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Abstract

The Bialas-Bzdak model of elastic proton-proton scattering assumes a
purely imaginary forward scattering amplitude, which consequently van-
ishes at the diffractive minima. We extended the model to arbitrarily large
real parts in a way that constraints from unitarity are satisfied. The re-
sulting model is able to describe elastic pp scattering not only at the lower
ISR energies but also at

√
s =7 TeV in a statistically acceptable manner,

both in the diffractive cone and in the region of the first diffractive min-
imum. The total cross-section as well as the differential cross-section of
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elastic proton-proton scattering is predicted for the future LHC energies of√
s =8, 13, 14, 15 TeV and also to 28 TeV. A non-trivial, significantly non-

exponential feature of the differential cross-section of elastic proton-proton
scattering is analyzed and the excitation function of the non-exponential
behavior is predicted. The excitation function of the shadow profiles is
discussed and related to saturation at small impact parameters.

1 Introduction

In a pair of recent papers the Bialas-Bzdak model [1] (BB) of small angle elastic
proton-proton (pp) scattering at high energies was studied at 7 TeV LHC en-
ergy [2,3]. In those papers a terse overview is reported about the field of elastic
scattering at high energies. Here we would like to highlight only some recent
works which influenced us.

In this manuscript the BB model is extrapolated to future LHC energies.
Our method to include the energy evolution of the parameters is somewhat
similar to the so-called “geometric scaling” discussed in Ref. [4] and also in
Ref. [5].

Using 2012 data the TOTEM experiment recently made an important ex-
perimental observation at

√
s = 8 TeV: the pp elastic differential cross-section

shows a deviation from the most simple non-exponential behavior at low-|t|, [6]
where t is the squared four-momentum transfer of the pp scattering process.
This feature of the

√
s = 8 TeV (preliminary) TOTEM dataset, was related

to t-channel unitarity of the forward scattering amplitude (FSA) in Ref. [7], a
concept that we also focus on, using and generalizing in a unitary manner the
quark-diquark model of Bialas and Bzdak for the determination of the shape of
the FSA of elastic pp scattering.

In its original form, the BB model [1] assumes that the real part of the
FSA is negligible, correspondingly, the FSA vanishes at the diffractive minima.
At the ISR energies of

√
s =23.5−62.5 GeV, that were first analyzed in the

inspiring paper of Bialas and Bzdak [1], this assumption is indeed reasonable,
as confirmed in Ref. [2]. At these ISR energies, only very few data points
were available in the dip region around the first diffractive minimum of elastic
pp scattering, which were then left out from the BB model fits of Ref. [2] to
achieve a quality description of the remaining data points. However, in recent
years, TOTEM data [8] explored the dip region at the LHC energy of 7 TeV in
great details, at several different values of the squared four-momentum transfer
t. Ref. [2] demonstrated, that the original BB model cannot describe this dip
region, not without at least a small real part that has to be added to its FSA
in a reasonable way.

Subsequently, the BB model has been generalized in Ref. [3] by allowing for
a perturbatively small real part of the FSA, which improved the agreement of
the model with TOTEM data on elastic pp scattering at the LHC energy of√
s = 7 TeV. It was expected that the main reason for the appearance of this

real part is that certain rare elastic scattering of the constituents of the protons
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may be non-collinear thus may lead to inelastic events even if the elementary
interactions are elastic. The corresponding phenomenological generalization of
the Bialas-Bzdak model [3] was indeed based on the assumption that the real
part of the FSA is small, and can be handled perturbatively. The resulting α-
generalized Bialas-Bzdak (αBB) model was compared to ISR data in Ref. [3],
and it was demonstrated that a small, of the order of 1 % real part of the FSA
indeed results in excellent fit qualities and a statistically acceptable description
of the data in the region of the diffractive minimum or dip. However, at the
LHC energy of 7 TeV, the same αBB model does not result in a satisfactory,
statistically acceptable fit quality, although the visual quality of the fitted curves
improve significantly as compared to that of the original BB model [3].

These results indicate that at the LHC energies the real part of the FSA
may reach significant values where unitarity constraints may already play an
important role. The unitarity of the S-matrix provides also the basis for the
optical theorem, which in turn provides a method to determine the total cross-
section from an extrapolation of the elastic scattering measurements to the t = 0
point.

In the αBB model of Ref. [3], unitarity constraints were not explicitly con-
sidered: as the original BB model with zero real parts obeyed unitarity, adding
a small real part may possibly resulted only in small violations of unitarity and
the optical theorem. However, when the model was fitted to the 7 TeV TOTEM
data in the dip region in Ref. [3], the extrapolation to the point of t = 0 and
the related value of the total cross-section underestimated the measured total
cross-section by about 40%, suggesting, that perhaps the real part of the FSA
may be large, and unitarity relations should be explicitly considered.

These indications motivate the present manuscript, where the Bialas-Bzdak
model is further generalized to arbitrarily large real parts of the FSA, fully
taking into account unitarity constraints. The resulting model is referred to as
the real extended Bialas-Bzdak (ReBB) model.

The structure of the manuscript is as follows: in Section 2, the general form
of the forward scattering amplitude is re-derived for the case of a non-vanishing
real part starting from S-matrix unitarity. Then this result is applied to the
extension of the BB model to a non-vanishing and possibly large real part of
the FSA.

In Section 3, the resulting ReBB model is fitted to TOTEM data on elastic
pp scattering at

√
s = 7 TeV, both in the diffractive cone [9, 10] and in the dip

region [8], separately.
Based on these fits and comparisons of the ReBB model to

√
s = 7 TeV

data, in Section 4.1 the shadow profile function A(b) is evaluated. This func-
tion characterizes the probability of inelastic pp scattering at a given impact
parameter b, and is compared to the shadow profile functions of elastic pp col-
lisions at lower, ISR energies. Section 4.2 is devoted to study the structure of
the differential cross-section dσ/dt at low-|t| values and also to compare it with
a purely exponential behavior.

In Section 5, the excitation function of the fit parameters is investigated and
their evolution with

√
s is obtained based on a geometrical picture. The model
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parameters are extrapolated to the expected future LHC energies of 8, 13, 14
and 15 TeV, as well as for 28 TeV, that is not foreseen to be available at man-
made accelerators in the near future, but may be relevant for the investigation of
cosmic ray events. The excitation functions of the shadow profile functions A(b)
are also discussed. Finally we summarize and conclude.

2 The real extended Bialas-Bzdak model

Although the original form of the Bialas-Bzdak model neglects the real part of
the FSA in high energy elastic pp scattering, the model is based on Glauber
scattering theory and obeys unitarity constraints.

The phenomenological generalization of the Bialas-Bzdak model [3] is based
on the assumption, that the real part of the FSA is small, and can be handled
perturbatively, so unitarity constraints are not violated strongly. However, it
turned out that the addition of a small real part does not lead to a statistically
acceptable description of TOTEM data on elastic pp collisions at

√
s = 7 TeV.

In this manuscript, we consider the case, when the real part of the FSA is not
perturbatively small. We restart from S-matrix unitarity, and consider how the
BB model can be extended to significant, real values of the FSA while satisfying
the constraints of unitarity.

2.1 S-matrix unitarity in the context of elastic proton-

proton scattering

In this subsection some of the basic equations of quantum scattering theory
are recapitulated. The scattering or S matrix describes how a physical system
changes in a scattering process. The unitarity of the S matrix ensures that the
sum of the probabilities of all possible outcomes of the scattering process is one.

The unitarity of the scattering matrix S is expressed by the equation

SS† = I , (1)

where I is the identity matrix. The decomposition S = I + iT , where T is the
transition matrix, leads the unitarity relation Eq. (1) to

T − T † = iTT † , (2)

which can be rewritten in the impact parameter b representation as

2 Im tel(s, b) = |tel(s, b)|2 + σ̃inel(s, b) , (3)

where s is the squared total center-of-mass energy.
The functions σ̃inel(s, b) = d2σinel/d

2b and |tel(s, b)|2 = d2σel/d
2b are the

inelastic and elastic scattering probabilities per unit area, respectively. The elas-
tic amplitude tel(s, b) is defined in the impact parameter space and corresponds
to the ℓth partial wave amplitude Tℓ(s) through the relation ℓ+ 1/2 ↔ b

√
s/2,

which is valid in the high energy limit,
√
s → ∞.
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The unitarity relation (3) is a second order polynomial equation in terms of
the (complex) elastic amplitude tel(s, b). If one introduces the opacity or eikonal
function [11–16]

tel(s, b) = i
[

1− e−Ω(s,b)
]

, (4)

σ̃inel can be expressed as

σ̃inel(s, b) = 1− e−2ReΩ(s,b) .

The formula for tel is the so called eikonal form. From Eq. (4) the real part of
the opacity function Ω(s, b) can be expressed as

ReΩ(s, b) = −1

2
ln [1− σ̃inel(s, b)] . (5)

In the original BB model it is assumed that the real part of tel vanishes. In this
case Eqs. (4) and (5) implies that

tel(s, b) = i
[

1−
√

1− σ̃inel(s, b)
]

. (6)

If the imaginary part Im Ω is taken into account in Eq. (4) the result is

tel(s, b) = i
[

1− e−i ImΩ(s,b)
√

1− σ̃inel(s, b)
]

, (7)

where the concrete parametrization of ImΩ(s, b) is discussed later.
To compare the model with data the amplitude Eq. (7) has to be transformed

into momentum space

T (s,∆) =

+∞
∫

−∞

+∞
∫

−∞

ei
~∆·~btel(s, b)d

2b (8)

= 2πi

∞
∫

0

J0 (∆ · b)
[

1− e−Ω(s,b)
]

b db , (9)

where b = |~b|, ∆ = |~∆| is the transverse momentum and J0 is the zero order
Bessel-function of the first kind. In the high energy limit,

√
s → ∞, ∆(t) ≃√

−t where t is the squared four-momentum transfer. Consequently the elastic
differential cross-section can be evaluated as

dσ

dt
=

1

4π
|T (s,∆)|2 . (10)

According to the optical theorem the total elastic cross-section is

σtot = 2 T (s,∆)|t=0 , (11)

while the ratio of the real to the imaginary FSA is

ρ =
ReT (s, 0)

ImT (s, 0)
. (12)
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2.2 The Bialas-Bzdak model with a unitarily extended

amplitude

The original BB model [1] describes the proton as a bound state of a quark
and a diquark, where both constituents have to be understood as “dressed”
objects that effectively include all possible virtual gluons and qq̄ pairs to valence
or dressed quarks. The quark and the diquark are characterized with their
positions with respect to the proton’s center of mass using their transverse
position vectors ~sq and ~sd in the plane perpendicular to the proton’s incident
momentum. Hence, the coordinate space H of the colliding protons is spanned
by the vector h = (~sq, ~sd, ~s

′
q, ~s

′
d) where the primed coordinates indicate the

coordinates of the second proton.
The inelastic proton-proton scattering probability σ̃inel(b) in Eq. (6) is cal-

culated as an average of “elementary” inelastic scattering probabilities σ(h;~b)
over the coordinate space H [17]

σ̃inel(b) =
〈

σ(h;~b)
〉

H
=

+∞
∫

−∞

...

+∞
∫

−∞

dh p(h) · σ(h;~b) , (13)

where the weight function p(h) is a product of probability distributions

p(h) = D(~sq, ~sd) ·D(~s ′
q, ~s

′
d) . (14)

TheD(~sq, ~sd) function is a two-dimensional Gaussian, which describes the center
of mass distribution of the quark and diquark with respect to the center of mass
of the proton

D (~sq, ~sd) =
1 + λ2

R2
qd π

e−(s2q+s2d)/R
2

qdδ2(~sd + λ~sq), λ =
mq

md
. (15)

The parameter Rqd, the standard deviation of the quark and diquark distance,
is fitted to the data. Note that the two-dimensional Dirac δ function preserves
the proton’s center of mass and reduces the dimension of the integral in Eq. (13)
from eight to four.

Note that the original BB model is realized in two different ways: in one
of the cases, the diquark structure is not resolved. This is referred to as the
p = (q, d) BB model. A more detailed variant is when the diquark is assumed to
be a composition of two quarks, referred as the p = (q, (q, q)). Our earlier studies
using the αBB model indicated [3], that the p = (q, d) case gives somewhat
improved confidence levels as compared to the p = (q, (q, q)) case. So for the
present manuscript we discuss results using the p = (q, d) scenario only, however,
it is trivial to extend the investigations to the p = (q, (q, q)) case and they result
in fits which are not acceptable at

√
s = 7 TeV. For the case of brevity we do not

present the results of the analysis with the p = (q, (q, q)) variant of the ReBB
model, only the fit quality is reported.
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It is assumed that the “elementary” inelastic scattering probability σ(h;~b)
can be factorized in terms of binary collisions among the constituents with a
Glauber expansion

σ(h;~b) = 1−
∏

a

∏

b

[

1− σab(~b + ~s ′
a − ~sb)

]

, a, b ∈ {q, d} , (16)

where the indices a and b can be either quark q or diquark d.
The σab (~s) functions describe the probability of binary inelastic collision

between quarks and diquarks and are assumed to be Gaussian

σab (~s) = Aabe
−s2/S2

ab , S2
ab = R2

a +R2
b , a, b ∈ {q, d} , (17)

where the Rq, Rd and Aab parameters are fitted to the data.
The inelastic cross-sections of quark, diquark scatterings can be calculated

by integrating the probability distributions Eq. (17) as

σab,inel =

+∞
∫

−∞

+∞
∫

−∞

σab (~s) d
2s = πAabS

2
ab . (18)

In order to reduce the number of free parameters, it is assumed that the ratios
of the inelastic cross-sections σab,inel satisfy

σqq,inel : σqd,inel : σdd,inel = 1 : 2 : 4 , (19)

which means that in the BB model the diquark contains twice as many partons
than the quark and also that these quarks and diquarks do not “shadow” each
other during the scattering process. This assumption is not trivial. The p =
(q, (q, q)) version of the BB model allows for different σqq,inel : σqd,inel : σdd,inel

ratios. However, as it was mentioned before, the p = (q, (q, q)) is less favored
by the data as compared to the p = (q, d) case presented below.

Using the inelastic cross-sections Eq. (18) together with the assumption Eq. (19)
the Aqd and Add parameters can be expressed with Aqq

Aqd = Aqq

4R2
q

R2
q +R2

d

, Add = Aqq

4R2
q

R2
d

. (20)

In this way only five parameters have to be fitted to the data Rqd, Rq, Rd, λ,
and Aqq . In practice we fix Aqq = 1 assuming that head on quark-quark (qq)
collisions are completely inelastic according to Eq. (17).

The last step in the calculation is to perform the Gaussian integrals in the av-
erage Eq. (13) to obtain a formula for σ̃inel(b). The Dirac δ function in Eq. (15)
expresses the protons’ diquark position vectors as a function of the quarks po-
sition

~sd = −λ~sq, ~s ′
d = −λ~s ′

q . (21)
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After expanding the products in the Glauber expansion Eq. (16) the follow-
ing sum of contributions is obtained

σ(h;~b) =σqq + 2 · σqd + σdd − (2σqqσqd + σ2
qd + σqqσdd + 2σqdσdd)

+ (σqqσ
2
qd + 2σqqσqdσdd + σddσ

2
qd)− σqqσ

2
qdσdd , (22)

where the arguments of the σab(~s) functions are suppressed to abbreviate the
notation.

The average over H in Eq. (13) has to be calculated for each term in the
above expansion Eq. (22). Take the last, most general, term and calculate the
average; the remaining terms are simple consequences of it. The result is

I =
〈

−σqqσ
2
qdσdd

〉

H
=

+∞
∫

−∞

...

+∞
∫

−∞

dh p(h) · (−σqqσ
2
qdσdd ) , (23)

where the p(h) weight function Eq. (14) is a product of the quark-diquark dis-
tributions, given by Eq. (15). Substitute into this result Eq. (23) the definitions
of the quark-diquark distributions Eq. (15)

I = −4v2

π2

+∞
∫

−∞

+∞
∫

−∞

d2sqd
2s′q e

−2v(s2q+s′2q )
∏

k

∏

l

σkl(~b − ~sk + ~s ′
l ), k, l ∈ {q, d} ,

(24)

where v = (1 + λ2)/(2 · R2
qd) and the integral over the coordinate space H

is explicitly written out; it is only four dimensional due to the two Dirac δ
functions in p(h). Using the definitions of the σab (~s) functions Eq. (17) and the
expression A = AqqAqdAdqAdd the integral Eq. (24) can be rewritten, to make
all the Gaussian integrals explicit

I = −4v2A

π2

+∞
∫

−∞

+∞
∫

−∞

d2sqd
2s′q e

−2v(s2q+s′2q )
∏

k

∏

l

e−ckl(~b−~sk+~s ′

l )
2

, (25)

where the abbreviations ckl = S−2
kl refer to the coefficients in Eq. (17). Finally,

the four Gaussian integrals have to be evaluated in our last expression Eq. (25),
which leads to

I = −4v2A

B
e−b2 Γ

B , (26)

where

B = Cqd,dq

(

v + cqq + λ2cdd
)

+ (1− λ)
2
Dqd,dq ,

Γ = Cqd,dqDqq,dd + Cqq,ddDqd,dq , (27)

8



and

Ckl,mn = 4v + (1 + λ)
2
(ckl + cmn) ,

Dkl,mn = v (ckl + cmn) + (1 + λ)
2
cklcmn . (28)

Each term in Eq. (13) can be obtained from the master formula Eq. (26), by
setting one or more coefficients to zero, ckl = 0 and the corresponding amplitude
to one, Akl = 1.

Up to now, according to Eq. (5) and Eq. (6), tel(s, b) is purely imaginary and
Ω(s, b) is real. Now we have to specify the imaginary part of the opacity function,
that determines the real part of the FSA. Here several model assumptions are
possible, but from the analysis of the ISR data and the first studies of the 7 TeV
TOTEM data at LHC we learned, that the real part of the FSA is perturbatively
small at ISR energies, it becomes non-perturbative at LHC but the scattering
is still dominated by the imaginary part of the scattering amplitude.

We have studied several possible choices. One possibility is to introduce
the imaginary part of the opacity function so that it is proportional to the
probability of inelastic scatterings, which is known to be a decreasing function
of the impact parameter b. A possible interpretation of this assumption may be
that the inelastic collisions arising from non-collinear elastic collisions of quarks
and diquarks follow the same spatial distributions as the inelastic collisions of
the same constituents

ImΩ(s, b) = −α · σ̃inel(s, b) , (29)

where α is a real number.
For the α = 0 case, one recovers the p = (q, d) version of the BB model of

Ref. [1], while in the |α| ≪ 1 perturbative limit the αBB model of Ref. [3] is
obtained (but note the that the values of the parameter α in the two models
need to be correspondingly re-scaled).

The above proportionality between ImΩ(s, b) and σ̃inel(b) in formula (29)
provided the best fits from among the relations that we have tried. For example,
we have also investigated the assumption that the real and the imaginary parts
of the opacity function are proportional to one another

ImΩ(s, b) = −α ·ReΩ(s, b) . (30)

However, as the results using Eq. (30) were less favorable as the results
obtained with Eq. (29), we do the data analysis part, described in the next
section, using Eq. (29). We mention this possibility to highlight that here some
phenomenological assumptions are necessary as the ReBB model does allow for
a broad range of possibilities for the choice of the imaginary part of the opacity
function.

In this way, the ReBB model is fully defined, and at a given colliding energy
only six parameters determine the differential (10) and total cross-sections (11)
and also the ρ parameter, defined with Eq. (12). The parameters that have
to be fitted to the data include the three scale parameters, Rq, Rd, Rqd, that
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fix the geometry of the proton-proton collisions, as well as the three additional
parameters α, λ and Aqq . Two of the latter three can be fixed: λ = 0.5 if the
diquark is very weakly bound, so that its mass is twice as large as that of the
valence quark, while Aqq = 1 suggests that head-on qq collisions are inelastic
with a probability of 1. Thus in the actual data analysis only four parameters
are fitted to the data at each

√
s: the three scale parameters Rq, Rd and Rqd,

as well as the parameter α. As we shall see, the parameter α will play a key role
when describing the shape of the dip of the differential cross-sections of elastic
pp scatterings at LHC energies.

3 Fit method and results

The proton-proton elastic differential cross-section data measured by the LHC
TOTEM experiment at 7 TeV is a compilation of two subsequent measure-
ments [8, 9]. The squared four-momentum transfer value tsep = −0.375 GeV2

separates the two data sets.1 Note, that the two datasets were taken with two
different settings of the machine optics of the LHC accelerator.

The ReBB model, defined with Eq. (10), was fitted to the data at ISR
energies and at LHC energy of

√
s = 7 TeV. The relation between the imaginary

part of Ω(s, b) and α is defined with Eq. (29). In agreement with our previous
investigations the Aqq = 1 and λ = 1

2 parameters can be kept constant, which
reduces the number of free parameters to four Rqd, Rq, Rd and α.

First we have attempted to fit the ReBB model in the 0 < |t| < 2.5 GeV2

range, fitting simultaneously both the low-|t| and the dip region. In the course
of the minimization of the ReBB model at

√
s = 7 TeV in this t-range, covering

the two different TOTEM data sets, we found that the χ2/NDF value decreases
significantly, if a relative normalization constant γ is introduced between the fit
of the two data sets. Therefore, the calculated differential cross-section is fitted
with

dσ

dt
→ γ · dσ

dt
, (31)

if |t| < |tsep|, where γ is an additional parameter to be minimized. The fit at√
s = 7 TeV is shown in Fig. 1.
Although the fit looks reasonable and reproducing the data qualitatively

rather well, the fit quality it is not yet statistically acceptable, when the fit
is extended to the whole t-region of the combined data set. Note that we
determined the fit quality using statistical errors only, and as claimed in the
original TOTEM publications [8, 9], the systematic errors in the two data set
might be slightly different, that is rather difficult to handle correctly in the
present analysis. So instead of determining the systematic errors of the model
parameters from the systematic errors of the data we decided to analyze the
two TOTEM data sets separately and check for the consistency of the results.
As detailed below, this strategy lead to a reasonable fit qualities (CL = 2.6 %,

1The squared four-momentum transfer value tsep separates the bin centers at the common
boundary, the two bins actually overlap [8, 9].

10



statistically acceptable fit in the cone region and CL = 0.04 %, statistically
marginal fit in the dip region) with a remarkable stability of fit parameters as
detailed below.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

|t| [GeV2] (0, 2.5) (0, |tsep|) (|tsep|,2.5)
χ2/NDF 124.7/102 95.9/47 100.1/48 76.6/47 109.9/83 120.42/73

CL [%] 6.3 3× 10−3 2× 10−3 0.41 2.6 4× 10−2

Rq [fm] 0.27±0.01 0.28±0.01 0.27±0.01 0.28±0.01 0.45±0.01 0.43±0.01

Rd [fm] 0.72±0.01 0.74±0.01 0.74±0.01 0.75±0.01 0.94±0.01 0.91±0.01

Rqd [fm] 0.30±0.01 0.29±0.01 0.33±0.01 0.32±0.01 0.33±0.01 0.37±0.02

α 0.03±0.01 0.02±0.01 0.04±0.01 0.04±0.01 0.12 0.12±0.01

Table 1: The values of the fitted ReBB model parameters. The proton-
proton elastic dσ/dt data measured by the TOTEM experiment at 7 TeV is
a composition of two subsequent measurements, which can be separated at
tsep. The overall fit involving the whole 0 < |t| < 2.5 GeV2 range provides
χ2/NDF = 336.4/159 which is not statistically acceptable, while the fits be-
low and above |tsep| provide either a statistically acceptable (CL > 0.1%) or
marginally good (CL = 0.04%) fit quality.

If a separated fit to
√
s = 7 TeV elastic differential cross-section dσ/dt data

is evaluated, below and above the separation |tsep|, a quality result can be
obtained, which is shown in Figs. 2 and 3 and reported in Table 1, together
with our results at ISR energies [8,9,18,19]. Note that the normalization factor
γ, introduced in Eq. (31), is not applied at

√
s = 7 TeV, as the two data set

were fitted separately.
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Figure 1: The fit of the ReBB model at
√
s = 7 TeV in the 0 < |t| < 2.5 GeV2

squared four momentum |t| range. The real part of the amplitude tel is defined
with expression Eq. (29). According to Eq. (31) we use a relative normalization
constant γ between the two TOTEM datasets at

√
s = 7 TeV. The fitted pa-

rameters are shown in the left bottom corner, parameters without errors were
fixed in the minimization. The total cross-section σtot and the parameter ρ are
derived quantities according to Eqs. (11) and (12), respectively.12
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Figure 2: The same as Fig. 1, but the fit is evaluated in the 0 < |t| < |tsep|
range. The fitted curve is shown with solid line, its extrapolation above |tsep|
is indicated with a dashed line. Note that the extrapolated curve remains close
to the data points, following the measured differential cross-sections well even
far away from the region where the model was fitted to the data.
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Figure 3: The same as Fig. 1, but the fit is performed in the |tsep| < |t| <
2.5 GeV2 range. The fitted curve is shown with solid line, its extrapolation
is indicated with a dashed line. Note that when the curve is extrapolated to
the low-|t| region, the extrapolated curve again follows the measured differential
cross-section remarkably well even far away the fit region: the ReBB model fit
is remarkably stable over the whole |t|-range.
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The resulting parameters coming from the two separate fits at 7 TeV dσ/dt,
over and below the |tsep| value, are consistent with each other within 2σ error.
Note that at

√
s = 7 TeV the dip is not part of the fit range (0, |tsep|), thus

the minimization procedure cannot determine the value of parameter α. In this
case we have fixed α to the value of the fit from the other |t| range above |tsep|.
The MINUIT status of the fit is successful in both cases.

Due to the stability of the fit parameters the extrapolation of the fit curves
to the not fitted |t| range remains close to the data points. The stability and
consistency of the model description is visible in Fig. 2 and 3.

The calculated total cross-section of the low-|t| fit σtot = 99.6±0.5 mb, where
the uncertainty is the propagated uncertainty of the fit parameters, agrees well
with the value σtot = 98.0 ± 2.5 mb measured by the TOTEM experiment at√
s = 7 TeV [10].
The parameter ρ can be better estimated from the fit over |tsep| which in-

cludes the dip. As the measured value of the ρ parameter ρ = 0.145 ± 0.091
has large uncertainty the ρ = 0.103± 0.001 calculated from the ReBB model is
consistent with the measurement, see Fig. 2.

Also note that if ImΩ(s, b) is defined to be proportional to ReΩ(s, b), ac-
cording to Eq. (30), the MINUIT fit result of χ2/NDF = 405.6/159 = 2.55 is
obtained at

√
s = 7 TeV, which is disfavored as compared to fits with Eq. (29).

In our introduction we shortly mentioned the p = (q, (q, q)) version of the
ReBB model, when the diquark is assumed to be a composition of two quarks [3].
This scenario provides a fit results with χ2/NDF = 15509/159 ≈ 97.5, which
means that the p = (q, (q, q)) ReBB version can be clearly rejected. The failure
of this version is basically due the wrong shape of the differential cross-section:
the second diffractive minimum appears too close to the first one.
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Figure 4: The shadow profile functions A(b) indicate a saturation effect at
LHC, while at ISR energies a Gaussian shape can be observed. Note that
the dashed black curve is based on the statistically acceptable fit result in the
0 < |t| < 0.38 GeV2 range. The distributions’ edge shows approximately the
same width at each energy, corresponding to a constant “skin-width” of the
proton.
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4 Discussion

4.1 Shadow profile functions and saturation

The fits, from which the model parameters were determined, also permit us to
evaluate the shadow profile function

A(s, b) = 1− |exp [−Ω(s, b)]|2 . (32)

The obtained curves to A(b) are shown in Fig. 4. The shadow profile functions
at ISR energies exhibit a Gaussian like shape, which smoothly change with the
center of mass energy

√
s. At LHC something new appears: the innermost

part of the distribution shows a saturation, which means that around b = 0
the function becomes almost flat and stay close to A(b) ≈ 1. Consequently, the
shape of the shadow profile function A(b) becomes non-Gaussian and somewhat
“distorted” with respect to the shapes found at ISR.

At the same time the width of the edge of the shadow profile function A(b),
which can be visualized as the proton’s “skin-width”, remains approximately
independent of the center of mass energy

√
s.

4.2 Non-exponential behavior of dσel/dt

To compare the obtained ReBB fit with a purely exponential distribution the
following exponential parametrization is used

dσel

dt
=

dσel

dt

∣

∣

∣

∣

t=0

· e−B·|t| , (33)

where dσel/dt|t=0 = 506.4 mb/GeV2 and slope parameter B = 19.89 GeV−2 is
applied, according to the TOTEM paper Ref. [9].

The result, shown in Fig. 5, indicates a clear non-exponential behavior of
the elastic differential cross-section in the 0.0 ≤ |t| ≤ 0.2 GeV2 range at

√
s =7

TeV. Note that a similar non-exponential behavior was recently discussed by
the TOTEM experiment [6] and also by the theoretical work of Ref. [7].

5 Extrapolation to future LHC energies and be-

yond

The ReBB model can be extrapolated to energies which have not been measured
yet at LHC. The fit results of Table 1 and the parametrization

P (s) = p0 + p1 · ln (s/s0) (34)

is applied for each parameter P ∈ {Rq, Rd, Rqd, α}, where s0 = 1 GeV2. The
parametrization Eq. (34) implies that the four free parameters of the original
ReBB model are replaced with eight parameters pi. The fit of the ReBB pa-
rameters are shown in Fig. 6 and the fit parameters are collected in Table 2.
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0.2 GeV2 range is shown. The curve indicates a significant deviation from the
simple exponential at low |t| values.
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The logarithmic dependence of the geometric parameters on the center of
mass energy

√
s in the parametrization Eq. (34) is motivated by the so-called

“geometric picture“ based on a series of studies [20–25].
Table 2 shows that the rate of increase with

√
s, parameter p1, is an order of

magnitude larger for Rq and Rd than for Rqd. The saturation effect, described
in Section 4.1, is consistent with this observation as the increasing components
of the proton, the quark and the diquark, are confined into a volume which is
increasing more slowly.

Parameter Rq [fm] Rd [fm] Rqd [fm] α

χ2/NDF 6.2/3 2.4/3 7.5/3 1.2/3
CL [%] 10.2 49.4 5.8 75.3

p0 0.15± 0.01 0.59± 0.01 0.3± 0.01 −0.036± 0.01
p1 0.017± 0.001 0.019± 0.001 0.0019± 0.001 0.009± 0.001

Table 2: Table 1 allows the extrapolation of the model parameters over the
center of mass energy

√
s. The parametrization Eq. (34) is applied to extrapolate

the ReBB model and the fits are shown in Fig. 6. The fit quality information
is provided in the first and second row of the table. Note that the fit quality is
acceptable for each parameter.
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Figure 7: The pp elastic differential
cross-section is extrapolated to future
LHC energies and beyond.

Using the extrapolation formula
Eq. (34) and the value of the parame-
ters from Table 2 it is straightforward
to calculate the values of the parame-
ters at expected future LHC energies
of

√
s =8, 13, 14, 15 TeV and also

at 28 TeV, which is beyond the LHC
capabilities. Using the extrapolated
values of the parameters we plot our
predicted pp elastic differential cross-
section curves at each mentioned en-
ergy in Fig. 7. The shadow profile
functions A(b) can be also extrapo-
lated, see Fig. 8. The shadow pro-
file functions even allow us to visual-
ize the increasing effective interaction
radius of the proton in the impact pa-
rameter space in Fig. 9.

It is also important to see how the
most important features change with
center of mass energy

√
s: the extrap-

olated values of the total cross-section
σtot, the position of the first diffrac-
tive minimum |tdip| and the parame-
ter ρ is given in Table 3.
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Figure 8: The shadow profile function at the extrapolated energies
√
s. The

results show the increase of the proton interaction radius with increasing
√
s

energies. Also note that the “edge” of the distributions remains of approxi-
mately constant width and shape.

According to the results, the predicted value of |tdip| and σtot moves more
than 10% when

√
s increases from 8 TeV to 28 TeV, while the value of Cexp =

|tdip| ·σtot ≈ 49.8 mb GeV2 changes only about 2 %, which is an approximately
constant value, within the errors of the extrapolation.

√
s [TeV] σtot [mb] |tdip|[GeV2] ρ |tdip| · σtot [mb GeV2]

8 100.1 0.494 0.103 49.45
13 107.1 0.465 0.108 49.8
14 108.1 0.461 0.108 49.83
15 109.1 0.457 0.109 49.86
28 118.5 0.426 0.114 50.48

Table 3: The extrapolated values of the total cross-section σtot at future LHC
energies and beyond. The position of the first diffractive minimum |tdip|, the
parameter ρ and the |tdip| ·σtot value is also provided at each energy. Note that
the predicted value of |tdip| and σtot moves more than 10% when

√
s increases

from 8 TeV to 28 TeV, while the value of |tdip| · σtot changes only about 2%.

A similar, and exact, scaling can be derived for the case of photon scattering
on a black disk, where the elastic differential cross-section is [26]

dσblack

dt
= πR4

[

J1(q ·R)

q · R

]2

, (35)

where t = −q2 and R is the radius of the black disk. The total cross-section is
given by

σtot,black = 2πR2 . (36)
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In this simple theoretical model the position of the first diffractive minimum,
following from Eq. (35), and the total cross-section Eq. (36) satisfies

Cblack = |tdip,black| · σtot,black = 2πj21,1(~c)
2 ≈ 35.9mb GeV2 , (37)

where j1,1 is the first root of the first order Bessel-function of the first kind J1(x).
The scaling behavior indicated by the stability of the value Cexp is somewhat

different from the black disk model, described by Eq. (37), as the corresponding
value Cblack is significantly different

Cblack 6= Cexp . (38)

In this sense the value of Cexp indicates a more complex scattering phenomena,
than the photon black disc scattering.

6 Summary and conclusions

The real part of the forward scattering amplitude (FSA) is derived from unitarity
constraints in the Bialas-Bzdak model leading to the so-called ReBB model. The
added real part of the FSA significantly improves the model ability to describe
the data at the first diffractive minimum. In total the ReBB model describes
both the ISR and LHC data in the 0 < |t| < 2.5 GeV2 squared momentum
transfer range in a statistically acceptable manner; in the latter case the fit
range has to be divided to two parts, according to the compilation of the two
independent TOTEM measurements. The results are collected in Table 1.

The fit results also permit us to evaluate the shadow profile functions A(b),
see Fig. 4. The plots indicate a Gaussian shape at ISR energies, while at LHC
a saturation effect can be observed: the innermost part of the shadow profile
function A(b) around b = 0 is almost flat and close to A(b) ≈ 1. The elastic
differential cross-section can be compared to a purely exponential distribution
and the comparison shows a significant deviation from pure exponential in the
0.0 ≤ |t| ≤ 0.2 GeV2 range.

The fit results allow the determination of the excitation functions of the
ReBB model at future LHC energies and beyond, with parameters collected in
Table 2 and predicted differential cross-section curves shown in Fig. 7. The
shadow profile functions can be also extrapolated, see Fig. 8, which predicts
that the saturated part of the proton is expected to increase with increasing
center of mass energy

√
s. The edge of the distribution, the “skin-width” of the

proton, expected to remain approximately constant. It is worth to mention that
the extrapolated version of the ReBB model utilizes of only eight parameters,
the pi parameters of Table 2, and in this sense a “minimal“ set of parameters
is applied.
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