formalism will
find sufficient background material in several well-known textbooks, e.g. Schwabl12.

According to Ohm’s and Kirchhoff’s laws, for a given current distribution, the potentials on the lattice sites are
given by a Poisson-like equation involving a so-called lattice Laplacian operator. This operator can be decomposed
into two parts: one associated with the perfect lattice and the other corresponding to the perturbation. A relation
between the resistance and the Green’s function for the perturbed lattice is derived. The problem thus reduces to the
calculation of the Green’s function for the perturbed lattice which actually satisfies the Dyson equation6. As we shall
see, the Dyson equation can be solved exactly in the present problem. Then, an explicit formula can be derived for
the resistance in the perturbed lattice in terms of the resistances between different nodes in the perfect lattice. Our
Green’s function method proved to be a highly effective technique and can successfully tackle the present problem
even in cases when the superposition principle3,4 faces hardly (or even in-)surmountable difficulties.

II. GREEN’S FUNCTION AND RESISTANCE FOR PERFECT LATTICE

To establish the method and the notations that we shall use throughout this paper, the case of a perfect lattice is
reviewed first. Consider a perfect d-dimensional infinite lattice made up of identical resistances R. All lattice points
are specified by position vectors r given in the form

r = l1a1 + l2a2 + · · · + ldad, (1)

where a1,a2, · · · ,ad are independent primitive translation vectors, and l1, l2, · · · , ld range through all integer values.
We denote the potential at site ri and the current entering at lattice point ri by V (ri) and I(ri), respectively.
According to Ohm’s and Kirchhoff’s laws, we may write

∑

n

[V (ri) − V (ri + n)] = R I(ri), (2)

where the n are the vectors from site ri to its nearest neighbors. One can form two vectors, V and I from the
potentials and the currents at sites ri:

V =
∑

i

|i〉Vi, (3)

I =
∑

i

|i〉Ii, (4)

where Vi = V (ri) and Ii = I(ri). Here it is assumed that |i〉, associated with the site ri, forms a complete orthonormal
set, i.e. 〈i|k〉 = δik and

∑

i |i〉〈i| = 1. Using the vectors V and I, Eq. (2) can be rewritten as

∑

j

(

z δij − ∆ij

)

〈j|V = R 〈i|I, (5)

where z is the number of neighbors (coordination number) of each lattice site (e.g. z = 2d for a d-dimensional
hypercubic lattice), and ∆kl is unity if the sites rk and rl are nearest neighbors and zero otherwise. The summation
is taken over all lattice sites. Premultiplying both sides of the above equation by |i〉 and summing over i, we have
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L0V = −RI, (6)

where L0 is the so-called lattice Laplacian5:

L0 =
∑

i,j

|i〉
(

∆ij − z δij

)

〈j|. (7)

For further progress it is useful to define the lattice Green’s function of L0. Similarly to the common definition
used in the literature6, the lattice Green’s function is defined by

L0G0 = −1. (8)

The properties of this lattice Green’s function and its explicit form in coordinate representation are given in Appendix
A. The solution of the Poisson-like Eq. (6) can then be given in a simple form:

V = −RL−1
0 I = RG0I. (9)

To measure the resistance between two arbitrary sites we assume that a current I0 enters at site ri and a current
−I0 exits at site rj , while the currents are zero at all other lattice points. The current distribution may thus be
written as

Im = I0 (δmi − δmj) for all m. (10)

The potentials at different sites can be determined by inserting the above-given current distribution into Eq. (9), and
one finds

Vk = 〈k|V = R〈k|G0I = R
∑

m

〈k|G0|m〉 Im = RI0

[

G0(k, i) − G0(k, j)
]

, (11)

where G0(n, m) = 〈n|G0|m〉 is the matrix element of the operator G in the basis |n〉. The resistance between sites ri

and rj is then

R0(i, j) =
Vi − Vj

I0
= 2R

[

G0(i, i) − G0(i, j)
]

, (12)

where we have made use of the symmetry properties of the Green’s function G0(i, j) given in Appendix A. The same
expression for the resistance in terms of the lattice Green’s function was derived in Ref.5.

III. GREEN’S FUNCTION AND RESISTANCE FOR PERTURBED LATTICE. DYSON’S EQUATION

The current contribution δIi at site ri due to the bond (i0 j0) is given by

δIi R = δii0 (Vi0 − Vj0) + δij0 (Vj0 − Vi0 )

= 〈i|i0〉
(

〈i0| − 〈j0|
)

V + 〈i|j0〉
(

〈j0| − 〈i0|
)

V

= 〈i|
(

|i0〉 − |j0〉
)(

〈i0| − 〈j0|
)

V = 〈i|L1V,

where the operator L1 is of a so-called ‘dyadic’ form:

L1 =
(

|i0〉 − |j0〉
)(

〈i0| − 〈j0|
)

. (13)

Here we used the fact that δnm = 〈n|m〉. Removing this bond from the perfect lattice the current Ii at site ri is given
by

(−L0V )i − R δIi = R Ii. (14)

Thus, Ohm’s and Kirchhoff’s laws for the perturbed lattice can be written as

LV = −RI, where (15)

L = L0 + L1. (16)

3



Equation (15) is similar to that found in the case of a perfect lattice. However, the operator L is now a sum of
L0 associated with the perfect lattice and a ‘perturbation’ given by L1. Note that the same decomposition of the
Laplacian operator with the perturbation L1 given by (13) was used by Kirkpatrick.

Similarly to the perfect lattice, the Green’s function G for the perturbed lattice is defined by

LG = −1. (17)

The resistance for the perturbed lattice can be obtained in terms of the Green’s function much in the same way as
for a perfect lattice. Measuring the resistance between sites ri and rj , we assume that a current I0 enters at site
ri and a current −I0 exits at rj . The currents are zero at all other lattice points. Thus, the current distribution
is Im = I0 (δmi − δmj) for all m. From Eqs. (15) and (17) we have Vk = 〈k|V = R〈k|GI = R〈k|G

∑

m |m〉 Im =
R

∑

m〈k|G|m〉 Im = R
∑

m G(k, m) Im. Inserting the current distribution Im one finds

Vk = RI0

[

G(k, i) − G(k, j)
]

. (18)

Therefore, the resistance between sites ri and rj reads

R(i, j) =
Vi − Vj

I0
= R

[

G(i, i) − G(i, j) + G(j, j) − G(j, i)
]

. (19)

Note that unlike for a perfect lattice, G(i, i) 6= G(j, j) since translational symmetry is broken in the perturbed lattice.
However, as we shall see, G(i, j) = G(j, i). The problem of finding the resistance reduces to the calculation of the
Green’s function for the perturbed lattice.

Perturbation theory for the Green’s function is worked out in the literature (see e.g. Economou’s book6). Using
Eqs. (8), (16) and (17) yields

(

−G−1
0 + L1

)

G = −1. Premultiplying both sides of this equation by G0 one obtains
the so-called Dyson’s equation:

G = G0 + G0L1G. (20)

This is an equation for G in terms of G0 (which is assumed to be known), and the perturbation L1. In general, the
solution of the Dyson equation can be found by iteration resulting in an infinite series:

G = G0 + G0L1G0 + G0L1G0L1G0 + · · · . (21)

However, if L1 has a special form – such as that given in Eq. (13) – the Dyson equation can be solved exactly. Now
the perturbation L1 is equal to the dyadic product of the vector |i0〉 − |j0〉 with itself. In this case one may apply the
identity

(

A + |x〉〈y|
)−1

= A−1 − A−1|x〉〈y|A−1

1 + 〈y|A−1|x〉 (22)

valid for arbitrary vectors |x〉 and |y〉 whose dimensions are the same as that of operator A, assuming that the inverse
of operator A exists and the denominator 1 + 〈y|A−1|x〉 6= 0. This identity is readily proved by postmultiplying Eq.
(22) with A + |x〉〈y|. Using the above identity with A = L0, |x〉 = |i0〉 − |j0〉 and 〈y| = 〈i0| − 〈j0| one obtains for the
Green’s function:

G = −(L0 + L1)
−1

= G0 +
G0

(

|i0〉 − |j0〉
)(

〈i0| − 〈j0|
)

G0

1 − 2
[

G0(i0, i0) − G0(i0, j0)
] . (23)

Below we shall see that the denominator in Eq. (23) is never equal to zero when d > 1. The matrix elements of the
operator G can then be expressed with the matrix elements of G0 as

G(i, j) = 〈i|G|j〉 = G0(i, j) +

[

G0(i, i0) − G0(i, j0)
][

G0(i0, j) − G0(j0, j)
]

1 − 2
[

G0(i0, i0) − G0(i0, j0)
] . (24)

There is an alternative way to calculate G. This method is analogous to that presented in Chapter 6. of Economou’s
book6 for the calculation of the Green’s function. There the system was condensed matter modeled by a periodic
tight-binding Hamiltonian with one impurity given by Dirac delta potential.

One can insert L1 given by (13) into the series in (21). Then the matrix elements of G result in infinite geometric
series, which can be summed up exactly leading to the same results as above.
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Note that this geometric series as well as the perturbative solution of the Dyson equation given by Eq. (21) is not
necessarily convergent, especially in the case of dyadic perturbations with |〈y|A−1|x〉| ≥ 1. However, Eq. (22) is still
valid even for |〈y|A−1|x〉| > 1.

It is clear from G0(i, j) = G0(j, i) that G(i, j) is also a symmetric matrix, i.e. G(i, j) = G(j, i). ¿From Eqs. (19)
and (24) the resistance between ri and rj can be obtained in terms of the matrix elements of G0:

R(i, j)

R
= G(i, i) + G(j, j) − 2G(i, j)

= 2 [G0(i, i) − G0(i, j)] +

[

G0(i, i0) − G0(i, j0) − G0(j, i0) + G0(j, j0)
]2

1 − 2 [G0(i0, i0) − G0(i0, j0)]
. (25)

Using Eq. (12) this formula can be rewritten in terms of the resistances in a perfect lattice:

R(i, j) = R0(i, j) +

[

R0(i, j0) + R0(j, i0) − R0(i, i0) − R0(j, j0)
]2

4
[

R − R0(i0, j0)
] . (26)

This is our final result for the resistance between two arbitrary nodes ri and rj of the perturbed lattice in which the
bond (i0 j0) is removed.

It is easy to calculate the resistance between sites ri0 and rj0 for a d-dimensional hypercubic lattice. For symmetry
reasons5 the resistance between ri0 and rj0 in a perfect lattice is R0(i0, j0) = R/d if d > 1. Then, using Eq. (26),
the resistance between the two ends of the removed bond is R(i0, j0) = R/(d − 1). For a square lattice (d = 2) the
resistance is R as mentioned in the introduction. It also follows that the denominator in Eq. (26) is never equal to
zero, and this is necessarily true for each previous equation that contains this term.

Note that the explicit form of the lattice Laplacian L0 defined in Eq. (7) was not used in the derivation of Eq. (26).
Thus, our final result for the resistance in the perturbed lattice is valid for any lattice structure in which each unit
cell has only one lattice site. This is the case, for example, for triangular lattices.

Finally, it is worth mentioning some possible applications of our method and results. In Doyle and Snell’s book2

the connection between random walks and electric networks is presented. Thus, our result can also be extended to the
random walk problem in a perturbed lattice. Furthermore, the highly effective method of the lattice Green’s function
in studying resistor networks also provides a pedagogically useful way to familiarize students with the notions of the
Dyson equation and the Green’s function.

When more than one bond is missing from the perfect lattice, our method (outlined above) can be iterated. It can
be shown that our final result (26) is still valid provided the values of R0 of the perfect lattice are replaced by the
values of the resistances obtained from the previous step of the iteration. Thus, lattices with more complex defects
can be studied analytically with our method. An example is the so-called crack-type defects arising in several fields –
such as electrical and mechanical breakdown phenomena in insulators, thin films and modern ceramics13. The current
distribution around cracks can be easily calculated from the Green’s function. This problem was studied numerically
as well as analytically in the continuum limit (for a recent paper see e.g. Boksiner and Leath14 and references therein).
Application of our method to investigate this problem is in progress.

IV. NUMERICAL RESULTS

Below we shall present some numerical results for square lattices. Recurrence relations for the resistances between
arbitrary nodes were derived for perfect square lattices in Ref.5. These recurrence formulas provide a very simple and
effective tool for the calculation of the resistance. For convenience, we invoke them:

R0(m + 1, m + 1) =
4m

2m + 1
R0(m, m) − 2m − 1

2m + 1
R0(m − 1, m − 1),

R0(m + 1, m) = 2R0(m, m) − R0(m, m − 1),

R0(m + 1, 0) = 4R0(m, 0) − R0(m − 1, 0) − 2R0(m, 1),

R0(m + 1, p) = 4R0(m, p) − R0(m − 1, p) − R0(m, p + 1) − R0(m, p − 1) if 0 < p < m, (27)

where the indices m and n of R0(m, n) (not to be confused with i and j above) stand for the relative coordinates of the
two sites on the square lattice. Since the exact values of R0(1, 0) = R/2 and R0(1, 1) = 2R/π are known5 (obviously
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R0(0, 0) = 0), one can calculate the resistance exactly for arbitrary nodes by using the above recurrence formulas. It
is interesting to note that using these formulas one has, in units of R

R0(50, 50) =
6400711399252571342562758751832284129928

1089380862964257455695840764614254743075

1

π
≈ 1.87025,

which can be found quickly (within a few second) using the program MAPLE. In Fig. 2 the resistance R0(i, j) between
the node i = (0, 0) and j = (jx, jy) is plotted as a function of jx and jy for a perfect square lattice.

FIG. 2. The resistance R0(i, j) between nodes i = (0, 0) and j = (jx, jy) as a function of jx and jy for a perfect square
lattice.

One can see from the figure that by increasing the distance between the nodes i and j the rotational symmetry of
the resistance is more and more recovered. Indeed, in Ref.5 it was shown that for large values of jx or/and jy, the
asymptotic form of the resistance is

R(jx, jy) =
R

π

(

ln
√

j2
x + j2

y + γ +
ln 8

2

)

, (28)

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
On the perturbed square lattice the resistance can be calculated from Eq. (26). As an example we show results

when site ri is fixed and rj is moved along the line of the removed bond. The resistance is measured between nodes
ri and rj , where ri = (0, 0) and rj = (jx, 0). The two ends of the removed bond are ri0 = (0, 0) and rj0 = (1, 0). In
Fig. 3 the resistances for the perfect and the perturbed lattices are plotted as functions of jx.
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FIG. 3. In an infinite square lattice the origin of the coordinate system is at site ri, i.e. ri = (0, 0). The ends of the removed
bond are at ri0 = (0, 0) and rj0 = (1, 0). The resistances on the perturbed and the perfect square lattices are measured between
sites ri and rj , where rj = (jx, 0). They are plotted as functions of jx (filled circles and empty squares, respectively). The
solid and dashed lines are just for guiding the eyes.

One can see that the resistance is always larger in the perturbed lattice than in the perfect lattice. This intuitively
obvious fact follows from the positivity of the second term in Eq. (26). It can also be seen from the figure that
increasing the distance between nodes ri and rj the resistance tends to that of the perfect lattice. The resistance is
not symmetric under the transformation jx → −jx because translational symmetry is broken in the perturbed lattice.
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(j x)

FIG. 4. The same as Fig. 3 except that the ends of the removed bond are at ri0 = (1, 0) and rj0 = (2, 0).

The configuration is the same in Fig. 4 as in Fig. 3 except that ri0 = ri + (1, 0). Similar features are observed in
the two cases. However, the resistance on the perturbed lattice tends to that of the perfect lattice more rapidly in
Fig. 4 than in Fig. 3 as jx increases.

Finally, it worth mentioning that a similar analysis of the resistance can be carried out for simple cubic lattices.
Recently, Glasser et al.15 have expressed the exact values for the cubic lattice Green’s functions in terms of gamma
functions. Using their results one can calculate the resistance for perfect simple cubic lattices and for perturbed
lattices.
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APPENDIX A: EXPLICIT FORM OF THE LATTICE GREEN’S FUNCTIONS FOR PERFECT LATTICE

STRUCTURES

In this section we shall present the symmetry properties of the lattice Green’s function G0, and derive its explicit
form in coordinate representation for perfect lattice structures.

From Eq. (7) we have L0(i, j) = 〈i|L0|j〉 = L0(j, i). Therefore,

G0(i, j) = 〈i|G0|j〉 = G0(j, i). (A1)

Thus, G0(i, j) is a symmetric matrix. The perfect lattice is translationally invariant, so G0(i, j) depends only on the
relative coordinates of sites ri and rj . Thus we have

G0(i, i) = G0(j, j). (A2)

Let us turn to the derivation of the coordinate representation of G0. Consider a finite part of the lattice constructed
by repeating the unit cell (say Ni times) along the unit vectors ai, where i = 1, 2, · · · , d. Define the Fourier transform
of the basis |i〉 by

|k) =
1√
N

∑

i

eikri |i〉. (A3)

The lattice sites ri are specified by Eq. (1), and the vectors k belonging to the first Brillouin zone (BZ) are given by

k =
m1

N1
b1 +

m2

N2
b2 + · · · + md

Nd

bd, (A4)

where m1, m2, · · · md are integers such that −Ni/2 ≤ mi ≤ Ni/2 for i = 1, 2, · · · , d, and the bj are the reciprocal
lattice vectors defined by aibj = 2πδij , i, j = 1, 2, · · · , d. The total number of lattice sites is N = N1N2 · · ·Nd.
Periodic boundary conditions are assumed at the boundary of the finite lattice, and in the final results the limit
N → ∞ is taken. It is also assumed that Ni is an even integer, which will be irrelevant in the limit N → ∞. The
mathematical description of crystal lattices and the concept of the Brillouin zone can be found in many books on
solid state physics16. To distinguish the basis vectors |i〉 from their Fourier transforms |k), parentheses will be used
instead of angled brackets. Using the so-called lattice summation rules16

∑

i

ei(k−k
′)ri = N δkk′, (A5)

∑

k

eik(ri−rj) = N δij , (A6)

it can be shown that the basis |k) is a complete orthonormal set, i.e. (k|k′) = δkk′ and
∑

k
|k)(k| = 1 provided the

basis |i〉 is complete and orthonormal. It is also clear that

〈i|k) =
1√
N

eikri . (A7)

The Laplacian operator L0 for a perfect lattice is a diagonal matrix in the basis |k) since

(k|L0|k′) =
∑

ij

(k|i〉
(

∆ij − z δij

)

〈j|k′) =
1

N

∑

ij

e−ikri
(

∆ij − z δij

)

e−ik′
rj = −ε(k) δkk′ , (A8)

where
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ε(k) = z −
∑

n

eikn, (A9)

and vectors n point from some lattice point into its the nearest neighbors.
In coordinate representation the matrix element of the Green’s function G0 can be written as

G0(i, j) = 〈i|G0|j〉 =
∑

kk′

〈i|k)(k|G0|k′)(k′|i〉 =
1

N

∑

kk′

(k|G0|k′)ei(kri−k
′
rj). (A10)

In the third step the completeness of the basis |k) has been used. Since G0 = −L0, one finds

G0(i, j) =
1

N

∑

k∈BZ

eik(ri−rj)

ε(k)
. (A11)

Note that the toroidal and cylindrical geometry cases discussed by Jeng17 can be straightforwardly treated by direct
summation over k. For infinite lattices (in the limit N → ∞) the discrete k summation can be substituted by an
integral16:

∑

k∈BZ

→ Nv0

(2π)
d

∫

k∈BZ

dd
k, (A12)

where v0 is the volume of the unit cell of the lattice. Thus, the lattice Green’s function in coordinate representation
becomes5

G0(i, j) = v0

∫

k∈BZ

dd
k

(2π)
d

eik(ri−rj)

ε(k)
. (A13)

One can see that G0(i, j) depends only on the relative coordinates of sites ri and rj , as stated in Eq. (A2). For

example, z = 2d for the d-dimensional hypercubic lattice, and one finds ε(k) = 2
(

d − ∑d

i=1 coskai

)

. For body

centered cubic and face centered cubic lattice structures see e.g. the introduction of the lattice Green’s function by
Katsura et al.7, and for triangular and hexagonal lattices Ref.5.
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