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Apparently convergent contributions of resummed perturbative series at the next-to-leading order
of the 1/N expansion in the O(N) model are reanalyzed in terms of renormalizability. Compared
to our earlier article [G. Fejős et al., Phys. Rev. D 80, 025015 (2009)], an additional subtraction
is performed. We show numerically that this is indispensable for diminishing the cutoff sensitivity
of some integrals below the scale of the Landau pole. Following the method of our earlier article,
an improved counterterm Lagrangian is constructed in the two-particle irreducible formalism, with
and without the use of an auxiliary field formulation.
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I. MOTIVATION

The study of the renormalizability of the O(N) model
at next-to-leading order (NLO) of the 1/N expansion
started fairly early [1]. Recently an attempt to renormal-
ize the effective potential at this level of the expansion
was reported in [2], where the pressure of the pion-sigma
gas at finite temperature was calculated with its help. In
that article the auxiliary field formulation of the model
was used and the renormalization was achieved only at a
given point of the auxiliary field configurations obtained
by exploiting its saddle point equation explicitly. In [3]
we presented an explicit construction of the NLO coun-
terterms with and without the introduction of the auxil-
iary field and found that the model is actually renormal-
izable for arbitrary values of the field expectation values.
The zero temperature divergence structure of the dynam-
ical equations derived from the two-particle irreducible
(2PI) effective action was investigated. This form of the
action depends independently on the fields and the cor-
responding propagators. A strict 1/N expansion of the
pion propagator has been performed which changes the
self-consistent nature of the 2PI-1/N approximation into
a hierarchical structure. An important feature of this
procedure is that, at the NLO level of the approximation
scheme, the propagators are given explicitly in terms of
the leading order (LO) expressions and this makes the
analysis of the asymptotic behavior of various loop inte-
grals more transparent than of the 2PI-1/N approxima-
tion whose renormalization was treated in [4, 5].
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The appearance of a tachyonic pole (the Landau sin-
gularity) has been observed to be a fundamental feature
of the large-N approximation already in the pioneering
publications [1, 6, 7]. Thorough studies led to the un-
derstanding of the effective nature of the renormalized
O(N) model in which the cutoff cannot be sent to infin-
ity. The 1/N expansion turned out to be a valuable tool
for studying phenomena dominated by momentum scales
well below the cutoff, which is chosen to be substantially
smaller than the scale of the Landau singularity [8–10].
In our previous work [3] we analyzed the integrals ex-

ploiting the asymptotic behavior of their integrands for
infinitely large momenta, which is a customary procedure
in the perturbative analysis of divergences. However, this
approach turns out to be somewhat ambiguous and needs
to be corrected, since due to the explicit presence of the
Landau pole in these integrals, actually it is not possi-
ble to send any momenta to infinity. In particular, this
limitation restricts the range of cutoff values applied for
the regularization of divergent integrals. In this context,
the meaning of renormalization is actually to achieve a
practical cutoff insensitivity below the scale of the Lan-
dau pole, similarly to the cases discussed in [11–13]. The
Landau singularity affects both the structure and the ex-
plicit expression of the counterterms. As it will become
clearer in the next section, taking it into account be-
comes necessary because in the counterterm functional
we omitted to include contributions of the form

∫

d4p
1

(p2 −M2
0 )

2 ln2(p/Λp)
∼

∫ Λ dp

p

1

ln2(p/Λp)
, (1)

where on the right-hand side, valid for large momenta, a
cutoff regularization was used. In this integral one can-
not neglect the presence of Λp, which is the value of the
Landau pole and conclude, as in [3, 4], that the inte-
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gral behaves as 1/ lnΛ. Actually, the integral diverges as
Λ → Λp and the right question to be asked is in which
part of the region Λ < Λp the Landau pole influences
the cutoff dependence of the integral. Of course, if one
asked what the cutoff dependence of the integral beyond
the scale of the Landau pole is, and in fact this is what
we did in [3], then one would conclude that this behav-
ior is 1/ lnΛ. But even though in a mathematical sense
correct, this would be an answer in a rather unphysical
situation.
The most important goal of this paper is to complete

our divergence analysis presented in [3] by investigating
whether the subtraction throughout the calculation of a
previously omitted integral, similar to that in (1), can be
done in a way consistent with the requirements of the
counterterm renormalization applied to the resummed
perturbative series provided by the 1/N expansion. In
the next section we shall analyze some of the relevant
integrals and study numerically the changes observed
in their cutoff dependence after performing appropriate
subtractions. For these integrals we shall use cutoff reg-
ularization, with a cutoff chosen below the scale of the
Landau pole. Although in this case all the integrals are
strictly finite, we shall still call an integral ”divergent”
(”convergent”) if for increasing momentum p < Λ < Λp,
its integrand decreases slower (faster) than 1/p4 (up to
logs). In Sec. III we summarize those results of Ref. [3]
which are directly needed for our present purpose, but we
also provide guidance to the relevant parts of the origi-
nal paper. The renormalization procedure presented in
Sec. IV requires appropriate subtractions to be imposed
on any integral called divergent in the above sense in
order to diminish its cutoff sensitivity for increasing Λ,
already below the Landau pole. Only by sending the cut-
off to infinity in some finite integrals entering the inte-
grand of divergent integrals, we could obtain analytical
expressions for the divergent part. We shall discuss in
the concluding Sec. V the criterion a consistent cutoff
regularization should satisfy and the calculational diffi-
culties posed by a regularization, in which all propagator
momenta in an integral are kept below the value of the
cutoff. Also, the possibility of oversubtractions, further
diminishing the sensitivity of specifically chosen n-point
functions to the presence of the Landau pole, is shortly
assessed.

II. SUBTRACTION METHOD AND CUTOFF

DEPENDENCE OF THE INTEGRALS

The NLO equations of the 1- and 2-point functions can
be written in terms of an effective momentum-dependent
coupling (λ is the renormalized coupling)

λ(p) =
λ

1− λ
6 I

F
π (p)

, (2)

which reflects that the LO solution of the 1/N expansion
effectively resums an infinite series of pion bubbles. The

analysis presented in [3] shows that the divergences in
these equations are momentum independent and given by
local integrals which are elements of a class of integrals
characterized by integers j, k satisfying j ≥ 1, k ≥ 0:

Ij,k = (−i)j−1

∫

p

Dj
π(p)λ

k(p), (3)

where we used the shorthand notation
∫

p
≡
∫

d4p
(2π)4

and Dπ(p) = i/(p2 − M2) is the tree-level pion
propagator. The finite part of the bubble integral
Iπ(p) = −i

∫

k
Dπ(k)Dπ(p + k) is defined as IFπ (p) =

−i
∫

k

[

Dπ(k)Dπ(p+ k)−G2
0(k)

]

, where G0(k) = i/(p2−

M2
0 ) is an auxiliary propagator in which M0 plays the

role of the renormalization scale.
One has to investigate carefully the asymptotic behav-

ior of the integrands in (3) in order to find out which
of them needs subtraction and to assess those appropri-
ate subtractions which efficiently diminish the sensitivity
of the integrals with respect to an increasing cutoff, but
still below the (Landau) pole of the effective coupling
(2). For us, the most important element of the set Ij,k is
I2,2 because it was left unsubtracted in [3] due to a for-
mal logarithmic power counting, which was not careful
enough, as explained in the previous section.
Formal power counting based on the asymptotic be-

havior of the integrands in (3) for p → ∞ suggests that
if j > 3 (j ≤ 2), then Ij,k should be considered con-
vergent (divergent). This is certainly true for k = 0, a
case in which I1,0 is the tadpole integral and I2,0 is the
bubble integral at vanishing external momentum. Their
respective finite parts can be defined through the mini-
mal subtraction renormalization scheme used in [3]. To
see what is to be subtracted we expand Dπ(p) around
G0(p)

Dπ = G0 − i(M2 −M2
0 )G

2
0 − (M2 −M2

0 )
2DπG

2
0. (4)

Using the quadratically and logarithmically divergent in-
tegrals introduced in [3],

T
(2)
d =

∫

k

G0(k), T
(0)
d = −i

∫

k

G2
0(k), (5)

and the notation

td(M
2) = T

(2)
d + (M2 −M2

0 )T
(0)
d , (6)

the subtraction implied by (4) gives the following finite
integrals:

TF
π := I1,0F =

∫

p

Dπ(p)− td(M
2), (7a)

IFπ (k = 0) := I2,0F = −i

∫

p

D2
π(p)− T

(0)
d . (7b)

As already discussed in the previous section, for k 6=
0 one has to perform a more careful analysis because
the integrands explicitly display the Landau pole at a
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value of the momentum which depends on the coupling
approximately as Λp ≈ M0 exp

(

1+48π2/λ
)

. In this case,

in addition to (4), one needs also to expand 1 λ(p) around
λ0(p) = λ/(1− λIF0 (p)/6),

λ(p) = λ0(p) +
1

6
λ0(p)λ(p)

[

IFπ (p)− IF0 (p)
]

, (8)

where IF0 (p) is obtained by replacing Dπ with G0 in the
definition of IFπ (p) given below (3). To analyze the diver-
gence of some integrals, e.g. of I1,1, one needs to know
explicitly the expansion of the difference IFπ (p) − IF0 (p)
for large momenta, which is given later in (24). However,
for the integrals I2,1 and I2,2 presented in this section to
illustrate the effect of the Landau pole, we only need to
know that this difference is O(1/p2). Using this fact and
the leading order terms in the expansions (4) and (8),
one finds for the respective minimally subtracted finite
parts:

I2,1F = I2,1 + i

∫

p

G2
0(k)λ0(k) = I2,1 − λ ta, (9a)

I2,2F = I2,2 − λ2T (0)
a , (9b)

where we introduced the notation

ta = T (0)
a −

λ

6
T (I)
a (10)

for the combination of the two integrals in terms of which
the subtractions are defined. The integral

T (I)
a = −i

∫

k

G2
a(k)I

F
0 (k), (11)

was already defined in [3] with the auxiliary propagator
Ga(k) = i/[(k2 −M2

0 )(1 − λIF0 (k)/6)], while

T (0)
a = −i

∫

k

G2
a(k), (12)

introduced in analogy with T
(0)
d , is a new integral which

was not subtracted in our previous analysis. The last
divergent integral we shall use from [3] is

T (2)
a =

∫

k

Ga(k). (13)

In the remaining of this section we study numerically
the cutoff dependence of the simplest integrals of the Ij,k

set. In the upper part of Fig. 1 we see that just like I2,1,
the integral I2,2 does not show any practical cutoff insen-
sitivity below the Landau pole Λp, therefore similarly to

1 The expansion induces a new pole related to M0, but unless
there is a huge difference between the masses, the two poles are
very close to each other. The location of the new pole is lower
(higher) than the original for M0 > M (M0 < M). Since the
pion mass M vanishes in the chiral limit, we choose M0 > M, in
which case, for a given λ, the singularity of a subtracted integral
is basically determined by M0.
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FIG. 1. The cutoff dependence of divergent integrals (up-
per part) and subtracted or convergent integrals (lower part)
computed by taking Λ → ∞ in the finite bubble integrals
IFπ (p) and IF0 (p), with the exception of the dashed curve cor-
responding to j = k = 2, for which the cutoff regularization
given in (59) is applied. The bar on Ij,k indicates that the
integrals are scaled by the value taken at the inflection point
(inflection of I1,1/Λ2 when j = k = 1) and, for the sake of
the presentation, also by an additional factor in the case of
j = k = 2. We set M = 1, M0/M = 2, and used λ = 65 for
the coupling, except where indicated.

I2,1, it has to be considered divergent and an appropriate
subtraction has to be applied to it. This shows explicitly
that from a physical point of view the renormalization of
the O(N) model at next-to-leading order in the 1/N ex-
pansion presented in [3] is incomplete: the subtraction of

T
(0)
a is needed and its effect has to be taken into account

in the divergence analysis of other integrals, as well.
In the lower part of Fig. 1 we see that after applying

the subtractions introduced in (9) a practical cutoff in-
sensitivity is reached for Λ < Λp. We can roughly say
that the region of apparent convergence is limited from

above by the inflection point of Ij,kF (Λ) for j = 2 and
of Ij,k(Λ) for j > 2, and that as the cutoff is increased
above this point the Λ dependence of the subtracted in-
tegrals becomes clearly dominated by the Landau pole.
Note that we divide the integrals with the value taken
at the corresponding inflection point, in order to be able
to show their cutoff dependence in a single plot. As ex-
pected, for a given λ and j, the plateau-like behavior of
the subtracted integrals is more visible at smaller values
of k (compare at j = 2 the curves for k = 1 and k = 2).
Also, decreasing λ makes the Λ dependence more flat.
As visible in Fig. 1 for the j = k = 2 case, below the in-
flection point of I2,2(Λ) it is practically irrelevant if the
finite bubble integrals IFπ and IF0 are computed with the
actual finite cutoff or with an infinite one. This is an
important observation because the divergence analysis of
the next section needs some explicit expressions and we
could obtain them only in the latter case.
For j > 2, a practical cutoff insensitivity is expected
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at high enough values of the cutoff, but we would like to
stress that this only happens if the value of the coupling,
which governs the location of the Landau pole, is not
too big. For example, by increasing the coupling from
λ = 65 to λ = 80, we see in Fig. 1 that the slope of
I3,3 increases and that the integral becomes sensitive to
the presence of the Landau pole at lower values of the
cutoff. Therefore, even though each individual term of
the series obtained with an expansion of I3,3 in powers
of λ is finite, one may even try to treat these integrals
as divergent and define their finite parts with appropri-
ate subtractions. One can imagine doing this procedure
gradually, that is starting with convergent integrals hav-
ing the smallest j value. The question whether this kind
of oversubtraction can be realized without any restriction
on the choice of the renormalized couplings and for gen-
eral values of the backgrounds (v of the σ field and α̂ of

the auxiliary field introduced below) is beyond the scope
of the present investigation. It might be of physical in-
terest, therefore we return to this point in the concluding
Sec. V. Throughout the paper we shall assume that the
coupling is not very large, meaning that the position of
the Landau pole in momentum space is much larger than
the physically relevant scales. In this case no subtraction
has to be applied to the integrals Ij>2,k.

III. THE MODEL IN THE AUXILIARY FIELD

FORMULATION

The next-to-leading order 2PI effective potential of
the O(N) model in the 1/N expansion (denoted by
Γ[α̂, v, Gπ ,G] in [3]) has the following expression:

V [α̂, v, Gπ,G] =
N

2
M2v2 +

3N

2λ
α̂2 −

i

2

∫

k

[

(N − 1)
(

lnG−1
π (k) +D−1

π (k)Gπ(k)
)

+Tr lnG−1(k) + Tr(D−1(k)G(k))
]

+ i
λ

12

∫

k

∫

p

Gαα(k)Gπ(p)Gπ(p+ k) + ∆V [α̂, v, Gπ,G]. (14)

We refer to [3] (see also [14, 15]) for details concerning its
derivation with the usual rules of the 2PI formalism from
the Lagrangian of the model obtained after the elimina-
tion of the quartic interaction term through a Hubbard-
Stratonovich transformation. Here it is sufficient to know
that v is the vacuum expectation value of the dynami-
cal field pointing in the σ direction, m2 and λ represent
the renormalized mass and coupling constant, α̂ is the
(rescaled) auxiliary field, and that we use the shorthand
notation

M2 = m2 − iα̂. (15)

Dπ is the tree-level pion propagator introduced below
(3), while D and G are the tree-level and the full 2 × 2
symmetric propagator matrices in the coupled σ − α
sector, respectively. The matrix elements of the in-
verse D−1 are (D−1)σσ(p) = D−1

π (p), (D−1)αα = i, and
(D−1)ασ = v(λ/3)1/2.

The components of G−1 are obtained from the station-
arity condition δV/δG = 0. Inverting the matrix G−1 at
LO [that is in the case without the last integral of (14)]
the components of G(0) are given explicitly in Eq. (15) of
[3]. The expressions of the σσ, αα, and ασ matrix ele-
ments of the LO propagator matrix in the α − σ sector
can be conveniently rewritten for the next discussion in
the following form:

G(0)
σσ (p) = Dπ(p)− i

v2

3
λ(p)Dπ(p)G

(0)
σσ (p), (16a)

λG(0)
αα(p) = −iλ(p)D−1

π (p)G(0)
σσ (p), (16b)

√

λ

3
G(0)

ασ(k) = i
v

3
λ(k)G(0)

σσ (k). (16c)

We shall call G
(0)
σσ (p) the LO sigma propagator.

The expressions (16a) and (16b) prove useful if one
wants to see how the integrals Ij,k introduced in (3) are

generated. With G
(0)
αα taken from (16b) and with G

(0)
σσ (p)

used iteratively from (16a) one sees that Ij,k with j =
k ≥ 1 appears through the integral

iλ

∫

p

G(0)
αα(p)Dπ(p), (17)

which appears in the NLO pion self-energy, as we shall
see shortly.
Integrals with j = k+1, k ≥ 1 will be shown to emerge

in the functional derivative of the effective action with
respect to α̂ through the integral

i

2

∫

p

(

G(0)
αα(p)−Dπ(p)

)

=
v2

6

∫

p

λ(p)Dπ(p)G
(0)
σσ (p), (18)

again with the iteration of G
(0)
σσ (p) from (16a).

The counterterm functional ∆V in (14) contains all the
counterterms we need to determine in order to renormal-
ize the effective potential, its functional derivatives with
respect to v and α̂, and the propagators. It is convenient
to split ∆V into several pieces:

∆V = ∆V N
α +∆V 0

Gαα
+∆V 0

Gπ
+∆V 0

v +∆V 0
α , (19)

each corresponding to the renormalization of a specific
functional derivative of V , denoted by the corresponding
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subscript. The upper indices distinguish between terms
corresponding to different orders of the large-N hierar-
chy. Our task in what follows is to analyze the diver-
gences of the functional derivatives of (14) in order to
find the appropriate choice of terms in (19) which ren-
ders these quantities finite.

The leading order renormalization remains unchanged
compared to [3], thus we just recall that

∆V N
α = iα̂

N

2
td(m

2) + α̂2N

4
T

(0)
d , (20)

∆V 0
Gαα

=
λ

12
T

(0)
d

∫

k

G(0)
αα(k), (21)

with the function td(x) introduced in (6) and T
(0)
d given

in (5).

At NLO we have to deal with three quantities: the
pion propagator and the derivatives δV/δv and δV/δα̂.
We expect that, although renormalizability should not
work for arbitrary propagators, as the proof of pertur-
bative renormalizability strongly relies on their asymp-
totic behavior, there must be no restriction concerning
the value of the background fields v and α̂. For this rea-
son, we shall analyze the corresponding derivatives of the
effective potential instead of the field equation for v and
the saddle point equation for α̂ which arise by equating
the respective derivatives to zero.

We would like to note that, since we employ, as did
also in [3], a strict 1/N expansion in the pion propa-
gator, the divergence analysis at NLO could be equally
well performed within the 1PI formalism. In particular,
the counterterms determined here are not the ones ren-
dering finite the effective potential of the 2PI formalism
truncated at two-loop level and the self-consistent pion
propagator derived from it, but rather they should be un-
derstood as approximating those. For the determination
of the full 2PI counterterms using self-consistent equa-
tions the reader should consult Ref. [5]. Our use of the
2PI formalism is motivated by the fact that the highly
nontrivial resummation of infinite classes of diagrams in
the effective potential can be rather compactly formu-
lated by combining it with the auxiliary field formula-
tion of the model. This is because at the NLO level of
the 1/N expansion only the contribution of a single two-
loop 2PI integral has to be taken into account in (19).
In [3], the fact that field and propagator are independent
variables of a common 2PI effective potential was used as
a tool for organizing our analysis. It facilitates tracking
the influence of a counterterm piece determined from a
certain derivative of the effective potential on the renor-
malization of another derivative. The introduction of the
auxiliary field explicitly provided guidance for the renor-
malization of the pion self-energy also in the case when
the auxiliary field was not used, as it indicated that the
right strategy to follow is to independently renormalize
the momentum-dependent and momentum-independent
parts of the self-energy.

IV. NEXT-TO-LEADING ORDER

RENORMALIZATION

Before presenting the detailed renormalization steps
leading to the completion of the list of counterterms de-
termined in [3], we point out the changes in the final
result, as compared to our previous analysis:

• The divergence of the pion propagator equation
changes in two ways. First, the expression of
T̃ div (M

2) given in Eq. (21) of [3] changes such that

the ”double scoop” integral
(∫

k
Gπ(k)

)2
and also

a term proportional to v2
∫

k
Gπ(k) are induced in

the ∆V 0
π piece of the counterterm functional. Sec-

ond, there also appears an additional divergence
proportional to v2 in the integral (17) [Eq. (20)
of [3]]. This new term modifies the divergence of
δV/δv and induces a new counterterm proportional
to v4 in ∆V 0

v . Interestingly, these new terms com-
bine in the counterterm functional into a term pro-

portional to
(

v2 +
∫

k Gπ(k)
)2
, which, however, has

no renormalized counterpart in the auxiliary field
formulation of the model given in (14).

• The divergence analysis of the derivative δV/δα̂
also changes because the divergences of the inte-
grals J(M2) and J̃(M2) introduced in Eq. (29) of
[3] have to be reanalyzed, as terms proportional to

T
(0)
a were previously not included.

Now we go into the details.

A. The NLO pion propagator equation.

This equation reads as

iG−1
π (k) = iD−1

π (k)− i
λ

3N

∫

p

G(0)
αα(p)Dπ(p)

− i
λ

3N

∫

p

G(0)
αα(p)

[

Dπ(p+ k)−Dπ(p)
]

−
2

N

δ∆V 0
π

δGπ
, (22)

and we have shown in [3] that the second integral is free
of divergences. Exploiting (16a) in the first (local) inte-
gral, we immediately see that this term splits into two
divergent pieces:

−
1

3N

∫

p

λ(p)Dπ(p)

∣

∣

∣

∣

div

=: −
λ

3N
T̃ div (M

2), (23a)

i
v2

9N

∫

p

λ2(p)D2
π(p)

∣

∣

∣

∣

div

= −
λ2v2

9N
T (0)
a . (23b)

In [3] we did not encounter a divergence proportional

to v2, as T
(0)
a was considered finite, and furthermore,

though the definition of T̃ div (M
2) remains the same, its

expression changes. To obtain it, we need the expansions
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(4) and (8), as well as the expansion of the difference
IFπ (p)− IF0 (p), which up to O(1/p4) is given by

IFπ (p)− IF0 (p) ≃
i

8π2

[

3(M2 −M2
0 )−M2 ln

M2

M2
0

]

G0(p)

+ 2i(M2 −M2
0 )I

F
0 (p)G0(p) . (24)

This can be derived using the explicit expression for
IFπ (p) and IF0 (p) obtained by sending the cutoff to in-
finity in their defining integral. With a bit of algebra we
obtain

T̃ div (M
2) = t1(M

2) +
λ

3
T (0)
a

∫

p

Dπ(p), (25)

where we introduced

t1(M
2) = T (2)

a −
λ

3
T (0)
a T

(2)
d − (M2 −M2

0 )t2, (26a)

t2 =
λ

2
T (I)
a + T (0)

a

[

λ

3

(

T
(0)
d +

1

8π2

)

− 1

]

, (26b)

and expressed M2 ln(M2/M2
0 ) in terms of the tadpole

integral by using in (7a) the explicit expression of the
finite tadpole

TF
π =

1

16π2

(

M2 ln
M2

M2
0

−M2 +M2
0

)

, (27)

again obtained for infinite cutoff.
With the help of (23) and (25) the following expression

for ∆V 0
π is determined from (22):

∆V 0
π = −

λ

6

[

t1(M
2) +

λ

3
v2T (0)

a

]
∫

p

Gπ(p)

−
λ2

36
T (0)
a

(
∫

p

Gπ(p)

)2

. (28)

Note that ∆V 0
π depends linearly on α̂ through M2, and

that we got a new term proportional to v2 and, further-
more, a double scoop integral (last term on the right-
hand side). Terms of these types were not present in [3]
in the auxiliary field formulation of the model, however
there is no symmetry restriction preventing its emergence
in the counterterm functional. At NLO in the 1/N ex-
pansion ∆V 0

π gives the following finite pion propagator:

iG−1
π (k) = k2 −M2 −

λ

3N

[

i

∫

p

G(0)
αα(p)Dπ(k + p)

−T̃div(M
2)−

λv2

3
T (0)
a

]

. (29)

B. The derivative of the effective potential with

respect to v

This derivative is given by

δV

δv
= NvM2 − i

√

λ

3

∫

k

Gασ(k) +
δ∆V 0

π

δv
+

δ∆V 0
v

δv
, (30)

where we have indicated that there is also a contribu-
tion from the ∆V 0

π counterterm given in (28). Upon us-
ing the LO expression of Gασ from (16c) together with
(16a) for the LO sigma propagator, one sees that the
integral in (30) splits into the same two divergent contri-
butions given in (23), both appearing now with opposite
sign. There is a dangerous environment dependent (i.e.
temperature dependent in a finite temperature setting)
subdivergence proportional to the tadpole

∫

k Dπ(k) in-

cluded in T̃ div , but fortunately it exactly cancels with
the term coming from δ∆V 0

π /δv. The expression of ∆V 0
v

is determined by the requirement of the cancellation of
all remaining divergences in (30):

∆V 0
v = −

λ

6
t1(M

2)v2 −
λ2

36
T (0)
a v4. (31)

We see that a four-point counterterm vertex appeared as
the last term on the right-hand side, a type of operator
which was absent in [3] in the auxiliary field formulation
of the model, but as was the case with the new term
emerging in the pion propagator equation, this is neither
forbidden by any symmetry. We note that by construc-
tion Goldstone’s theorem is respected with the present
extended subtraction as well.

C. The derivative of the effective potential with

respect to α̂

This expression is given by

δV

δα̂
=

3N

λ
α̂− i

N

2

(

v2 +

∫

k

Gπ(k)

)

+ i
N

2
td(M

2)

−
i

2

∫

k

(

Gσσ(k)−Gπ(k)
)

+
δ∆V 0

π

δα̂
+

δ∆V 0
v

δα̂
+

δ∆V 0
α

δα̂
, (32)

where the term containing the expression td(M
2) intro-

duced in (6) is the contribution of ∆V N
α and renormalizes

the expression at leading order. Note that, both ∆V 0
π and

∆V 0
v contribute to the right-hand side of (32):

δ∆V 0
π

δα̂
+

δ∆V 0
v

δα̂
= −i

λ

6
t2

(

v2 +

∫

k

Dπ(k)

)

, (33)

where the term proportional to the tadpole comes from
∆V 0

π , while the one containing v2 arrives from ∆V 0
v . The

consistency of the procedure requires that ∆V 0
α , the last

piece of the counterterm functional left to be determined,
depends on α̂ only, otherwise it would contribute to the
pion propagator equation and/or to δV/δv, and the pro-
cedure would not close. We also expect ∆V 0

α to be a
polynomial in α̂.
There are two integrals in (32) whose divergences have

to be calculated. The first contains the difference of LO
propagators at the needed accuracy in the 1/N expan-
sion, and it is rather simple. Using (16a) in (18), followed
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by expansions (4) and (8), one obtains

∫

k

[

G(0)
σσ (k)−Dπ(k)

]

∣

∣

∣

∣

div

=
λv2

3
ta. (34)

For the second integral we take the inverse of G−1
π given

in (29) and expand it to O(1/N). Using the two integrals

J(M2) and J̃(M2) introduced in Eq. (29) of [3], and given
also here for convenience

J̃(M2) =
1

λ

∫

k

D2
π(k)

∫

p

λ(p)Dπ(p+ k), (35a)

J(M2) =
1

λ2

∫

k

D2
π(k)

∫

p

λ2(p)Dπ(p+ k)G(0)
σσ (p), (35b)

one obtains
∫

k

Gπ(k) =

∫

k

Dπ(k)−
λ2v2

9N

[

J(M2)− iT (0)
a

∫

k

D2
π(k)

]

−
iλ

3N

[

J̃(M2)− T̃ div (M
2)

∫

k

D2
π(k)

]

. (36)

This replaces Eq. (28) of [3], as it contains also the effect
of the new subtraction. In order to isolate the divergences
of J and J̃ we change the order of integration, use the
exact equality which holds at infinite cutoff,

∫

k

D2
π(k)Dπ(p+ k) =

1

p2 − 4M2

[

IFπ (p) +
1

8π2

−
1

16π2
ln

M2

M2
0

]

, (37)

and expand the propagators around G0 as in (4) and
λ(p) around λ0(p) using (8) and (24). A straightforward
calculation yields

J̃ div (M
2) = −i

[

6

λ
+ T

(0)
d +

1

8π2

]

[

T̃ div (M
2) + 3M2ta

]

+ i
6

λ
td(4M

2) + 3itaM
2Iπ(k = 0)

+ T̃ div (M
2)

∫

k

D2
π(k) (38a)

J div (M
2) = T (I)

a + T (0)
a

(

T
(0)
d +

1

8π2

)

+ iT (0)
a

∫

k

D2
π(k), (38b)

where in both cases we replaced ln(M2/M2
0 ) by the fi-

nite bubble integral at vanishing external momentum ob-
tained for infinite cutoff using the relation

IFπ (k = 0) =
1

16π2
ln

M2

M2
0

, (39)

and then used (7b) to make appear the full bubble inte-
gral Iπ(0) at vanishing momentum.
The last term of both (38a) and (38b) is a subdiver-

gence which cancels immediately in (36). In order to

make explicit another subdivergence of J̃ , related to the
tadpole, we use (39), (7), and (27) to write

M2Iπ(k = 0) =
M2

16π2
ln

M2

M2
0

+M2T
(0)
d

=

∫

k

Dπ(k)− td(0) +
M2 −M2

0

16π2
. (40)

Using the above relation in the second line of (38a) and
(25) in the first line, one obtains the final expression:

J̃ div (M
2) = −i

[

6

λ
+ T

(0)
d +

1

8π2

]

[

t1(M
2) + 3M2ta

]

+ i
6

λ
td(4M

2)− 3ita

[

td(0) +
M2

0 −M2

16π2

]

− it2

∫

k

Dπ(k) + T̃ div (M
2)

∫

k

D2
π(k). (41)

Among the contributions to (32) there are dangerous
terms proportional to v2 and

∫

k Dπ(k) which should dis-
appear. The latter comes entirely from (41) and (33),
which eventually cancel each other in (32). Concerning
the terms proportional to v2, first we combine (34) with
the corresponding term of (36) and realize that the result
is exactly canceled by the remaining term of (33). This
means that there is no environment dependent subdiver-
gence in (32) and the corresponding ∆V 0

α counterterm
depends only on a quadratic polynomial of α̂. Its final
expression reads

∆V 0
α = iα̂δκ

(1)
1 + α̂2δκ

(1)
2 , (42)

with

δκ
(1)
1 = −

(

t1(m
2) + 3m2ta

)

[

1 +
λ

6
T

(0)
d +

λ

48π2

]

+ td(4m
2)−

λ

2
ta

(

td(0) +
M2

0 −m2

16π2

)

, (43)

δκ
(1)
2 =

t2 − 3ta
2

[

1 +
λ

6
T

(0)
d +

λ

48π2

]

+ 2T
(0)
d +

λta
64π2

,

(44)

providing the two NLO order counterterms, exclusively
related to the auxiliary field.

D. The effective potential

Putting together the different pieces of (19) one rec-
ognizes that the new subtraction can be performed at
NLO for arbitrary values of v and α̂, in agreement with
the general expectations on the structure of the countert-
erms. This completes the renormalization of the model
in the auxiliary field formulation, where the counterterm
functional is

∆V [α̂, v, Gπ,G] =
1

2

(

δm̂2 − iδgα̂
)

(

v2 +

∫

k

Gπ(k)

)
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+ iδκ1α̂+ δκ2α̂
2 +

1

2
δκ0

∫

k

Gαα(k)

+
δλ̂

4!

(

v2 +

∫

k

Gπ(k)

)2

, (45)

with the following countercouplings:

δg =
λ

3
t2, δλ̂ = −

2λ2

3
T (0)
a , δm̂2 = −

λ

3
t1(m

2),

δκ0 =
λ

6
T

(0)
d , δκ1 = Nδκ

(0)
1 + δκ

(1)
1 , δκ

(0)
1 =

1

2
td(m

2),

δκ2 = Nδκ
(0)
2 + δκ

(1)
2 , δκ

(0)
2 =

1

4
T

(0)
d . (46)

The last term in (45) is a completely new functional term,
compared to the expression in Eq. (32) of [3], and one also
notes that (45) contains exclusively the sum of v2 and
∫

k
Gπ(k). This feature is sufficient to preserve the validity

of Goldstone’s theorem also in the renormalized theory
at NLO, since it ensures that the same subtraction is
performed in both unrenormalized expressions of δV/vδv
and 2δV/δGπ, which is needed for the theorem to be
obeyed.

Combining (14) and (45), we can define with δκ2 the
bare coupling λB through the relation

1

λB
=

1

λ
+

2

3N
δκ2. (47)

Writing λB = λ+ δλα and decomposing the counterterm

into LO and NLO parts δλα = δλ
(0)
α + δλ

(1)
α /N , the LO

part of the coupling, λ
(0)
B is determined by δκ

(0)
2 and reads

λ
(0)
B =

λ

1 + λT
(0)
d /6

, (48)

and also

δλ(0)
α = −

λ2

6

λ

1 + λT
(0)
d /6

, δλ(1)
α = −

2

3

(

λ
(0)
B

)2
δκ

(1)
2 .

(49)
As we shall see in a moment, the LO part of the bare

coupling remains unchanged even after the elimination of
the auxiliary field, which we do in order obtain theO(N0)
accurate effective potential of the model as a functional
of the original variables. Following Sec. VI of [3], we need

to substitute into (14) and (45) the LO expressions G
(0)
αα

and G
(0)
ασ expressed in terms of G

(0)
σσ ≡ Gσ and Gπ, and

to make use of the saddle point equation for α̂. We do
not present this procedure, as it was done in [3] in quite
some details. We only have to add the last term of (45)
to the expression on the right-hand side of Eq. (45) of
[3]. Defining the bare parameters of the model without
the auxiliary field as

λb = λB ĉ
2 +

δλ̂

N
, m2

b = m2 +
δm̂2

N
−

λB ĉδκ1

3N
, (50)

(ĉ = 1 + δg/N) and using that to O(1/N)

[

λB ĉ
2 +

δλ̂

N − 1

]

v2

12

∫

k

Gπ(k) ≈
λbv

2

12

∫

k

Gπ(k), (51)

one obtains

V [v,Gπ , Gσ] =
N

2
m2

bv
2 +

N

24
λbv

4 −
i

2

∫

k

(N − 1)
(

lnG−1
π (k) +D−1

π (k)Gπ(k)
)

−
i

2

∫

k

(

lnG−1
σ +D−1

σ (k)Gσ(k)
)

+
N

24
λb

(
∫

k

Gπ(k)

)2

+
λ
(0)
B

12

∫

k

Gπ(k)

∫

p

Gσ(p)−
λ
(0)
B

12

(
∫

k

Gπ(k)

)2

−
i

2

∫

k

ln

(

1−
λ
(0)
B

6
Π(k)

)

−
λ
(0)
B

6
v2
∫

k

Gσ(k) +
λ
(0)
B

6
v2
∫

k

Gσ(k)

1− λ
(0)
B Π(k)/6

, (52)

where we have introduced the notation Π(k) =
−i
∫

p
Gπ(p+ k)Gπ(p) and the tree-level propagators

iD−1
π (k) = k2 −m2

b −
λb

6
v2, (53a)

iD−1
σ (k) = k2 −m2

b
(0)

−
λ
(0)
B

2
v2. (53b)

The interpretation of the last four terms in (52) in terms
of Feynman diagrams was given in Eqs.(50) and (51) and
Fig. 2 of [3]. Note that in D−1

σ we replaced m2
b by its

leading order part m2
b
(0)

because we are interested only
in the O(N0) accurate effective potential. As it might

be expected, one has just a single bare squared mass m2
b

and a single bare coupling λb, but in some terms only the

LO part of them, m2
b
(0)

and λ
(0)
B is needed.

Using λb = λ + δλ and m2
b = m2 + δm2, as well as

the decompositions δλ = δλ(0) + δλ(1)/N and δm2 =

δm2(0) + δm2(1)/N, one obtains the following LO and
NLO countercouplings:

δm2(0) = −
1

3
λ
(0)
B δκ

(0)
1 ,

δm2(1) = δm̂2 −
1

3

[

δλ(1)
α δκ

(0)
1 + λ

(0)
B

(

δκ
(1)
1 + δκ

(0)
1 δg

)]

,



9

δλ(0) = δλ(0)
α , δλ(1) = δλ(1)

α + 2λ
(0)
B δg + δλ̂, (54)

where the correction represented by the last term in (45)
shows up in the NLO coupling counterterm δλ(1).

E. Renormalization without the auxiliary field

The countercouplings given in (54) renormalize by
their very construction the propagator equations for the
pion and sigma fields derived from V [v,Gπ , Gσ], as well
as the derivative δV/δv. We mention that there is no
need to use the auxiliary field method to obtain the ex-
pression of the countercouplings in the theory written
in the original variables because we presented in [3] a
method to determine them starting from (52). When
applied to the renormalization of the pion propagator,
this method requires first to remove the divergence of
the momentum-dependent part of the self-energy and
then of the momentum-independent piece of it. The ex-
plicit expressions in the inverse of the pion propagator
iG−1

π (k) = k2 −M2 − λΣF
π (k)/(3N) are

ΣF
π (k) =

∫

p

[

1

1− λΠF (p)/6
−

λv2

3

iGσ(p)

(1− λΠF (p)/6)
2

]

×Gπ(k + p)− T̃div(M
2), (55)

M2 = m2
b +

λb

6

[

v2 +

∫

k

Gπ(k)

]

+
λb

6N

∫

k

[

Gσ(k)−Gπ(k)
]

+
λ

3N
T̃div(M

2), (56)

where the first line in the momentum-independent part
M2 is obtained from (52) by differentiating with respect
to Gπ and the last term is added there to compensate
for its subtraction from the momentum-dependent part,

done to render it finite. Writing M2 = M2(0)+M2(1)/N
and expanding Gπ to O(1/N), we obtain the same inte-
grals which appear in the auxiliary field formulation of
the model, but Dπ(p) originally defined below (3) has

now M2 replaced by M2(0). Referring to Eq. (55) of [3]
for some details, below we only give the corrected equa-
tion from which the NLO countercouplings can be deter-
mined:

−
3i

λ
(0)
B

[

δm2(1) +
λ

3
T̃div

(

M2(0)
)

]

=
iδλ(1)

2λ
(0)
B

(

v2 +

∫

k

Dπ(k)

)

+
i

2

∫

k

[

Gσ(k)−Dπ(k)
]

∣

∣

∣

∣

div

+
λ

6

[

J̃div(M
2(0))− T̃div(M

2(0))

∫

k

D2
π(k)

]

−i
λ2

18
v2
[

Jdiv(M
2(0))− iT (0)

a

∫

k

D2
π(k)

]

. (57)

In order to obtain a relation which involves the counter-
couplings and M2(0) we have to use the integrals (7a),

(34), (38b), and (41). Then, we substitute in it the LO

finite gap equation M2(0) = m2 + λ(v2 + TF
π )/6 and de-

termine δλ(1) by requiring the vanishing of the coefficient
of v2 + TF

π . The vanishing of the remainder in that re-

lation determines δm2(1). With this procedure we arrive
at the expressions given in (54).

V. DISCUSSION AND CONCLUSIONS

The present study shows that the subtraction of the
new divergent integral omitted from the renormalization
procedure discussed in Ref. [3] does not change one of its
main conclusions, namely that the renormalization of the
model in the auxiliary field formulation can be performed
at arbitrary value of the auxiliary field.
However, we could separate analytically the diver-

gences of the encountered integrals only if in some finite
integrals, e.g. the finite bubble IFπ defined below (3) and
the integral in (37), the cutoff is sent to infinity. Since
strictly speaking the presence of the Landau pole imposes
a restriction on the maximal value of the momentum scale
present in the effective theory, we should investigate how
the divergence analysis goes in the case when this restric-
tion is imposed on every subdiagram too. It turns out
that in the auxiliary field formulation of the model, after
the renormalization of the pion propagator and of the
field equation, the cancellation of subdivergences from
the saddle point equation imposes a constraint among
the above mentioned two integrals which has to be satis-
fied by a consistent cutoff regularization scheme.
The emergence of the constraint is easily seen as fol-

lows. If IFπ and IF0 are calculated in Euclidean space
with a yet unspecified cutoff regularization then on
the right-hand side of the expression in (24) an addi-
tional term ∆IΛ(kE ;M

2,M2
0 ) will appear due to the

explicit dependence of the finite bubbles on the cut-
off Λ. This term emerges from an expansion for small
M2 and M2

0 without assuming |kE | ≪ Λ and vanishes
when Λ → ∞. Then t1(M

2) in (25) gets a correction

of the form 1
6λ

∫ Λ

kE

λ2
0,E(kE)∆IΛ(kE ;M

2,M2
0 )G0(kE),

where
∫ Λ

kE

=
∫

d4kE

(2π2)θ(Λ − |kE |), G0(kE) = 1/(k2E +M2
0 )

and λ0,E(kE) is the Euclidean continuation of λ0(k).
Due to (28) and (31) the derivative of this integral with
respect to α̂ (or equivalently iM2) will appear on the
right-hand side of (33) as a Λ-dependent correction of

the form − i
36

∫ Λ

kE

λ2
0,E(kE)G0(kE)

d
dα̂∆IΛ(kE ;M

2,M2
0 ).

Now, if the same regularization is applied to cal-
culate the divergent part of JE(M

2) then the inte-
gral in (37) (written as an Euclidean integral with
Euclidean propagators) acquires on the right-hand
side a Λ-dependent correction ∆IΛ2 (kE ;M

2,M2
0 ), so

that the correction in JE(M
2) will be of the form

− 1
λ2

∫ Λ

kE

λ2
0,E(kE)∆IΛ2 (kE ;M

2,M2
0 )G0(kE). Then, as we

can readily check, the cancellation of the v2-dependent
divergences in the saddle point equation (32) occurs only
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if the relation

∆IΛ2 (kE ;M
2,M2

0 ) = −
1

2

d

dM2
∆IΛ(kE ;M

2,M2
0 ), (58)

is satisfied. The same relation is the precondition
for the cancellation of the divergences proportional to
∫

kE

D(kE).

It is very plausible that the relation (58) holds for small
M2 and M2

0 , because a similar one exists between IFπ and
the integral in (37) at infinite cutoff and also when one
chooses at the level of the effective potential a regular-
ization for which to every propagator a regulator func-
tion is attached (in case of a sharp cutoff the regulator
is Θ(Λ − |qE |) where qE stands for kE , pE or kE + pE).
Such a regularization of the 2PI effective action, which
preserves the invariance of the unregularized, formal in-
tegral against shifts of the loop momenta which permute
the arguments of the propagators, was discussed in [12].
In case of four-dimensional rotational invariant functions
this regularization leads in the equation of Gαα and Gπ

to integrals of the form [see Eq. (A1) of [16]]

∫ Λ

kE

f(|kE |)g(|kE + pE |)θ(Λ − p)θ(Λ − |kE + pE |)

=
θ(Λ − p)

8π3p2

(

∫ Λ−p

0

dk kf(k)

∫ k+p

|p−k|

dq qg(q)J(q)

+

∫ Λ

Λ−p

dk kf(k)

∫ Λ

|p−k|

dq qg(q)J(q)

)

, (59)

where J(q) = [4k2q2 − (q2 + k2 − p2)]1/2 with k = |kE |
and p = |pE |. In case of f(k) = 1/(k2+M2)n with n = 1
or n = 2 and g(k) = 1/(k2+M2) the second double inte-
gral cannot be calculated analytically, making difficult to
obtain explicitly the corrections ∆IΛ(kE ;M

2,M2
0 ) and

∆IΛ2 (kE ;M
2,M2

0 ).
If instead of attaching a regulator to each propaga-

tor, one cuts only the loop momenta in the setting-sun
diagram of (14) one finds in the equation for Gαα a bub-
ble integral similar to (59) but without the second theta
function θ(Λ−|kE +pE|). In this case the second double
integral is missing from (59) and the upper limit of the
outer integral in the first double integral is Λ instead of
Λ−p. In this regularization ∆IΛ(kE ;M

2,M2
0 ) can be cal-

culated explicitly by a direct calculation. The expression
of ∆IΛ2 (kE ;M

2,M2
0 ), obtained indirectly from the con-

sistency relation (58) determines J div
E (M2). However, as

one can check numerically, this does not render finite the
integral JE(M

2), which, in the regularization when only
the loop momenta in the setting-sun diagram are cut,
turns out to be written in terms of the average of the in-
tegral in (37), calculated with the one-theta and the two-
theta regularizations discussed above. This shows that
cutting only the loop momenta is not a consistent regu-
larization. After all, this should not come as a surprise
because even the starting expression of the regularized
setting-sun diagram in the effective potential changes if

we cut the loop momenta after shifting them (permuting
the arguments of the propagators). Furthermore, if we
remind ourselves that the two-loop setting-sun diagram
is originally obtained by integrating over all momenta
of its three propagators in the presence of a delta func-
tion ensuring momentum conservation, for consistency
reasons actually all three integrals in question should be
cut. Performing one of them with the help of the delta
function however leads to exactly the same regularization
discussed above and in [12].
There is no such consistency problem in the formula-

tion of the model not using the auxiliary field. In this
case one can regularize the integrals of the pion propa-
gator equation appearing in (55) and (56) by cutting the
loop integrals only. In this case the finite bubble inte-
grals IFπ (p) and IF0 (p), and the integral in (37) can be
evaluated with a finite cutoff and corrections to coun-
terterms, arising from keeping the cutoff in the expres-
sion of these integrals, can be calculated. For example,
with an explicit calculation one obtains that the correc-
tion ∆IΛ(kE ;M

2,M2
0 ) is proportional to M2 −M2

0 such
that t2 changes to

tΛ2 = t2 +
λ

96π2

(

d(2)

Λ2
+ L(0)

a

)

, (60)

with d(2) = (1/λ2)
∫ Λ

pE

G0(kE)λ
2
0,E(pE) and L

(2)
a =

(1/λ2)
∫ Λ

pE

G2
0(kE)λ

2
0,E(pE) ln(1 − p2E/Λ

2). Note that we

have kept those integrals from which constant contribu-
tions would arise in tΛ2 for Λ → ∞ in the absence of
λ2
0,E(pE) from their integrand. Using the above relation

in the expression of T̃ div (M
2) one can compare the cutoff

dependence of the finite integral I1,1F = I1,1 − T̃ div (M
2)

when the finite bubbles are calculated with infinite or
finite cutoff. This is presented in Fig. 2 for two differ-
ent values of the coupling. For the smaller coupling a
plateau-like behavior can be seen in both cases. This be-
havior is even more pronounced for smaller values of the
cutoff, in which case the two curves are closer to each
other in the region where one could speak about an ap-
parent convergence of the integral with the increasing of
Λ. The Λ dependence of I1,1F is different at large values of
the cutoff: it has an inflection when the finite bubbles are
calculated with an infinite cutoff and a maximum when
they are calculated with the actual value of the cutoff.

All n-point functions derived from (52) with the appro-
priately chosen countercouplings are consistently freed
from all divergent (i.e. strongly cutoff dependent) con-
tributions. Still, all ”convergent” NLO contributions to
these observables of the theory are sensitive to the Lan-
dau pole through the presence of λ(p) in the integrands
of the contributing integrals Ij,k, j > 2. One might
contemplate to apply further subtractions with the aim
to decrease the range of influence of the Landau pole
in specific n-point functions around its actual location.
As an example, one can use in the renormalized equa-
tions of Gπ and v the iterated version of (16a) in (16b)
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FIG. 2. The cutoff dependence of the subtracted integral I1,1F

for two ways of computing the finite bubble integrals IFπ (p)
and IF0 (p): with the actual value of the cutoff or by taking
Λ → ∞. The mass parameters are those of Fig. 1 and for the
sake of presentation the two curves with λ = 80 were shifted
downwards by 0.385.

and keep more terms in the expansion of Dπ(p) and λ(p)
around G0(p) and λ0(p), respectively. (One has to syn-
chronize this oversubtraction between the two equations
in order to maintain Goldstone’s theorem.) For instance,
one might define the finite part of the integral appearing
on the left-hand side of (23b) by subtracting also the first
convergent terms in the expansion of its integrand around
λ2
0(p)G

2
0(p). Using (24) and neglecting for simplicity TF

π

obtained by rewriting M2 ln(M2/M2
0 ) with the help of

(27), we obtain

Ĩ2,2F := I2,2 − iλ2T̃ (0)
a , (61)

where T̃
(0)
a = T

(0)
a +(M2−M2

0 )F (M0)/λ
2, with F (M0) =

[

6I3,20 − 4(λ−1 + 1/(48π2))I3,30

]

given in terms of Ij,k0 ,

the integral defined in (3), but with M2 replaced by M2
0 .

Then, compared to (23a), we can choose to define a mod-

ified finite part of I1,1 using the replacement T
(0)
a → T̃

(0)
a

in (25), namely:

Ĩ1,1F := I1,1 − λ

(

t1(M
2) +

λ

3
T̃ (0)
a

∫

k

Dπ(k)

)

. (62)

With this choice of oversubtraction the algebraic struc-
ture of the divergence cancellation does not change nei-
ther in the NLO pion propagator nor in δV/δv. We only

have to perform the change T
(0)
a → T̃

(0)
a in (28) which

in turn induces the same change in (31) and these two

together lead in place of (33) to

δ∆V 0
π

δα̂
+

δ∆V 0
v

δα̂
= −i

λ

6
t2

(

v2 +

∫

k

Dπ(k)

)

− i
λ

36
F (M0)

(

v2 +

∫

k

Dπ(k)

)2

. (63)

One should investigate if the second term on the right-
hand side is canceled by the integrals defining the saddle
point equation of α̂. It might not be possible to fulfill
this ad hoc requirement for general values of α̂, but even
then one easily constructs an appropriately defined term
for ∆Vα which would cancel it at the specific α̂ value sat-
isfying the LO saddle point equation. Even without this
compensation this term represents just a finite(!) con-
tribution to the saddle point equation. An appropriate
choice of F (M0) might diminish the effect of the Landau
pole in the field and pion propagator equations, while
other n-point functions might receive extra Landau-pole
sensitive contributions due to the extra counterterms pro-
duced by the oversubtraction.

In conclusions, we revisited the problem of renormal-
izing the O(N) model at NLO in the 1/N expansion.
This was necessary, because, although we were aware of
the presence of the Landau pole, the renormalization per-
formed in [3] was based on the behavior of the integrands
at asymptotically large momenta. Now we focused our
discussion on defining a cutoff insensitive effective po-
tential with a cutoff below the scale of the Landau sin-
gularity. It turned out that more care is needed in the
study of the divergences because in some cases the be-
havior of the integrand is different below and above the
singularity. As a result of the subtraction of the integral

T
(0)
a defined in (12) a rather important improvement of

the cutoff insensitivity was experienced already below the
Landau pole.
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