Maximum scattered linear sets and MRD-codes

Bence Csajbók, Giuseppe Marino, Olga Polverino, Ferdinando Zullo *

Abstract

The rank of a scattered \mathbb{F}_{q}-linear set of $\operatorname{PG}\left(r-1, q^{n}\right)$, $r n$ even, is at most $r n / 2$ as it was proved by Blokhuis and Lavrauw. Existence results and explicit constructions were given for infinitely many values of r, n, q ($r n$ even) for scattered \mathbb{F}_{q}-linear sets of rank $r n / 2$. In this paper we prove that the bound $r n / 2$ is sharp also in the remaining open cases.

Recently Sheekey proved that scattered \mathbb{F}_{q}-linear sets of $\mathrm{PG}\left(1, q^{n}\right)$ of maximum rank n yield \mathbb{F}_{q}-linear MRD-codes with dimension $2 n$ and minimum distance $n-1$. We generalize this result and show that scattered \mathbb{F}_{q}-linear sets of $\operatorname{PG}\left(r-1, q^{n}\right)$ of maximum rank $r n / 2$ yield \mathbb{F}_{q}-linear MRD-codes with dimension $r n$ and minimum distance $n-1$.

1 Introduction

Let $\Lambda=\operatorname{PG}\left(V, \mathbb{F}_{q^{n}}\right)=\operatorname{PG}\left(r-1, q^{n}\right), q=p^{h}, p$ prime, V a vector space of dimension r over $\mathbb{F}_{q^{n}}$, and let L be a set of points of Λ. The set L is said to be an \mathbb{F}_{q}-linear set of Λ of rank k if it is defined by the non-zero vectors of an \mathbb{F}_{q}-vector subspace U of V of dimension k, i.e.

$$
\begin{equation*}
L=L_{U}=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\} \tag{1}
\end{equation*}
$$

We point out that different vector subspaces can define the same linear set. For this reason a linear set and the vector space defining it must be considered as coming in pair.

Let $\Omega=\operatorname{PG}\left(W, \mathbb{F}_{q^{n}}\right)$ be a subspace of Λ and let L_{U} be an \mathbb{F}_{q}-linear set of Λ. Then $\Omega \cap L_{U}$ is an \mathbb{F}_{q}-linear set of Ω defined by the \mathbb{F}_{q}-vector subspace $U \cap W$ and, if $\operatorname{dim}_{\mathbb{F}_{q}}(W \cap U)=i$, we say that Ω has weight i in L_{U}. Hence

[^0]a point of Λ belongs to L_{U} if and only if it has weight at least 1 and if L_{U} has rank k, then $\left|L_{U}\right| \leq q^{k-1}+q^{k-2}+\cdots+q+1$. For further details on linear sets see [40], [27], [28], [34], [35], [29], [12] and [13].

An \mathbb{F}_{q}-linear set L_{U} of Λ of rank k is scattered if all of its points have weight 1 , or equivalently, if L_{U} has maximum size $q^{k-1}+q^{k-2}+\cdots+q+$ 1. A scattered \mathbb{F}_{q}-linear set of Λ of highest possible rank is a maximum scattered \mathbb{F}_{q}-linear set of Λ; see [4]. Maximum scattered linear sets have a lot of applications in Galois Geometry, such as translation hyperovals [19], translation caps in affine spaces [2], two-intersection sets (4], [5]), blocking sets (41], 31, [32 [7, [1), translation spreads of the Cayley generalized hexagon (9], [6], [37), finite semifields (see e.g. [33], [10], [38], [15], [34], [24], [25], [26]), coding theory and graph theory [8]. For a recent survey on the theory of scattered spaces in Galois Geometry and its applications see [23.

The rank of a scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(r-1, q^{n}\right), r n$ even, is at most $r n / 2$ ([4, Theorems 2.1, 4.2 and 4.3]). For $n=2$ scattered \mathbb{F}_{q}-linear sets of $\mathrm{PG}\left(r-1, q^{2}\right)$ of rank r are the Baer subgeometries. When r is even there always exist scattered \mathbb{F}_{q}-linear sets of rank $\frac{r n}{2}$ in $\operatorname{PG}\left(r-1, q^{n}\right)$, for any $n \geq 2$ (see [22, Theorem 2.5.5] for an explicit example). Existence results were proved for r odd, $n-1 \leq r, n$ even, and $q>2$ in [4, Theorem 4.4], but no explicit constructions were known for r odd, except for the case $r=3$, $n=4$, see [1, Section 3]. Very recently families of scattered linear sets of rank $r n / 2$ in $\operatorname{PG}\left(r-1, q^{n}\right)$, r odd, n even, were constructed in [2, Theorem 1.2] for infinitely many values of r, n and q.

The existence of scattered \mathbb{F}_{q}-linear sets of rank $\frac{3 n}{2}$ in $\operatorname{PG}\left(2, q^{n}\right), n \geq 6$ even, $n \equiv 0(\bmod 3), q \not \equiv 1(\bmod 3)$ and $q>2$ was posed as an open problem in [2, Section 4]. As it was pointed out in [2], the existence of such planar linear sets and the construction method of [2, Theorem 3.1] would imply that the bound $\frac{r n}{2}$ for the maximum rank of a scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(r-1, q^{n}\right)$ is also tight when r is odd and n is even. In Theorem 2.3 we construct linear sets of rank $3 n / 2$ of $\mathrm{PG}\left(2, q^{n}\right)$, n even, and hence we prove the sharpness of the bound also in the remaining open cases. Our construction relies on the existence of non-scattered linear sets of rank $3 t$ of $\mathrm{PG}\left(1, q^{3 t}\right)$ (with $t=n / 2$) defined by binomial polynomials.

In [42, Section 4] Sheekey showed that maximum scattered \mathbb{F}_{q}-linear sets of $\operatorname{PG}\left(1, q^{n}\right)$ correspond to \mathbb{F}_{q}-linear maximum rank distance codes (MRDcodes) of dimension $2 n$ and minimum distance $n-1$. In Section 3 we extend this result showing that MRD-codes can be constructed from every scattered linear set of rank $r n / 2$ of $\operatorname{PG}\left(r-1, q^{n}\right)$, $r n$ even, and we point out some
relations with Sheekey's construction. Finally, we exhibit the MRD-codes arising from maximum scattered linear sets constructed in Theorem 2.3 and those constructed in [2, Theorems 2.2 and 2.3]

2 Maximum scattered linear sets in $\operatorname{PG}\left(r-1, q^{n}\right)$

As it was pointed out in the Introduction, the existence of scattered \mathbb{F}_{q}-linear sets of rank $\frac{3 n}{2}$ in $\operatorname{PG}\left(2, q^{n}\right), n \geq 6$ even, $n \equiv 0(\bmod 3), q \not \equiv 1(\bmod 3)$ and $q>2$ would imply that the bound $\frac{r n}{2}$ for the rank of a maximum scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(r-1, q^{n}\right)$ is tight in the remaining open cases (cf. [2, Remark 2.11 and Section 4]).

In this section we show that binomials of the form $f(x)=a x^{q^{i}}+b x^{2 t+i}$ defined over $\mathbb{F}_{q^{3 t}}$ can be used to construct maximum scattered $\mathbb{F}_{q}-$ linear sets in $\operatorname{PG}\left(2, q^{2 t}\right)$ for any $t \geq 2$ and for any prime power q.

Consider the finite field $\mathbb{F}_{q^{6 t}}$ as a 3-dimensional vector space over its subfield $\mathbb{F}_{q^{2 t}}, t \geq 2$, and let $\mathbb{P}=\operatorname{PG}\left(\mathbb{F}_{q^{6 t}}, \mathbb{F}_{q^{2 t}}\right)=\operatorname{PG}\left(2, q^{2 t}\right)$ be the associated projective plane. From [2, Section 2.2], the \mathbb{F}_{q}-subspace

$$
\begin{equation*}
U:=\left\{\omega x+f(x): x \in \mathbb{F}_{q^{3 t}}\right\}, \tag{2}
\end{equation*}
$$

of $\mathbb{F}_{q^{6 t}}$ with $\omega \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q^{t}}, f(x)=a x^{q^{i}}+b x^{q^{2 t+i}}, a, b \in \mathbb{F}_{q^{3 t}}^{*}, 1 \leq i \leq 3 t-1$ and $\operatorname{gcd}(i, 2 t)=1$, defines a maximum scattered \mathbb{F}_{q}-linear set in the projective plane \mathbb{P} of rank $3 t$ if $\frac{f(x)}{x} \notin \mathbb{F}_{q^{t}}$ for each $x \in \mathbb{F}_{q^{3 t}}^{*}$ (cf. [2, Prop. 2.7]). The q-polynomial $f(x)$ also defines an $\mathbb{F}_{q^{-}}$-linear set $L_{f}:=\left\{\langle(x, f(x))\rangle_{\mathbb{F}_{q^{3 t}}}: x \in\right.$ $\left.\mathbb{F}_{q^{3 t}}^{*}\right\}$ of the projective line $\operatorname{PG}\left(\mathbb{F}_{q^{6 t}}, \mathbb{F}_{q^{3 t}}\right)=\operatorname{PG}\left(1, q^{3 t}\right)$. In what follows we determine some conditions on L_{f} in order to obtain maximum scattered \mathbb{F}_{q}-linear sets in \mathbb{P} of rank $3 t$.

If $h \mid n$, then by $\mathrm{N}_{q^{n} / q^{h}}(\alpha)$ we will denote the norm of $\alpha \in \mathbb{F}_{q^{n}}$ over the subfield $\mathbb{F}_{q^{h}}$, that is, $\mathrm{N}_{q^{n} / q^{h}}(\alpha)=\alpha^{1+q^{h}+\ldots+q^{n-h}}$. We will need the following preliminary result.
Lemma 2.1. Let $f:=f_{i, a, b}: x \in \mathbb{F}_{q^{3 t}} \mapsto a x^{q^{i}}+b x^{q^{2 t+i}} \in \mathbb{F}_{q^{3 t}}$, with $a, b \in \mathbb{F}_{q^{3 t}}^{*}, \mathrm{~N}_{q^{3 t} / q^{t}}(a) \neq-\mathrm{N}_{q^{3 t} / q^{t}}(b)$ and $\operatorname{gcd}(i, t)=1$. If

$$
\begin{equation*}
L_{f}:=\left\{\langle(x, f(x))\rangle_{\mathbb{F}_{q^{3 t}}}: x \in \mathbb{F}_{q^{3 t}}^{*}\right\} \tag{3}
\end{equation*}
$$

is not a scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(1, q^{3 t}\right)$, then there exists $c \in \mathbb{F}_{q^{3 t}}^{*}$ such that

$$
\begin{equation*}
g_{c}(x):=\frac{f_{i, c a, c b}(x)}{x} \notin \mathbb{F}_{q^{t}} \quad \text { for each } x \in \mathbb{F}_{q^{3 t}}^{*} . \tag{4}
\end{equation*}
$$

Proof. First we show that $0 \notin \operatorname{Im} g_{c}$ for each c. If $c a x_{0}^{q^{i}-1}=-c b x_{0}^{q^{2 t+i}-1}$ for some $x_{0} \in \mathbb{F}_{q^{3 t}}^{*}$, then $-a / b=x_{0}^{q^{i}\left(q^{2 t}-1\right)}$, where the right hand side is a $\left(q^{t}-1\right)$-th power and hence $\mathrm{N}_{q^{3 t} / q^{t}}(-a / b)=1$, a contradiction.

The non-zero elements of the one-dimensional $\mathbb{F}_{q^{t}}$-spaces of $\mathbb{F}_{q^{t}}^{*}$ yield a partition of $\mathbb{F}_{q^{3 t}}^{*}$ into $q^{2 t}+q^{t}+1$ subsets of size $q^{t}-1$. More precisely, if μ is a primitive element of $\mathbb{F}_{q^{3 t}}$, then

$$
\mathbb{F}_{q^{3 t}}^{*}=\bigcup_{k=0}^{q^{2 t}+q^{t}} \mu^{k} \mathbb{F}_{q^{t}}^{*}
$$

Let $G_{k}:=\mu^{k} \mathbb{F}_{q^{t}}^{*}$. We show that, for each k, either $\operatorname{Im} g_{1} \cap G_{k}=\emptyset$, or $\left|\operatorname{Im} g_{1} \cap G_{k}\right| \geq\left(q^{t}-1\right) /(q-1)$.

Suppose $g_{1}\left(x_{0}\right) \in G_{k}$. Then for each $\gamma \in \mathbb{F}_{q^{t}}^{*}$ we have

$$
g_{1}\left(\gamma x_{0}\right)=\gamma^{q^{i}-1} g_{1}\left(x_{0}\right) .
$$

Since $\operatorname{gcd}(i, t)=1$, it follows that

$$
\left\{g_{1}\left(\gamma x_{0}\right): \gamma \in \mathbb{F}_{q^{t}}^{*}\right\}=g_{1}\left(x_{0}\right)\left\{x \in \mathbb{F}_{q^{t}}: \mathrm{N}_{q^{t} / q}(x)=1\right\} \subseteq G_{k}
$$

and hence $\left|\operatorname{Im} g_{1} \cap G_{k}\right| \geq\left(q^{t}-1\right) /(q-1)$.
Next we show that there exists G_{d} such that $\operatorname{Im} g_{1} \cap G_{d}=\emptyset$. Suppose to the contrary $\operatorname{Im} g_{1} \cap G_{j} \neq \emptyset$ for each $j \in\left\{0,1, \ldots, q^{2 t}+q^{t}\right\}$. Then $\left|\operatorname{Im} g_{1}\right| \geq$ $\left(q^{2 t}+q^{t}+1\right)\left(q^{t}-1\right) /(q-1)=\left(q^{3 t}-1\right) /(q-1)$ and since $\left|\operatorname{Im} g_{1}\right|=\left|L_{f}\right|$ we get a contradiction.

Suppose that $\operatorname{Im} g_{1} \cap G_{d}=\emptyset$ and let $c=\mu^{-d}$. Then $\operatorname{Im} g_{c} \cap \mathbb{F}_{q^{t}}=\emptyset$.
Hence, by the previous lemma and by [2, Prop. 2.7], the existence of a non-scattered linear set in $\operatorname{PG}\left(1, q^{3 t}\right)$ of form (3) implies the existence of a binomial polynomial producing maximum scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(2, q^{2 t}\right)$ of rank $3 t$.
Lemma 2.2. Let $f:=f_{i, a, b}: x \in \mathbb{F}_{q^{3 t}} \mapsto a x^{q^{i}}+b x^{q^{2 t+i}} \in \mathbb{F}_{q^{3 t}}$, with $a, b \in$ $\mathbb{F}_{q^{3 t}}^{*}$ and $1 \leq i \leq 3 t-1$. For any prime power $q \geq 2$ and any integer $t \geq 2$ there exist $a, b \in \mathbb{F}_{q^{3 t}}^{*}$, with

$$
\begin{equation*}
\mathrm{N}_{q^{3 t} / q^{t}}(b) \neq-\mathrm{N}_{q^{3 t} / q^{t}}(a), \tag{5}
\end{equation*}
$$

such that

$$
L_{f_{i, a, b}}:=\left\{\left\langle\left(x, f_{i, a, b}(x)\right)\right\rangle_{\mathbb{F}_{q^{3 t}}}: x \in \mathbb{F}_{q^{3 t}}^{*}\right\},
$$

is a non-scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(1, q^{3 t}\right)$ of rank $3 t$.

Proof. First suppose $d:=\operatorname{gcd}(i, t)>1$. Then f is $\mathbb{F}_{q^{d}}$-linear and hence each point of L_{f} has wight at least d, i.e. L_{f} cannot be scattered. Since $q^{t} \geq 4$ we can always choose a, b such that (5) holds. From now on we assume $\operatorname{gcd}(i, t)=1$.

The linear set L_{f} of $\operatorname{PG}\left(1, q^{3 t}\right)$ is not scattered if there exists a point $P_{x_{0}}=\left\langle\left(x_{0}, f\left(x_{0}\right)\right)\right\rangle_{\mathbb{F}_{q^{3 t}}}$ of rank greater than 1, i.e. if there exist $x_{0} \in \mathbb{F}_{q^{3 t}}{ }^{*}$ and $\lambda \in \mathbb{F}_{q^{3 t}} \backslash \mathbb{F}_{q}$ such that $f\left(\lambda x_{0}\right)=\lambda f\left(x_{0}\right)$. The latter condition is equivalent to

$$
\begin{equation*}
a x_{0}^{q^{i}}\left(\lambda-\lambda^{q^{i}}\right)=b x_{0}^{q^{2 t+i}}\left(\lambda^{q^{2 t+i}}-\lambda\right) . \tag{6}
\end{equation*}
$$

Since $\operatorname{gcd}(2 t+i, 3 t), \operatorname{gcd}(i, 3 t) \in\{1,3\}$, the expressions in the two sides of (6) are non-zero when $\lambda \notin \mathbb{F}_{q^{3}}$. We first prove that there exists $\bar{\lambda} \in \mathbb{F}_{q^{3 t}} \backslash \mathbb{F}_{q^{3}}$ such that

$$
\begin{equation*}
\mathrm{N}_{q^{3 t} / q^{t}}\left(\alpha_{\bar{\lambda}}\right) \neq-1, \tag{7}
\end{equation*}
$$

where $\alpha_{\bar{\lambda}}=\frac{\bar{\lambda}-\bar{\lambda} q^{i}}{\bar{\lambda} q^{2 t+i}-\bar{\lambda}}$.
By way of contradiction, suppose that $\mathrm{N}_{q^{3 t} / q^{t}}\left(\alpha_{\bar{\lambda}}\right)=-1$ for each $\bar{\lambda} \in$ $\mathbb{F}_{q^{3 t}} \backslash \mathbb{F}_{q^{3}}$. Then the polynomial
$g(x):=\left(x-x^{q^{i}}\right)\left(x^{q^{t}}-x^{q^{t+i}}\right)\left(x^{q^{2 t}}-x^{q^{i+2 t}}\right)+\left(x^{q^{2 t+i}}-x\right)\left(x^{q^{i}}-x^{q^{t}}\right)\left(x^{q^{t+i}}-x^{q^{2 t}}\right)$
vanishes on $\mathbb{F}_{q^{3 t}} \backslash \mathbb{F}_{q^{3}}$. It also vanishes on \mathbb{F}_{q}, thus it has at least $q^{3 t}-q^{3}+q$ roots. Put $i=c+m t$, with $m \in\{0,1,2\}$ and $1 \leq c<t$, the degree of $g(x)$ is

$$
\begin{equation*}
q^{2 t+c}+q^{2 t}+q^{t} \tag{9}
\end{equation*}
$$

when $m=0$ and

$$
\begin{equation*}
q^{2 t+c}+q^{2 t}+q^{t+c} \tag{10}
\end{equation*}
$$

when $m \in\{1,2\}$. Since $q^{t}-2 \geq q^{c}$ we obtain

$$
q^{2 t+c}+q^{2 t}+q^{t+c}=q^{c}\left(q^{2 t}+q^{t}\right)+q^{2 t} \leq\left(q^{t}-2\right)\left(q^{2 t}+q^{t}\right)+q^{2 t}=q^{3 t}-2 q^{t} .
$$

For $t>2$ this is a contradiction since $q^{3 t}-2 q^{t}<q^{3 t}-q^{3}+q$. If $t=2$, then $\operatorname{gcd}(i, t)=1$ yields $c=1$ and hence we obtain

$$
\operatorname{deg} g \leq q^{5}+q^{4}+q^{3}<q^{6}-q^{3}+q,
$$

again a contradiction. It follows that there always exists an element $\bar{\lambda} \in$ $\mathbb{F}_{q^{3 t}} \backslash \mathbb{F}_{q^{3}}$ which is not a root of $g(x)$, and $\alpha_{\bar{\lambda}}$ satisfies Condition (7).

Choose $a, b \in \mathbb{F}_{q^{3 t}}^{*}$ such that $\mathrm{N}_{q^{3 t} / q^{t}}\left(\frac{b}{a}\right)=\mathrm{N}_{q^{3 t} / q^{t}}\left(\alpha_{\bar{\lambda}}\right)$, then there exists an element $x_{0} \in \mathbb{F}_{q^{3 t}}^{*}$ such that

$$
x_{0}^{q^{2 t+i}-q^{i}}=\frac{a}{b} \alpha_{\bar{\lambda}},
$$

and hence x_{0} is a non-zero solution of the equation $f(\bar{\lambda} x)=\bar{\lambda} f(x)$, i.e. with these choices of a and b the linear set $L_{f_{i, a, b}}$ is not scattered.

Now we are able to prove the following result.
Theorem 2.3. Let $w \in \mathbb{F}_{q^{2 t}} \backslash \mathbb{F}_{q^{t}}$. For any prime power q and any integer $t \geq 2$, there exist $a, b \in \mathbb{F}_{q^{3 t}}^{*}$ and an integer $1 \leq i \leq 3 t-1$ such that the $\mathbb{F}_{q^{-}}$ linear set L_{U} of rank $3 t$ of the projective plane $\operatorname{PG}\left(\mathbb{F}_{q^{6 t}}, \mathbb{F}_{q^{2 t}}\right)=\operatorname{PG}\left(2, q^{2 t}\right)$, where

$$
U=\left\{a x^{q^{i}}+b x^{q^{2 t+i}}+w x: x \in \mathbb{F}_{q^{3 t}}\right\},
$$

is scattered.
Proof. According to Lemma 2.2 for any prime power q and any integers $t \geq 2,1 \leq i \leq 3 t-1$ with $\operatorname{gcd}(i, 2 t)=1$ we can choose $\bar{a}, \bar{b} \in \mathbb{F}_{q^{3 t}}^{*}$, with $\mathrm{N}_{q^{3 t} / q^{t}}(\bar{b}) \neq-\mathrm{N}_{q^{3 t} / q^{t}}(\bar{a})$ such that the linear set L_{f} of the line $\mathrm{PG}\left(\mathbb{F}_{q^{6 t}}, \mathbb{F}_{q^{3 t}}\right)=$ $\mathrm{PG}\left(1, q^{3}\right)$ with $f(x)=\bar{a} x^{q^{i}}+\bar{b} x^{q^{2 t+i}}$ is non-scattered. Then by Lemma 2.1 there exists $c \in \mathbb{F}_{q^{3 t}}^{*}$ such that

$$
\frac{\bar{a} c x^{q^{i}}+\bar{b} c x^{q^{2 t+i}}}{x} \notin \mathbb{F}_{q^{t}}
$$

for each $x \in \mathbb{F}_{q^{3 t}}^{*}$. Then the theorem follows from [2, Proposition 2.7] with $a=\bar{a} c$ and $b=\bar{b} c$.

As it was pointed out in [2], the existence of maximum scattered $\mathbb{F}_{q^{-}}$ linear sets of rank $3 n$ in the projective plane $\operatorname{PG}\left(2, q^{2 t}\right)$ (proved in Theorem [2.3) and the construction method of [2, Theorem 3.1] imply the following.

Theorem 2.4. For any integers $r, n \geq 2$, $r n$ even, and for any prime power $q \geq 2$ the rank of a maximum scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(r-1, q^{n}\right)$ is $r n / 2$.

Taking into account the previous result, from now on, a scattered $\mathbb{F}_{q^{-}}$ linear set L_{U} of $\operatorname{PG}\left(W, \mathbb{F}_{q^{n}}\right)=\operatorname{PG}\left(r-1, q^{n}\right)$ of rank $\frac{r n}{2}$ ($r n$ even) will be simply called a maximum scattered linear set and the \mathbb{F}_{q}-subspace U will be called a maximum scattered subspace.

We complete this section by showing a connection between scattered $\mathbb{F}_{q^{-}}$ linear sets of $\mathrm{PG}\left(1, q^{r n / 2}\right), r$ even, and scattered \mathbb{F}_{q}-linear sets of $\mathrm{PG}(r-$ $1, q^{n}$.

Proposition 2.5. Every maximum scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(1, q^{r n / 2}\right)$, r even, gives a maximum scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(r-1, q^{n}\right)$.

Proof. Let L_{U} be a maximum scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(W, \mathbb{F}_{q^{r n / 2}}\right)=$ $\operatorname{PG}\left(1, q^{r n / 2}\right)$. Then for each $\mathbf{v} \in W$ the one dimensional $\mathbb{F}_{q^{r n / 2}}$-subspace $\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{r n / 2}}}$ meets U in an $\mathbb{F}_{q^{-}}$subspace of dimension at most one. Since $\mathbb{F}_{q^{n}}$ is a subfield of $\mathbb{F}_{q^{r n / 2}}$ (recall r even) the same holds for the subspace $\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{n}}}$ and hence U also defines a scattered $\mathbb{F}_{q^{-}}$-linear set in $\operatorname{PG}\left(W, \mathbb{F}_{q^{n}}\right)=\operatorname{PG}(r-$ $\left.1, q^{n}\right)$.

Note that the converse of the above result does not hold.

3 Maximum scattered subspaces and MRD-codes

The set of $m \times n$ matrices $\mathbb{F}_{q}^{m \times n}$ over \mathbb{F}_{q} is a rank metric \mathbb{F}_{q}-space with rank metric distance defined by $d(A, B)=r k(A-B)$ for $A, B \in \mathbb{F}_{q}^{m \times n}$. A subset $\mathcal{C} \subseteq \mathbb{F}_{q}^{m \times n}$ is called a rank distance code (RD-code for short). The minimum distance of \mathcal{C} is

$$
d(C)=\min _{A, B \in \mathcal{C}, A \neq B}\{d(A, B)\} .
$$

When \mathcal{C} is an $\mathbb{F}_{q^{-}}$-linear subspace of $\mathbb{F}_{q}^{m \times n}$, we say that \mathcal{C} is an $\mathbb{F}_{q^{-}}$-linear code and the dimension $\operatorname{dim}_{q}(\mathcal{C})$ is defined to be the dimension of \mathcal{C} as a subspace over \mathbb{F}_{q}. If d is the minimum distance of \mathcal{C} we say that \mathcal{C} has parameters ($m, n, q ; d$).

The Singleton bound for an $m \times n$ rank metric code \mathcal{C} with minimum rank distance d is

$$
\# \mathcal{C} \leq q^{\max \{m, n\}(\min \{m, n\}-d+1)} .
$$

If this bound is achieved, then \mathcal{C} is an MRD-code. MRD-codes have various applications in communications and cryptography; for instance, see [17, [21. More properties of MRD-codes can be found in [14, 16, 18, (39].

Delsarte [14] and Gabidulin [16] constructed, independently, linear MRDcodes over \mathbb{F}_{q} for any values of m and n and for arbitrary value of the minimum distance d. In the literature these are called Gabidulin codes, even if the first construction is due to Delsarte. These codes were later generalized by Kshevetskiy and Gabidulin in [20], they are the so called generalized Gabidulin codes.

A generalized Gabidulin code is defined as follows: under a given basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}, each element a of $\mathbb{F}_{q^{n}}$ can be written as a (column) vector
$\mathbf{v}(a)$ in \mathbb{F}_{q}^{n}. Let $\alpha_{1}, \ldots, \alpha_{m}$ be a set of linearly independent elements of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}, where $m \leq n$. Then

$$
\begin{equation*}
\left\{\left(\mathbf{v}\left(f\left(\alpha_{1}\right)\right), \ldots, \mathbf{v}\left(f\left(\alpha_{m}\right)\right)\right)^{T}: f \in \mathcal{G}_{k, s}\right\} \tag{11}
\end{equation*}
$$

is the original generalized Gabidulin code, where

$$
\begin{equation*}
\mathcal{G}_{k, s}=\left\{f(x)=a_{0} x+a_{1} x^{q^{s}}+\ldots a_{k-1} x^{q^{s(k-1)}}: a_{0}, a_{1}, \ldots, a_{k-1} \in \mathbb{F}_{q^{n}}\right\}, \tag{12}
\end{equation*}
$$

with $n, k, s \in \mathbb{Z}^{+}$satisfying $k<n$ and $\operatorname{gcd}(n, s)=1$.
All members of $\mathcal{G}_{k, s}$ are of the form $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}}$, where $a_{i} \in$ $\mathbb{F}_{q^{n}}$. A polynomial of this form is called a linearized polynomial (also a q polynomial because its exponents are all powers of q). They are equivalent to $\mathbb{F}_{q^{-}}$linear transformations from $\mathbb{F}_{q^{n}}$ to itself, i.e., elements of $\mathbb{E}=\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$. We refer to [30, Section 4] for their basic properties.

In the literature, there are different definitions of equivalence for rank metric codes; see [3, 39]. If \mathcal{C} and \mathcal{C}^{\prime} are two sets of $\mathrm{GL}\left(U, \mathbb{F}_{q}\right)$, where U is an \mathbb{F}_{q}-space of dimension n, then up to an isomorphism we may consider U as the finite field $\mathbb{F}_{q^{n}}$ and it is natural to define equivalence in the language of q-polynomials, see [42]. For \mathbb{F}_{q}-linear maps between vector spaces of distinct dimensions we will use the following definition of equivalence.

Definition 3.1. Let $U(n, q)$ and $V(m, q)$ be two \mathbb{F}_{q}-spaces, $n \neq m$, and let \mathcal{C} and \mathcal{C}^{\prime} be two sets of \mathbb{F}_{q}-linear maps from U to V. They are equivalent if there exist two invertible \mathbb{F}_{q}-linear maps $L_{1} \in \mathrm{GL}\left(V, \mathbb{F}_{q}\right), L_{2} \in \mathrm{GL}\left(U, \mathbb{F}_{q}\right)$ and $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ such that $\mathcal{C}^{\prime}=\left\{L_{1} \circ f^{\rho} \circ L_{2}: f \in \mathcal{C}\right\}$, where $f^{\rho}(x)=$ $f\left(x^{\rho^{-1}}\right)^{\rho}$.

Very recently, Sheekey made a breakthrough in the construction of new linear MRD-codes using linearized polynomials [42] (see also [36]).

In [42, Section 4], the author showed that maximum scattered linear sets of $\operatorname{PG}\left(1, q^{n}\right)$ correspond to \mathbb{F}_{q}-linear MRD-codes of dimension $2 n$ and minimum distance $n-1$. The number of non-equivalent MRD-codes obtained from a maximum scattered linear set of $\mathrm{PG}\left(1, q^{n}\right)$ was studied in [11, Section 5.4].

Here we extend this result showing that MRD-codes of dimension $r n$ and minimum distance $n-1$ can be constructed from every maximum scattered \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(r-1, q^{n}\right)$, $r n$ even, and we exhibit some relations with Sheekey's construction when r is even.

To this aim, recall that an $\mathbb{F}_{q^{-s u b s p a c e}} U$ of $\mathbb{F}_{q^{r n}}$ is scattered with respect to $\mathbb{F}_{q^{n}}$ if it defines a scattered $\mathbb{F}_{q^{-}}$-linear set in $\operatorname{PG}\left(\mathbb{F}_{q^{r n}}, \mathbb{F}_{q^{n}}\right)=\operatorname{PG}\left(r-1, q^{n}\right)$, i.e. $\operatorname{dim}_{\mathbb{F}_{q}}\left(U \cap\langle x\rangle_{\mathbb{F}_{q^{n}}}\right) \leq 1$ for each $x \in \mathbb{F}_{q^{r n}}^{*}$.

Theorem 3.2. Let U be an rn/2-dimensional \mathbb{F}_{q}-subspace of the r-dimensional $\mathbb{F}_{q^{n}}$-space $V=V\left(r, q^{n}\right)$, rn even, and let $i=\max \left\{\operatorname{dim}_{\mathbb{F}_{q}}\left(U \cap\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{n}}}\right): \mathbf{v} \in\right.$ $V\}$. For any \mathbb{F}_{q}-linear function $G: V \rightarrow W$, with $W=V(r n / 2, q)$ such that $\operatorname{ker} G=U$, if $i<n$, then the pair (U, G) determines an $R D$-code $\mathcal{C}_{U, G}$ (cf. (13)) of dimension $r n$ and with parameters (rn/2,n,q;n-i). Also, $\mathcal{C}_{U, G}$ is an $M R D$-code if and only if U is a maximum scattered \mathbb{F}_{q}-subspace with respect to $\mathbb{F}_{q^{n}}$.

Proof. For $\mathbf{v} \in V$ the set

$$
R_{\mathbf{v}}:=\left\{\lambda \in \mathbb{F}_{q^{n}}: \lambda \mathbf{v} \in U\right\}
$$

is an $\mathbb{F}_{q^{-}}$subspace with dimension the weight of the point $\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{n}}}$ in the $\mathbb{F}_{q^{-}}$ linear set L_{U} of $\operatorname{PG}\left(V, \mathbb{F}_{q^{n}}\right)$. Since i is the maximum weight of the points in L_{U}, it follows that $\operatorname{dim}_{\mathbb{F}_{q}} R_{\mathbf{v}} \leq i$ for each \mathbf{v}. Also, let $\tau_{\mathbf{v}}$ denote the map

$$
\lambda \in \mathbb{F}_{q^{n}} \mapsto \lambda \mathbf{v} \in V
$$

Direct computation shows that the kernel of $G \circ \tau_{\mathbf{v}}$ is $R_{\mathbf{v}}$ for each $\mathbf{v} \in V$ and hence it has rank at least $n-i$. It remains to show that $G \circ \tau_{\mathbf{v}} \neq G \circ \tau_{\mathbf{w}}$ for $\mathbf{v} \neq \mathbf{w}$. Suppose, contrary to our claim, that there exist $\mathbf{v}, \mathbf{w} \in V$ with $\mathbf{v} \neq \mathbf{w}$ and with $G(\lambda \mathbf{v})=G(\lambda \mathbf{w})$ for each $\lambda \in \mathbb{F}_{q^{n}}$. Note that $\mathbf{v} \mapsto G \circ \tau_{\mathbf{v}}$ is an \mathbb{F}_{q}-linear map and hence $G(\lambda(\mathbf{v}-\mathbf{w}))=0$ for each $\lambda \in \mathbb{F}_{q^{n}}$. This means $\operatorname{dim}_{\mathbb{F}_{q}}\left(\operatorname{ker} G \circ \tau_{\mathbf{v}-\mathbf{w}}\right)=n=i$, a contradiction. Hence

$$
\begin{equation*}
\mathcal{C}_{U, G}=\left\{G \circ \tau_{\mathbf{v}}: \mathbf{v} \in V\right\} \tag{13}
\end{equation*}
$$

is an \mathbb{F}_{q}-linear RD-code with dimension $r n$ and with parameters $(r n / 2, n, q ; n-$ $i)$. The second part is obvious since L_{U} is scattered if and only if $i=1$.

Now we will show that different choices of the function G give rise to equivalent RD-codes. Let's start by proving the following result.

Lemma 3.3. Let U be an rn/2-dimensional \mathbb{F}_{q}-subspace of the r-dimensional $\mathbb{F}_{q^{n} \text {-space }} \mathbb{F}_{q^{r n}}$. Then there exists $\omega \in \mathbb{F}_{q^{r n}} \backslash \mathbb{F}_{q^{r n / 2}}$ such that

$$
U=\left\{x+\omega f(x): x \in \mathbb{F}_{q^{r n / 2}}\right\}
$$

where $f(x)$ is a q-polynomial over $\mathbb{F}_{q^{r n / 2}}$.
Proof. Observe that $\mathbb{F}_{q^{r n}}^{*}=\bigcup_{a \in \mathbb{F}_{q^{r n}}^{*}} a \mathbb{F}_{q^{r n / 2}}^{*}$ and for any $a, b \in \mathbb{F}_{q^{r n}}^{*}$ either $a \mathbb{F}_{q^{r n / 2}}^{*} \cap b \mathbb{F}_{q^{r n / 2}}^{*}=\emptyset$ or $a \mathbb{F}_{q^{r n / 2}}^{*}=b \mathbb{F}_{q^{r n / 2}}^{*}$ and the latter case happens if and only if $\frac{a}{b} \in \mathbb{F}_{q^{r n / 2}}^{*}$. Since $U^{*} \cap a \mathbb{F}_{q^{r n / 2}}^{*}$ is either empty or contains at least $q-1$
elements and since $\left|U^{*}\right|=q^{\frac{r n}{2}}-1$, there exist $a, b \in \mathbb{F}_{q^{r n}}^{*}$, with $\frac{a}{b} \notin \mathbb{F}_{q^{r n / 2}}$ such that $U^{*} \cap a \mathbb{F}_{q^{r n / 2}}^{*}=U^{*} \cap b \mathbb{F}_{q^{r n / 2}}^{*}=\emptyset$. We may assume $a \notin \mathbb{F}_{q^{r n / 2}}^{*}$ and put $\omega:=a$. Then $U \cap \omega \mathbb{F}_{q^{r n / 2}}=\{0\}$ and taking into account that U has rank $\frac{r n}{2}$ and $\{1, \omega\}$ is an $\mathbb{F}_{q^{r n / 2}}$-basis of $\mathbb{F}_{q^{r n}}$, we have $U=\left\{x+\omega f(x): x \in \mathbb{F}_{q^{r n / 2}}\right\}$ for some q-polynomial f over $\mathbb{F}_{q^{r n / 2}}$.

Hence, we are able to prove the following
Proposition 3.4. Let U be an rn/2-dimensional \mathbb{F}_{q}-subspace of the r dimensional $\mathbb{F}_{q^{n}}$-space $V=V\left(r, q^{n}\right)$, rn even, and let G and \bar{G} be two \mathbb{F}_{q}-linear functions determining two $R D$-codes $\mathcal{C}_{U, G}$ and $\mathcal{C}_{U, \bar{G}}$ as in Theorem 3.2. Then $\mathcal{C}_{U, G}$ and $\mathcal{C}_{U, \bar{G}}$ are equivalent.

Proof. Up to an isomorphism, we can always assume $V=\mathbb{F}_{q^{r n / 2}} \times \mathbb{F}_{q^{r n / 2}}$ and $W=\mathbb{F}_{q^{r n / 2}}$. Then by Lemma 3.3 we have $U=\left\{(x, f(x)): x \in \mathbb{F}_{q^{\frac{r n}{2}}}\right\}$, where $f(x)$ is a q-polynomial over $\mathbb{F}_{q^{r n / 2}}$. Then $G, \bar{G}: \mathbb{F}_{q^{r n / 2}} \times \mathbb{F}_{q^{r n / 2}} \rightarrow \mathbb{F}_{q^{r n / 2}}$ are two \mathbb{F}_{q}-linear maps such that $U=\operatorname{ker} G=\operatorname{ker} \bar{G}$. We want to show that there exist two permutation q-polynomials H and L over $\mathbb{F}_{q^{r n / 2}}$ and $\mathbb{F}_{q^{n}}$, respectively, and $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ such that

$$
\mathcal{C}_{U, \bar{G}}=\left\{H \circ\left(G \circ \tau_{\mathbf{v}}\right)^{\sigma} \circ L: v \in \mathbb{F}_{q^{r n}}\right\} .
$$

Let $G_{0}, G_{1}, \bar{G}_{0}, \bar{G}_{1}: \mathbb{F}_{q^{r n / 2}} \rightarrow \mathbb{F}_{q^{r n / 2}}$ be \mathbb{F}_{q}-linear maps such that

$$
G(x, y)=G_{0}(x)-G_{1}(y) \quad \text { and } \quad \bar{G}(x, y)=\bar{G}_{0}(x)-\bar{G}_{1}(y),
$$

for all $x, y \in \mathbb{F}_{q^{r n / 2}}$. Since $\operatorname{ker} G=\operatorname{ker} \bar{G}=U$ it can be easily seen that $G_{0}=G_{1} \circ f, \bar{G}_{0}=\bar{G}_{1} \circ f$ and that G_{1} and \bar{G}_{1} are invertible maps. Hence, putting $H=\bar{G}_{1} \circ G_{1}^{-1}, \sigma=i d_{\mathbb{F}_{q}}$ and $L=i d_{\mathbb{F}_{q^{n}}}$, we have

$$
H \circ G \circ \tau_{\mathbf{v}}=\bar{G} \circ \tau_{\mathbf{v}},
$$

for each $\mathbf{v}=(x, y) \in V$, and hence the assertion follows.
First we show some results in the case r even. Starting with the following example for $r=2$, we examine further the codes defined in Theorem 3.2, Later, in Theorem 3.7 we will also give a different construction of MRDcodes.

Example 3.5. Let $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\}$ be a maximum scattered $\mathbb{F}_{q^{-}}$ subspace of the two-dimensional $\mathbb{F}_{q^{n}}$-space $V=\mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}}$, where f is a q-polynomial over $\mathbb{F}_{q^{n}}$. Let

$$
G:(a, b) \in V \mapsto f(a)-b \in \mathbb{F}_{q^{n}}
$$

Then $\operatorname{ker} G=U_{f}$ and Theorem 3.2 with $r=2$ yields the MRD-code consisting of the maps $G \circ \tau_{(a, b)}$, i.e.

$$
\begin{equation*}
\mathcal{C}_{U_{f}, G}=\left\{x \in \mathbb{F}_{q^{n}} \mapsto f(a x)-b x \in \mathbb{F}_{q^{n}}:(a, b) \in \mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}}\right\} \tag{14}
\end{equation*}
$$

Note that the MRD-codes (14) are the adjoints of the codes constructed by Sheekey in 42, Sec. 5], see also after Remark 3.6.
Remark 3.6. Let U be a maximum scattered \mathbb{F}_{q}-subspace of $V=V\left(2, q^{r n / 2}\right)$, r even. According to Proposition [2.5, U is also a maximum scattered $\mathbb{F}_{q^{-}}$ subspace of V, considered as an r-dimensional $\mathbb{F}_{q^{n-s p a c e}}$. Let G be an $\mathbb{F}_{q^{-}}$ linear $V \rightarrow W=V(r n / 2, q)$ map with $\operatorname{ker} G=U$. When V is viewed as an $\mathbb{F}_{q^{n}}$-space, then the construction method of Theorem 3.2 yields the $M R D$ code

$$
\begin{equation*}
\mathcal{C}_{U, G}=\left\{x \in \mathbb{F}_{q^{n}} \mapsto G \circ \tau_{\mathbf{v}}(x) \in W: \mathbf{v} \in V\right\} \tag{15}
\end{equation*}
$$

When V is viewed as an $\mathbb{F}_{q^{r n / 2}}$-space, then we obtain the $M R D$-code

$$
\begin{equation*}
\mathcal{D}_{U, G}=\left\{x \in \mathbb{F}_{q^{r n / 2}} \mapsto G \circ \tau_{\mathbf{v}}(x) \in W: \mathbf{v} \in V\right\} \tag{16}
\end{equation*}
$$

Since $\mathbb{F}_{q^{n}}$ is a subfield of $\mathbb{F}_{q^{r n / 2}}$, the latter code is the restriction of the former one on $\mathbb{F}_{q^{n}}$.

Conversely, it may happen, even if r is even, that an \mathbb{F}_{q}-subspace U of $V=V\left(r, q^{n}\right)$ of rank rn/2 is scattered with respect to $\mathbb{F}_{q^{n}}$ whereas it is not scattered when V is considered as a 2-dimensional $\mathbb{F}_{q^{r n / 2}}$-space. Arguing as above, the $M R D$-code $\mathcal{C}_{U, G}$ described in (15) is the restriction of the RD-code $\mathcal{D}_{U, G}$ described in (16).

Let ω_{α} be the map $\mathbb{F}_{q^{r n / 2}} \rightarrow \mathbb{F}_{q^{r n / 2}}$ defined by the rule $x \mapsto \alpha x$. By $\left.\left(\omega_{\alpha}+\omega_{\beta} \circ f\right)\right|_{\mathbb{q}^{n}}$ we denote the restriction of the corresponding function over $\mathbb{F}_{q^{n}}$. From Example 3.5 and from Remark 3.6 it follows that if r is even and $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{r n / 2}}\right\}$ is a maximum scattered $\mathbb{F}_{q^{\text {-subspace }}}$ of $\mathbb{F}_{q^{r n / 2}}^{2}$ considered as an r-dimensional $\mathbb{F}_{q^{n-s p a c e}}$, then the MRD-code (cf. (14), (15) and (16))

$$
\mathcal{C}_{f}=\left\{\left.\left(\omega_{\alpha}+f \circ \omega_{\beta}\right)\right|_{\mathbb{F}_{q^{n}}}: \alpha, \beta \in \mathbb{F}_{q^{r n / 2}}\right\}
$$

is the restriction on $\mathbb{F}_{q^{n}}$ of the MRD-code

$$
\mathcal{D}_{f}=\left\{\left(\omega_{\alpha}+f \circ \omega_{\beta}\right): \alpha, \beta \in \mathbb{F}_{q^{r n / 2}}\right\}
$$

The next result shows that $\left\{\left.\left(\omega_{\alpha}+\omega_{\beta} \circ f\right)\right|_{\mathbb{F}_{q^{n}}}: \alpha, \beta \in \mathbb{F}_{q^{r n / 2}}\right\}$ is also an MRD-code with the same parameters as \mathcal{C}_{f}. For $r=2$ this is exactly the code defined by Sheekey.

Theorem 3.7. Let r be even and $U_{f}:=\left\{(x, f(x)): x \in \mathbb{F}_{q^{r n / 2}}\right\}$ be a maximum scattered \mathbb{F}_{q}-subspace of $\mathbb{F}_{q^{r n / 2}}^{2}$ considered as $V\left(r, q^{n}\right)$, where f is a q-polynomial over $\mathbb{F}_{q^{r n / 2}}$. Then $\mathcal{S}_{f}:=\left\{\left.\left(\omega_{\alpha}+\omega_{\beta} \circ f\right)\right|_{\mathbb{F}_{q^{n}}}: \alpha, \beta \in \mathbb{F}_{q^{r n / 2}}\right\}$ is an MRD-code with parameters (rn/2, n, q;n-1).

Proof. Since U_{f} is scattered, the following holds. If $(x, f(x))=\lambda(y, f(y))$ with $\lambda \in \mathbb{F}_{q^{n}}$, then $\lambda \in \mathbb{F}_{q}$, so for each $y \in \mathbb{F}_{q^{r n / 2}}^{*}$

$$
\begin{equation*}
f(\lambda y)=\lambda f(y) \text { with } \lambda \in \mathbb{F}_{q^{n}} \text { implies } \lambda \in \mathbb{F}_{q} . \tag{17}
\end{equation*}
$$

It also follows that for each $y \in \mathbb{F}_{q^{r n / 2}}^{*}$ we have

$$
\begin{equation*}
f(\lambda y) / \lambda y=f(y) / y \text { for some } \lambda \in \mathbb{F}_{q^{n}}^{*} \text { if and only if } \lambda \in \mathbb{F}_{q}^{*} . \tag{18}
\end{equation*}
$$

First we show that $\left.(\alpha x+\beta f(x))\right|_{\mathbb{F}_{q^{n}}}=0$ implies $\alpha=\beta=0$. Suppose the contrary. If $\beta \neq 0$, then $f(x)=x t$, with $t=-\alpha / \beta$ for each $x \in \mathbb{F}_{q^{n}}$, contradicting (17). If $\beta=0$, then clearly also $\alpha=0$. It follows that $\left|\mathcal{S}_{f}\right|=q^{r n}$.

The $\mathbb{F}_{q^{-}}$-linear map $\left.(\alpha x+\beta f(x))\right|_{\mathbb{F}_{q^{n}}}$ has rank less than $n-1$ if and only if $\beta \neq 0$ and there exist $x, y \in \mathbb{F}_{q^{n}}^{*}$ such that $\langle x\rangle_{\mathbb{F}_{q}} \neq\langle y\rangle_{\mathbb{F}_{q}}$ and $f(x) / x=$ $f(y) / y=-\alpha / \beta$. But then for $\lambda:=x / y \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q}$ we have $f(\lambda y) / \lambda y=$ $f(y) / y$ contradicting (18).

Sheekey in [42, Theorem 8] showed that when $r=2$ the two \mathbb{F}_{q}-vector subspaces U_{f} and U_{g} defined as in Theorem 3.7 are equivalent under the action of the group $\Gamma \mathrm{L}\left(2, q^{n}\right)$ if and only if \mathcal{S}_{f} and \mathcal{S}_{g} are equivalent as MRD-codes. Here we will show that the same result is not true when we consider the restriction codes. To show this we will need the following two examples, where non-equivalent \mathbb{F}_{q}-subspaces yield the same MRD-code.

Example 3.8. Consider $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{t n}}\right\}$, with $t \geq 1, n \geq 3$ and with $f: \mathbb{F}_{q^{t n}} \rightarrow \mathbb{F}_{q^{t n}}$ an invertible $\mathbb{F}_{q^{n}}$-semilinear map with associated automorphism $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q^{n}}\right)$ such that $\operatorname{Fix}(\sigma)=\mathbb{F}_{q}$. Then $L_{U_{f}}$ is a scattered \mathbb{F}_{q}-linear set of pseudoregulus type in $\mathrm{PG}\left(2 t-1, q^{n}\right)$ (cf. 34, Sec. 3]). With this choice of f, we get

$$
\mathcal{S}_{f}=\left\{\left.\left(\omega_{\alpha}+\omega_{\beta} \circ i d^{\sigma}\right)\right|_{\mathbb{F}_{q^{n}}}: \alpha, \beta \in \mathbb{F}_{q^{t n}}\right\} .
$$

Indeed, for every $\lambda \in \mathbb{F}_{q^{n}}$ we have $\left(\omega_{\alpha}+\omega_{\beta} \circ f\right)(\lambda)=\alpha \lambda+\beta f(\lambda)=\alpha \lambda+$ $\beta \lambda^{\sigma} f(1)$.

Example 3.9. Let $W=\left\{\left(x, y, x^{q}, y^{q^{h}}\right): x, y \in \mathbb{F}_{q^{n}}\right\}$, with $n \geq 5,1<$ $h<n-1$ and with $\operatorname{gcd}(h, n)=1$. Then W is a scattered \mathbb{F}_{q}-subspace of $V\left(4, q^{n}\right)$ and it defines an \mathbb{F}_{q}-linear set L_{W} of $\mathrm{PG}\left(3, q^{n}\right)$, which is not of pseudoregulus type, see [25, Proposition 2.5]. We may consider $V\left(4, q^{n}\right)$ as $\mathbb{F}_{q^{2 n}} \times \mathbb{F}_{q^{2 n}}$. Take $\omega \in \mathbb{F}_{q^{2 n}} \backslash \mathbb{F}_{q^{n}}$, so $\{1, \omega\}$ is an $\mathbb{F}_{q^{n}}$-basis of $\mathbb{F}_{q^{2 n}}$ and

$$
W=\left\{\left(x+\omega y, x^{q}+\omega y^{q^{h}}\right): x, y \in \mathbb{F}_{q^{n}}\right\} .
$$

Direct computations show that $W=\left\{(z, g(z)): z \in \mathbb{F}_{q^{2 n}}\right\}=U_{g}$, where g is the q-polynojmial over $\mathbb{F}_{q^{2 n}}$ of the form

$$
g(z)=a_{1} z^{q}+a_{h} z^{q^{h}}+\left(1-a_{1}\right) z^{q^{n+1}}-a_{h} z^{q^{n+h}}
$$

with $a_{1}=\frac{\omega^{q^{n+1}}}{\omega^{q^{n+1}}-\omega^{q}}$ and $a_{h}=\frac{1}{\omega^{q^{h}-1}-\omega^{q^{h+n}-1}}$. Hence $\left.g(z)\right|_{\mathbb{F}_{q^{n}}}=z^{q}$, so

$$
\mathcal{S}_{g}=\left\{\left.\left(\omega_{\alpha}+\omega_{\beta} \circ i d^{q}\right)\right|_{\mathbb{F}_{q^{n}}}: \alpha, \beta \in \mathbb{F}_{q^{2 n}}\right\} .
$$

Theorem 3.10. In $V\left(4, q^{n}\right), n \geq 5$, there exist two non-equivalent maximum scattered \mathbb{F}_{q}-subspaces U_{f} and U_{g} such that the codes \mathcal{S}_{f} and \mathcal{S}_{g} coincide.

Proof. In Example 3.8 take $t=2$ and $\sigma: x \mapsto x^{q}$. Then we obtain the same code as in Example 3.9, while the corresponding subspaces are nonequivalent because of [25, Proposition 2.5].

Let now r be odd and $n=2 t$. Some of the known families of maximum scattered $\mathbb{F}_{q^{-}}$-subspaces are given in the r-dimensional $\mathbb{F}_{q^{2 t}}$-space $V=\mathbb{F}_{q^{2 r t}}$ and they are of the form

$$
\begin{equation*}
U_{f}:=\left\{x \omega+f(x): x \in \mathbb{F}_{q^{r t}}\right\}, \tag{19}
\end{equation*}
$$

with $\omega \in \mathbb{F}_{q^{2 t}} \backslash \mathbb{F}_{q^{t}}$ and with $\omega^{2}=\omega A_{0}+A_{1}, A_{0}, A_{1} \in \mathbb{F}_{q^{t}}$. In this case we show an explicit construction of \mathbb{F}_{q}-linear MRD-codes with parameters $(r t, 2 t, q ; 2 t-1)$ obtained from Theorem 3.2. Indeed, in this case $\{\omega, 1\}$ is an $\mathbb{F}_{q^{t}}$-basis of $\mathbb{F}_{q^{2 t}}$ and also an $\mathbb{F}_{q^{r t}}$-basis of $\mathbb{F}_{q^{2 r t}}$. Then we can write any element $\lambda \in \mathbb{F}_{q^{2 t}}$ as $\lambda=\lambda_{0} \omega+\lambda_{1}$, with $\lambda_{0}, \lambda_{1} \in \mathbb{F}_{q^{t}}$. We fix $G: \mathbb{F}_{q^{2 r t}} \rightarrow \mathbb{F}_{q^{r t}}$ as the map $x \omega+y \mapsto f(x)-y$. For each $v=v_{0} \omega+v_{1} \in \mathbb{F}_{q^{2 r t}}$ the map $\tau_{v}: \mathbb{F}_{q^{2 t}} \rightarrow \mathbb{F}_{q^{2 r t}}$ is as follows

$$
\lambda \mapsto \lambda_{0} v_{0} A_{1}+\lambda_{1} v_{1}+\omega\left(\lambda_{0} v_{1}+\lambda_{1} v_{0}+\lambda_{0} v_{0} A_{0}\right),
$$

and τ_{v} can be viewed as a function defined on $\mathbb{F}_{q^{t}} \times \mathbb{F}_{q^{t}}$. Then the associated MRD-code consists of the following maps:

$$
G \circ \tau_{v}:(x, y) \in \mathbb{F}_{q^{t}} \times \mathbb{F}_{q^{t}} \mapsto f\left(\lambda_{0} v_{1}+\lambda_{1} v_{0}+\lambda_{0} v_{0} A_{0}\right)-\lambda_{0} v_{0} A_{1}-\lambda_{1} v_{1} .
$$

Example 3.11. Put $f(x):=a x^{q^{i}}, a \in \mathbb{F}_{q^{r t}}^{*}, 1 \leq i \leq r t-1, r$ odd. For any $q \geq 2$ and any integer $t \geq 2$ with $\operatorname{gcd}(t, r)=1$, such that
(i) $\operatorname{gcd}(i, 2 t)=1$ and $\operatorname{gcd}(i, r t)=r$,
(ii) $\mathrm{N}_{q^{r t} / q^{r}}(a) \notin \mathbb{F}_{q}$,
from [2, Theorem 2.2], we get the \mathbb{F}_{q}-linear MRD-code with dimension $2 r t$ and parameters ($2 t, r t, q ; 2 t-1$):

$$
\left\{F_{v}: v=\omega v_{0}+v_{1}, v_{0}, v_{1} \in \mathbb{F}_{q^{r t}}\right\},
$$

where $F_{v}: \mathbb{F}_{q^{t}} \times \mathbb{F}_{q^{t}} \rightarrow \mathbb{F}_{q^{r t}}$ is defined by the rule

$$
\begin{equation*}
F_{v}(x, y)=x^{q^{i}} a\left(A_{0}^{q^{i}} v_{0}^{q^{i}}+v_{1}^{q^{i}}\right)-x A_{1} v_{0}+y^{q^{i}} a v_{0}^{q^{i}}-y v_{1} . \tag{20}
\end{equation*}
$$

Note that, since $\operatorname{gcd}(i, r t)=r$, the above MRD-code is $\mathbb{F}_{q^{r}}$-linear as well, since for each $\mu \in \mathbb{F}_{q^{r}}$ and $v \in \mathbb{F}_{q^{2 r t}}$ we have $\mu F_{v}=F_{\mu v}$.
Example 3.12. Put $f(x):=a x^{q^{i}}, a \in \mathbb{F}_{q^{r t}}^{*}, 1 \leq i \leq r t-1, r$ odd. For any prime power $q \equiv 1(\bmod r)$ and any integer $t \geq 2$, such that
(i) $\operatorname{gcd}(i, 2 t)=\operatorname{gcd}(i, r t)=1$,
(ii) $\left(\mathrm{N}_{q^{r t} / q}(a)\right)^{\frac{q-1}{r}} \neq 1$,
from [2, Theorem 2.3], we get the \mathbb{F}_{q}-linear MRD-code with dimension $2 r t$ and parameters $(2 t, r t, q ; 2 t-1)$:

$$
\left\{F_{v}: v=\omega v_{0}+v_{1}, v_{0}, v_{1} \in \mathbb{F}_{q^{r t}}\right\}
$$

where $F_{v}: \mathbb{F}_{q^{t}} \times \mathbb{F}_{q^{t}} \rightarrow \mathbb{F}_{q^{r t}}$ is defined by the same rule as (20).
Example 3.13. Put $f(x):=a x^{q^{i}}+b x^{q^{2 t+i}}, a, b \in \mathbb{F}_{q^{3 t}}^{*}, 1 \leq i \leq 3 t-1$ (here $r=3$). For any $q \geq 2$ and any integer $t \geq 2$ with $\operatorname{gcd}(i, 2 t)=1$ choosing a, b as in the proof of Theorem [2.3, we get the \mathbb{F}_{q}-linear MRD-code with dimension $6 t$ and parameters ($2 t, 3 t, q ; 2 t-1$):

$$
\left\{F_{v}: v=v_{0}+\omega v_{1}, v_{0}, v_{1} \in \mathbb{F}_{q^{3 t}}\right\},
$$

where $F_{v}: \mathbb{F}_{q^{t}} \times \mathbb{F}_{q^{t}} \rightarrow \mathbb{F}_{q^{3 t}}$ is defined by the rule

$$
\begin{aligned}
F_{v}(x, y)= & x^{q^{i}}\left(a A_{0}^{q^{i}} v_{0}^{q^{i}}+a v_{1}^{q^{i}}+b A_{0}^{q^{i}} v_{0}^{q^{2 t+i}}+b v_{1}^{q^{2 t+i}}\right)+ \\
& y^{q^{i}}\left(a v_{0}^{q^{i}}+b v_{0}^{q^{2 t+i}}\right)-x A_{1} v_{0}-y v_{1} .
\end{aligned}
$$

Applying [2, Theorem 3.1] one can construct other MRD-codes after decomposing $V\left(r, q^{n}\right)$ into a direct sum of $\mathbb{F}_{q^{n}}$-subspaces of dimensions 2 and 3 and choosing for each of them a maximum scattered subspace.

References

[1] S. Ball, A. Blokhuis and M. Lavrauw: Linear $(q+1)$-fold blocking sets in $P G\left(2, q^{4}\right)$, Finite Fields Appl. 6 n. 4 (2000), 294301.
[2] D. Bartoli, M. Giulietti, G. Marino and O. Polverino: Maximum scattered linear sets and complete caps in Galois spaces, http://arxiv.org/abs/1512.07467, to appear in Combinatorica.
[3] T. Berger: Isometries for rank distance and permutation group of Gabidulin codes, IEEE Trans. Inform. Theory 49 (2003), 30163019.
[4] A. Blokhuis and M. Lavrauw: Scattered spaces with respect to a spread in $P G(n, q)$, Geom. Dedicata 81 No.1-3 (2000), 231-243.
[5] A. Blokhuis and M. Lavrauw: On two-intersection sets with respect to hyperplanes in projective spaces, J. Combin. Theory Ser. A, 99 No. 2 (2002), 377-382.
[6] G. Bonoli and O. Polverino: The twisted cubic of $P G(3, q)$ and translation spreads of $H(q)$, Discrete Math. 296 (2005), 129-142.
[7] G. Bonoli and O. Polverino: \mathbb{F}_{q}-linear blocking sets in $P G\left(2, q^{4}\right)$, Innov. Incidence Geom. (2005), 35-56.
[8] R. Calderbank and W.M. Kantor: The geometry of twoweight codes, Bull. Lond. Math. Soc. 18 (1986), 97-122.
[9] I. Cardinali, G. Lunardon, O. Polverino and R. Trombetti: Translation Spreads of the Classical Generalized Hexagon, European J. Combin. 23 (2002), 367-376.
[10] I. Cardinali, O. Polverino and R. Trombetti: Semifield planes of order q^{4} with kernel $\mathbb{F}_{q^{2}}$ and center \mathbb{F}_{q}, European J. Combin. 27 (2006), 940-961.
[11] B. Csajbók, G. Marino and O. Polverino: Classes and equivalence of linear sets in $\operatorname{PG}\left(1, q^{n}\right)$. Submitted manuscript. https://arxiv.org/abs/1607.06962
[12] B. Csajbók and C. Zanella: On the equivalence of linear sets, Des. Codes Cryptogr., DOI 10.1007/s10623-015-0141-z.
[13] B. Csajbók and C. Zanella: On scattered linear sets of pseudoregulus type in $P G\left(1, q^{t}\right)$, Finite Fields Appl., 41 (2016), 34-54.
[14] P. Delsarte: Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226-241.
[15] G. L. Ebert, G. Marino, O. Polverino and R. Trombetti: Infinite families of new semifields, Combinatorica, 29 n. 6 (2009), 637-663.
[16] E. Gabidulin: Theory of codes with maximum rank distance, Probl. Inf. Transm. 21(3) (1985), 3-16.
[17] E. Gabidulin.: Public-key cryptosystems based on linear codes over large alphabets: efficiency and weakness. Codes and Cyphers, 17-31. Formara Limited 1995.
[18] M. Gadouleau and Z. Yan: Properties of codes with the rank metric. IEEE Global Telecommunications Conference 2006, 1-5.
[19] D. Glynn and G. Steinke: Laguerre planes of even order and translation ovals, Geom. Dedicata 51 (1994), 105-112.
[20] A. Kshevetskiy and E. Gabidulin: The new construction of rank codes, International Symposium on Information Theory, 2005. ISIT 2005. Proceedings, pages 2105-2108, Sept. 2005.
[21] R. Koetter and F. Kschischang: Coding for errors and erasure in random network coding. IEEE Trans. Inform. Theory, 54(8):3579-3591, Aug. 2008.
[22] M. Lavrauw: Scattered Spaces with respect to Spreads and Eggs in Finite Projective Spaces, Ph.D. Thesis, 2001.
[23] M. Lavrauw: Scattered spaces in Galois Geometry, Contemporary Developments in Finite Fields and Applications, 2016, 195-216.
[24] M. Lavrauw, G. Marino, O. Polverino and R. Trombetti: \mathbb{F}_{q}-pseudoreguli of $P G\left(3, q^{3}\right)$ and scattered semifields of order q^{6}, Finite Fields Appl., 17 (2011), 225-239.
[25] M. Lavrauw, G. Marino, O. Polverino and R. Trombetti: Solution to an isotopism question concerning rank 2 semifields, J. Combin. Des., 23 (2015), 60-77.
[26] M. Lavrauw, G. Marino, O. Polverino and R. Trombetti: The isotopism problem of a class of 6-dimensional rank 2 semifields and its solution, Finite Fields Appl. 34 (2015), 250-264.
[27] M. Lavrauw and G. Van de Voorde: On linear sets on a projective line, Des. Codes Cryptogr. 56 (2010), 89-104.
[28] M. Lavrauw and G. Van de Voorde: Scattered linear sets and pseudoreguli, Electron. J. Combin. 20(1) (2013).
[29] M. Lavrauw and G. Van de Voorde: Field reduction and linear sets in finite geometry, in: Gohar Kyureghyan, Gary L. Mullen, Alexander Pott (Eds.), Topics in Finite Fields, Contemp. Math. AMS (2015).
[30] R. Lidl and H. Niederreiter: Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1997.
[31] G. Lunardon and O. Polverino: Blocking sets of size $q^{t}+q^{t-1}+$ 1, J. Combin. Theory Ser. A 90 (2000), 148-158.
[32] G. Lunardon: Linear k-blocking sets, Combinatorica 21(4) (2001), 571-581.
[33] G. Lunardon: Translation ovoids, J. Geom. 76 (2003), 200-215.
[34] G. Lunardon, G. Marino, O. Polverino and R. Trombetti: Maximum scattered linear sets of pseudoregulus type and the Segre Variety $\mathcal{S}_{n, n}$, J. Algebraic. Combin. 39 (2014), 807-831.
[35] G. Lunardon and O. Polverino: Translation ovoids of orthogonal polar spaces, Forum Math. 16 (2004), 663-669.
[36] G. Lunardon, R. Trombetti and Y. Zhou: Generalized Twisted Gabidulin Codes, http://arxiv.org/abs/1507.07855.
[37] G. Marino and O. Polverino: On translation spreads of $H(q)$, J. Algebraic Combin. 42 n. 3 (2005), 725-744.
[38] G. Marino, O. Polverino and R. Trombetti: On \mathbb{F}_{q}-linear sets of $\operatorname{PG}\left(3, q^{3}\right)$ and semifields, J. Combin. Theory Ser. A 114 (2007), 769-788.
[39] K. Morrison: Equivalence for rank-metric and matrix codes and automorphism groups of gabidulin codes. IEEE Trans. Inform. Theory, 60 n. 11 (2014), 7035-7046.
[40] O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310 (2010), 3096-3107.
[41] P. Polito and O. Polverino: On small blocking sets, Combinatorica 18 No. 1 (1998), 133-137.
[42] J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. 10(3) (2016), 475-488.

Bence Csajbók
Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", I- 81100 Caserta, Italy
and
MTA-ELTE Geometric and Algebraic Combinatorics Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Sétány 1/C, Hungary csajbok.bence@gmail.com
Giuseppe Marino, Olga Polverino and Ferdinando Zullo
Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", I- 81100 Caserta, Italy
giuseppe.marino@unina2.it, olga.polverino@unina2.it, ferdinando.zullo@unina2.it

[^0]: *The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

