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In this work we compare the nuclear modification factors in proton (deuteron) – nucleus
collisions at CERN SPS, FNAL and RHIC energies in a wide pT range. In these experi-
ments the nuclear modification factor has shown an enhancement at pT ≈ 4 GeV/c. The
height of this “Cronin peak” depends on the c.m. energy of the collision, as it is subject
to stronger shadowing at higher energies. One of the aims of this contribution is to ana-
lyze the shadowing phenomenon at lower (2 GeV/c . pT . 4 GeV/c) and intermediate
(4 GeV/c . pT . 8 GeV/c) transverse momentum. Different shadowing parameteriza-
tions are considered and the obtained Cronin peaks are investigated at RHIC and LHC
energies.

1. Introduction

Enhancement of the hadron spectra in nuclear collisions is a strong nuclear effect.

This was discovered in pBe, pT i and pW collisions and named after J.W. Cronin 1,2

at FNAL. The measured enhancement is a ∼ 40% in the lower and intermediate

transverse momentum region (2 GeV/c . pT . 8 GeV/c). Relativistic Heavy Ion

Collider (RHIC) experiments measured a smaller (∼ 10%) Cronin peak at higher

energy,
√
sNN = 200 GeV in dAu collisions 3,4,5. It is natural to ask the question:

how will this effect appear at the energies of the forthcoming measurements at the

Large Hadron Collider (LHC)?
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In this paper we are presenting our predictions for the pion spectra in proton-

proton collisions as a reference at
√
sNN = 900 GeV and 8.8 TeV energies. This

leads us to predict the nuclear modification factor in dPb collisions, taking into

account initial state nuclear effects.

2. Effects on Inclusive Pion Spectra in pp Collisions

A comparison of inclusive spectra and hadron-hadron correlations from pp collisions

to results of pQCD calculations shows that in this framework intrinsic transverse

momentum (kT ) is necessary for the precise description of the data6,7,8,9,10,11,12.

Fig. 1. Estimation for the 〈pT 〉pair and for 〈k2
T
〉 value at different c.m. energies.

Several experiments (e.g. PHENIX10,11, E70613) have measured the intrinsic

transverse momentum using a produced hadron pair as a function of c.m. energy,

as summarized in Ref.14. It was found that 〈pT 〉pair ∼ log(
√
s). These experimental

data and the linear fit is plotted on Fig. 1 (solid line). The fitted linear function

can be parameterized in the following form:

〈pT 〉pair = (1.74± 0.12) · log10
(√

s
)

+ (1.23± 0.2) . (1)

Calculations of 〈k2T 〉 are also shown (dashed curve). The intrinsic kT was converted

to the transverse momentum of the pair via 〈k2T 〉pp = 〈pT 〉2pair/π.
While there are only a few experimental data points beyond RHIC energies,

we can apply estimate (1) in calculations of pion spectra, using the appropriate

intrinsic-kT values at given c.m. energy. The calculated π0 spectra in pp collisions

are displayed in Fig. 2, where we compare this to experimental data from Refs.11,15.

Our calculations use the GRV16 and HKN17,18 parton distribution functions.
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Fig. 2. Pion spectra in pp collisions at different c.m. energies from RHIC to LHC energies, applying
energy dependent 〈k2

T
〉 (see. Fig 1).

On Fig 3 we are presenting the “evolution” of the pion spectra with different

〈k2T 〉 values in pp collisions at 5.5 TeV c.m. energy. This shows that an increasing

intrinsic kT results in an enhancement of the pion spectra in the lower momentum

region relative to the 〈k2T 〉 = 0 case.

Considering a 〈k2T 〉 ∼ 10− 15 GeV2/c2 value at
√
sNN = 5.5 TeV c.m. energy,

the modification is a factor of ∼ 5 at the momentum region, pT ∼ 5 GeV/c. Fig 3

suggests that the effect of the intrinsic transverse momentum can be reasonably

large at these high energies. This is interesting in itself, but it is even more important

when we use calculated pp hadron spectra in the nuclear modification factor.

3. Predictions for Pion Spectra in dPb Collisions

Pion production is calculated for dPb collisions in a pQCD-improved parton model,

described in Refs.8,9. Within this framework we are taking into account the effect

on intrinsic transverse momenta in two aspects:

(i) We are using a simple generalization of the one- dimensional parton distribution

functions into 3 dimensions, using a factorized form,

fa/p(xa,kTa, Q
2) = fa/p(xa, Q

2) · ga/p(kTa) , (2)

where the function fa/p(xa, Q
2) represents the standard longitudinal PDF as

a function of xa at the factorization scale Q. In the present calculation we use

the GRV16 or HKN17,18 parameterizations. The partonic transverse-momentum

distribution in two dimensions, ga/p(kT ), is assumed to be a Gaussian, charac-

terized by the width 〈k2T 〉, sometimes referred to as the intrinsic-kT parameter.
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Fig. 3. The effect of the intrinsic kT in pion production in pp collisions at
√
sNN = 5.5 TeV. Upper

panel shows the spectra and the lower panel presents the ratio relative to the zero intrinsic-kT
calculation.

(ii) Nuclear multiscattering is accounted for through a broadening of the incoming

parton’s transverse momentum distribution function, namely an increase in the

width of the Gaussian:

〈k2T 〉pA = 〈k2T 〉pp + C · hpA(b) . (3)

Here, 〈k2T 〉pp is the width of the transverse momentum distribution of partons

in pp collisions8,9,19, hpA(b) describes the number of effective NN collisions at

impact parameter b, which impart an average transverse momentum squared C.

The effectivity function hpA(b) can be written in terms of the number of colli-

sions suffered by the incoming proton in the target nucleus. In Ref.8 we have

found a limited number of semi-hard collisions, 3 ≤ νm ≤ 4 and the value

C = 0.35 GeV2/c2.

We calculate the nuclear modification factor as a function of c.m. energy. With

increasing intrinsic kT the Cronin peak is found to shift towards higher pT values.

At
√
s = 200 GeV c.m. energy, the maximum of the Cronin peak was located at

pT ≈ 4 GeV/c; at the LHC we expect this peak at pT ≈ 5 GeV/c and 8 GeV/c,

respectively, at
√
s = 900 GeV and 8.8 TeV c.m. energies. This effect mirrors the

recently measured experimental data by the WA9820 and NA4921 collaborations,

where the Cronin peak seems to be at lower pT (pT ≈ 2− 3 GeV/c) at
√
s = 17.3

GeV c.m. energy.

On Fig. 4 we plot the RdPb nuclear modification factor for the cases of the

above mentioned two energies. For comparison we also show the latest experimental



November 2, 2018 11:33 WSPC/INSTRUCTION FILE v3˙qm06

Does the Cronin Peak Disappear at LHC Energies? 5

Fig. 4. The nuclear modification factor for pion production in 0− 10% most central dPb collisions
at different c.m. energies. Calculations have been performed with EKS (dashed lines) and HIJING
(solid lines) shadowing parameterizations.

data by the PHENIX3,4 on RdAu at
√
s = 200 GeV. We calculated the nuclear

modification factor applying the
√
s-dependent intrinsic kT based on eq. (1).

In order to develop a feeling for the uncertainty of the shadowing parameter-

izations, we carried out our calculations with two shadowing parameterizations,

EKS22 (dashed lines) and HIJING23,24 (solid lines)a. As Fig. 4 shows, at lower pT
the uncertainty is growing with increasing

√
s, corresponding to the limited infor-

mation on shadowing with decreasing x. Close to x ∼ 1 another ambiguity can be

seen at the EMC region25,26.

The shifting Cronin peak is suppressed by the strong shadowing which is ∼ 40%

for HIJING and ∼ 20% for EKS. A remaining small ‘bump’ is seen on the solid

curves (HIJING parameterization).

4. Conclusions

Based on experimental data we developed an approximation for the values of 〈k2T 〉pp
at various c.m. energies. We have shown that the intrinsic kT has a non-negligible

effect on inclusive pion production in proton-proton collisions at LHC energies. The

increasing intrinsic kT causes a slight shift of the Cronin peak toward higher pT
values. However, at LHC energies the strong ∼ 20− 40% shadowing suppresses the

Cronin peak. Overall, we expect that the Cronin peak will be totally suppressed at

LHC energies in dPb collisions by initial state effects.

aThe EKS parameterization contains some enhancement by definition as an anti-shadowing. Thus
no multiple scattering was taken into account in this case.
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It is important to note on the other hand that, as it was pointed out in Refs.26,

at these high c.m. energies final state effects can also play a role, yielding more

suppression in the nuclear modification factor.
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