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Abstract

Recently, numerous approaches have emerged in the social sciences to exploit the opportunities
made possible by the vast amounts of data generated by online social networks (OSNs). Having
access to information about users on such a scale opens up a range of possibilities – from predicting
individuals’ demographics and health status to their beliefs and political opinions – all without the
limitations associated with often slow and expensive paper-based polls. A question that remains
to be satisfactorily addressed, however, is how demography is represented in the OSN content –
that is, what are the relevant aspects that constitute detectable large-scale patterns in language?
Here, we study language use in the US using a corpus of text compiled from over half a billion
geo-tagged messages from the online microblogging platform Twitter. Our intention is to reveal
the most important spatial patterns in language use in an unsupervised manner and relate them to
demographics. Our approach is based on Latent Semantic Analysis (LSA) augmented with the Robust
Principal Component Analysis (RPCA) methodology, which permits identification of the data’s main
sources of variation with an automatic filtering of noise and outliers without influencing results by
a priori assumptions. We find spatially correlated patterns that can be interpreted based on the
words associated with them. The main language features can be related to slang use, urbanization,
travel, religion and ethnicity, the patterns of which are shown to correlate plausibly with traditional
census data. Apart from the standard measure of linear correlation, some relations seem to be better
explained by boolean implications, suggesting a threshold-like behavior where demographic variables
influence the users’ word use. Our findings thus validate the concept of demography being represented
in OSN language use and show that the traits observed are inherently present in the word frequencies
without any previous assumptions about the dataset. Thus, they could form the basis of further
research focusing on the evaluation of demographic data estimation from other big data sources, or
on the dynamical processes that result in the patterns found here.

1 Introduction

Geography plays an important role in many social phenomena: clearly, many aspects of life are influenced
by the possibilities offered by the environment in which one lives [1–6]. As such, uncovering the spatial
structures and the dynamics of changes in them has for some time been a focus of the scientific commu-
nity and policymakers. In line with this, governments and local authorities invest significant resources
in creating and maintaining databases of census data, including several variables describing the local
population and economic activity on the regional scale. These data-collection and monitoring activities
are usually limited by the significant efforts required to obtain and process data, prompting researchers
and professionals to look for alternative data sources and methods that can complement traditional data
collection and which could be integrated with modeling and research efforts [7–13].

In the past two decades, there has been a significant growth in the amount of data collected about
individuals that has been made available for research purposes. This has had a large impact on social
science research where empirical studies were previously limited by the cost and effort associated with
data collection. This includes studies focusing on how modern data collection methods can be used to
reveal the spatial structure in society on several scales, and how quantities measured in the online or
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abstract environments are connected to real-world phenomena. Two common data sources are mobile
phone networks, where user activity and aggregated measures of network utilization are recorded at
the antenna level as part of regular operation [14] and online social networks (OSNs) [15], where the
content publicly shared by users in many cases includes their position [16]. Some other data sources with
promising application possibilities include monetary transactions [17–19], GPS traces from cars [20, 21]
and other devices and public transportation usage as recorded by electronic payment systems [22, 23].

Using these data, previous research has shown that it is possible to obtain accurate and up-to-date
measures of population density [9] or crowd size at sports events or in airports [10]. Furthermore, the
demographic features of a city or a country can be estimated by parsing OSN user names or user profile
descriptions [24, 25]. By focusing on the community structure instead of estimating features of individuals,
networks of connections among mobile phone or social network users reveal geographic clustering on large
scales [18, 26, 27], Twitter users’ language choice reflects different cultural communities [28], while user
activity has been used on urban scales as an innovative method of land use detection [13, 29, 12, 11]. In
addition to land use data, commuting and mobility patterns in the city [30, 31] and larger scale travel
trends can also be investigated with the help of mobile and OSN networks [32–34].

Apart from looking at the spatio-temporal patterns, analysing the content of users posted in OSNs
can provide further insights, adapting text mining methods and results which have been previously
developed and obtained on the growing corpus of digital texts [35–39]. From predicting heart-disease
rates of an area based on its language use [40], connecting health measures to photo scenicness ratings
[41] or relating unemployment to social media content [42, 43] to forecasting stock market moves from
search semantics [44], many studies have attempted to connect online media language and metadata to
real-world outcomes. Various studies have analyzed spatial variation in the OSN messages’ texts and
its applicability to several different questions, including user localization based on the content of their
posts [45, 46], empirical analysis of the geographic diffusion of novel words, phrases, trends and topics of
interest [47, 48], measuring public mood [49].

In these studies, either a priori models were used, or a model was built with a supervised learning
method, with a focus on the specific phenomenon, meaning the exploitation of only one aspect (user
name, user profile description, misspelled words, words connected to fatigue etc.), yet possibly neglecting
the dataset’s other features. While being effective, there remain the following questions: (a) what are
main patterns in the data in general; (b) can they be discovered without making a priori assumptions
about what to look for; (c) can we relate these patterns to relevant real social phenomena.

In this study our goal is to analyze in an unsupervised manner how and to what extent regional-scale
demographic attributes are represented in social media posts. We approach this using geo-tagged short
messages (tweets) posted on the Twitter microblogging service as a source of large-scale digital corpus.
We employ a combination of Latent Semantic Analysis (LSA) [36] and Robust Principal Component
Analysis (RPCA) [50, 51], which permits us the automated identification of the most significant topics
and language use features with regional variation on Twitter. We use tweets posted in the USA over a
3-year period aggregated at the county-level. This allows comparison with census data at the same level,
thus allowing us to draw some hypotheses about the driving forces behind regional language dissimilarity
patterns.

2 Methods

2.1 Twitter dataset

We use the datastream freely provided by Twitter through their Application Program Interface (API),
which amounts to approximately 1% of all sent messages. In this study, we focus on the part of the
datastream with geolocation information. These geolocated tweets originate from users who chose to allow
their mobile phones to post the GPS coordinates along with a Twitter message. The total geolocated
content was found to only comprise a small percentage of all tweets; therefore with data collection focusing
only on these, a large fraction of all geo-tagged tweets can be gained [52].

Our dataset includes a total of 335 million tweets from the contiguous United Stated of America
collected between February 2012 and June 2013. These are all geotagged – that is, they have GPS
coordinates associated with them. We construct a geographically indexed database of these tweets,
permitting the efficient analysis of regional features [53]. Using the Hierarchical Triangular Mesh (HTM)
scheme for practical geographic indexing [54, 55], we assigned a US county to each tweet. County borders
are obtained from the GAdm database 1.

1http://gadm.org
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2.2 Latent Semantic Indexing and Robust Principal Component Analysis

We aim to use a type of vector space model on our Twitter corpus, where documents correspond to
county-level aggregated tweets. The terms we consider are raw words obtained after a tokenization
process, - that is, we apply a ’word-bag’ approach to our documents, effectively limiting any analysis to
word frequencies and ignoring relations among words and longer phrases. We filter stop-words in several
languages (most important being English and Spanish) to remove most common but uninformative terms
from our data.

We construct a term-document matrix Wij as the as the number of occurrences of the i-th word in the
j-th cell. As the population density of the USA is very heterogeneous, the number of word occurrences
in each county is also heterogeneous. To improve the quality of the dataset, we only include counties t
contain at least 10000 occurrences of at least 500 individual words. We also limit the words used to those
with at least 10000 occurrences in at least 1000 individual counties. This way there remain 2800 counties
and 10132 words, which form the Wij word occurrence matrix. We normalize Wij so that the elements
are the relative frequencies of words in each county: Xij ≡Wij/

∑
kWkj , i.e. we normalize each element

by the total number of words posted in that county; this is called inverse document frequency weighing
in text-mining literature.

To identify all possible regional characteristics of language usage, we rely on techniques known from
the field of natural language processing. There exist many feature or topic extraction methods, all of
them aiming to reduce the dimensionality of the data by finding related or similar words and documents.
A common approach is Latent Semantic Analysis (LSA) [36, 56], which applies Singular Vector Decom-
position (SVD) on a word by document matrix derived from the corpus. This method groups words
together based on their semantic similarity [35], creating ’feature’ documents, of which the first few rep-
resent the concepts causing the most variation in the data. A notable achievement of LSA is that it is
an unsupervised learning method, thus providing information about the corpus without using a priori
assumptions or any arbitrary preselections based on the purpose of the examination.

According to the nature of our dataset, there are several users who generate automated messages
like weather stations, advertisers or tornado and earthquake advisories, which are considered as noise in
our investigations. Especially in sparsely inhabited areas, these outlier messages can account for a large
fraction of the dataset. Also, highly localized features, such as tourist attractions, can generate outliers
of significant volume. This can result in highly localized outliers dominating the results of the SVD,
making identifying relevant structure challenging. Applying the Robust PCA method [51, 50] allows us
to preprocess the matrix before further analysis by separating it into a low-rank and a sparse part, whose
principal components can then be computed and analyzed separately. This means that the original data
matrix is written as a sum of two parts:

X = XS +XLR , (1)

where XS is a sparse matrix and XLR contains the dense but low-rank part of the data. The mathematical
condition for finding XS and XLR is minimizing the sum

λ‖XS‖1 + ‖XLR‖σ , (2)

where for a matrix X of dimensions n1 × n2 with n1 ≥ n2, λ ≡ 1/
√
n1, and the norms are the l1 and

nuclear norms respectively:

‖X‖1 =
∑
ij

|Xij |

‖X‖σ =
∑
i

σi(X) .
(3)

Here σi(X) denotes the i-th singular value of X. An efficient algorithm for finding XS and XLR is the
inexact augmented Lagrangian method [50] (Matlab code developed by the authors of [50] implementing
the algorithm is publicly available 2). Employing this method results in the sparse part containing most
of the outliers, and and in true language use variations to be represented in the low-rank part. Due to
the structure of our data matrix, and the employed Robust PCA method, we choose not to subtract
averages from the data; of course, this will probably result in average word frequencies dominating the
first principal component. We further analyze only the results of the LSA of the low-rank component.

2http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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2.3 Demographic data

To discover possible governing factors of the geographical language variation patterns and connections
between topics and their geography, we correlate right singular vectors with a variety of demographic data
series from the 2010 US Census 3, 2011 American Community Survey (ACS) 5 year estimates concerning
educational attainment by counties 4, county business patterns according to North American Industry
Classification System (NAICS) classification 5 and church adherence rates and congregations numbers
per county provided by the the Association of Religion Data Archives (ARDA) 6.

2.4 Boolean relationship detection

Apart from evaluating linear correlation measures with the singular vectors, we also carry out a boolean
relationship detection, using the methodology of Sahoo et al. [57], which is based on calculating a test
statistic based on the contingency table of the scatterplots (e.g. Fig. 3f-j, see the next section for an
interpretation of the results displayed) after creating the four segments of the data with a horizontal
and a vertical limit. We find the most significantly sparse segment by setting the limits so that the test
statistic gives a maximum for the specific segment. During the calculations, we set an error bar on both
side of the limits, and points being in this error zone are not taken into consideration when testing for
the sparseness.

If the contingency table is

A low A high Σ
B low m00 m01 b0
B high m10 m11 b1

Σ a0 a1 s

The test statistic for the four segments is

δ =
mij − 〈mij〉√
〈mij〉

,

where 〈mij〉 denotes the expected value in case of independent variables

〈mij〉 =
ai
s

bj
s
· s.

If there are some points left in the segment, they are considered as an error, and the measure of error
would be

ε =
1

2

(
mij

mi0 −mi1
+
mij

ai

)
.

We consider a segment significantly sparse if δ > 3, and ε < 0.2.
Then in the whole range of variables A and B (using 100 steps in both directions and an error

boundary of 1,5% for the skipping of points near the borders) we measure δ and ε values, and take the
segmentation with the maximum δ for the sparse areas, where ε is still low enough.

3 Results

Using a corpus of over 335 million geo-tagged tweets posted in the USA, we compile word-frequency
distributions for each US county, and then apply the automatic filtering and feature selection method
described. We analyze the features found with this technique by considering the connection between
geographic and semantic distances (Fig. 1.), and by plotting right singular vectors on the map (Fig.
2a-e.) and displaying left singular vectors as wordclouds (positive weights Fig. 2f-j., negative weights
Fig. 2k-o.).

First, we find that the method applied successfully uncovers some coherent topics, especially in the
first few singular vectors, where singular values are still great enough for the topic to give a significant

3http://www2.census.gov/census_2010/, http://www.census.gov/support/USACdataDownloads.html
4http://www.census.gov/programs-surveys/acs/
5http://www.census.gov/econ/cbp/
6http://www.thearda.com
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variance of the dataset. As we deliberately choose not to subtract averages from the Xij matrix, the
first component shows no discernible pattern, and corresponds to the most common words in the sample.
From the second singular vector, however, one or both ends (it can be either negative or positive, as
singular vectors can arbitrarily be multiplicated by a minus sign) of each of the most important semantic
features on the wordclouds can be related to a certain language style, concept or lifestyle.

The words giving the largest contribution to the pattern of the second left singular vector (Fig. 2f.)
mark a strong presence of slang in the sample. This includes forms with alternate spelling like ’aint’,
’gotta’; swearing like ’ass’, ’hoe’, ’bitch’; abbreviations of common phrases like ’tryna’, ’imma’, ’kno’,
’yall’; OSN-specific slang such as ’oomf’ which stands for ’one of my followers’ (i.e. on Twitter); a
very specific misspelling of ’goodmorning’ (instead of ’good morning’); and variations of the racial slurs
’nigga’ and ’niggas’. Swear words and abbreviations typical for online language also dominate this end
of the component. The next most important feature, which can be found in the third vector (Fig. 2l.),
identifies words connected to urban lifestyle like eating out (’pizza’, ’grill’), drinking coffee (’coffee’, ’cafe’,
’starbucks’), education (’university’, ’library’, ’campus’) or working out (’gym’, ’fitness’).

Further dominating concepts are travel (’enjoying’, ’trip’, ’pic’, ’hotel’) in the fourth singular vector
(Fig. 2h.) and religion (’lord’, ’prayers’, ’praying’, ’blessed’) alongside with positive content (’glad’,
’thankful’, ’wonderful’, ’proud’) in the negatively weighed words of the fifth singular vector (Fig. 2n.). In
this case, the opposite end can also be easily interpreted: the faith-related words in the fifth component
are countered by an increased usage of profanity present among words with positive weights (Fig. 2i.).
This might be the consequence of people tweeting about religious topics also trying to avoid swearing;
this hypothesis can also be supported with less strong swearing alternatives (’crap’, ’freaking’, ’dang’)
prevailing among the negatively weighed words along the religious words.

If the native language of a group is different from that of the majority, the words of this different
language also stand out from the overall structure, as there is naturally a stronger correlation among
words belonging to the same language. Therefore the applied method can discover languages different
from that of the bulk of the sample. In the sixth singular vector, we can observe this phenomenon with
Spanish words, which form more than the third of the positively weighed wordcloud (Fig. 2j.). The
English terms ’Mexico’ and ’Mexican’ also appear in this group, which shows that concepts related to
the topic are also identified even if they do not belong to the discovered language.

Similarly to topic identification, where semantically close words form topics, analyzing regional pat-
terns reveal documents that are close to each other in the semantic space spanned by these topics. Plotting
the right singular vectors on a map (Fig. 2a-e.), the most striking feature is the regional proximity of
documents having close weights in the singular vectors. Document-by-document (county-by-county) Eu-
clidean distances in the PCA subspace of the first 25 component as the function of real county-by-county
centroid distances 7 illustrate this observation. In Fig. 1. mean PCA subspace distances (red dots) are
plotted for each 40 km range of real county centroid distances. As a baseline, the same is done for a
random permutation of counties (blue dots). It is remarkable that below 500 km, counties are closer in
the semantic space, as could be expected from a random realization. From 700 km to 1800 km, semantic
distance is greater than it would be randomly. Geographical proximity is thus a main driving force in
the similarity of language patterns in Twitter-space.

Analyzing these geographical patterns in each singular vectors provides insights into the regional
distribution of the single topics. On a US map, the second component (Fig. 2a.), which is responsible
for the most variance in the Twitter data, emerges as a block in the Southeastern part of the US.
Apart from the big Southeastern block, Chicago and Detroit are also marked by this pattern of language
usage. In the third component (Fig. 2b.), negative weights (brown patches) mark the biggest cities
and surrounding counties which belong to their agglomeration. The most positive pattern of the fourth
component (Fig. 2c.) reveals some important touristic attractions such as the center of New York,
Washington and San Francisco, the Craters of the Moon National Monument and Preserve in Idaho, Aspen
Mountain ski area in Colorado or Hawaii. The regional pattern of the fifth component (Fig. 2d.) is less
obvious, though a part of the central US and the Southeastern block is discernible in the religion-related
end of the component. The sixth component distinguishes the Southwestern part and the Northwestern
corner of the US (Fig. 2e.), Florida and some bigger cities such as New York or Chicago.

To discover possible governing factors of the geographical language variation patterns and their re-
lation to demography, we calculate Pearson correlation values between right singular vectors and data
obtained from the US Census Bureau described in Section 2.3. Data series that have the greatest abso-
lute correlation values (p<0.0001, Bonferroni-corrected) with each component are shown in Table 1. The
large correlation (0.872) of the second component with the population proportion of African-Americans

7http://cta.ornl.gov/transnet/SkimTree.htm
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per county indicates that the observed slang words and the blockwise regional pattern are linked to the
presence of this demographic group (note that, however, we have no evidence of whether the tweets caus-
ing the variation were indeed posted by African-American people). Fig. 3a. shows the census proportions
on a US map, with the regional pattern approximately corresponding to that of the singular vector. It is
with noting that apart from the large Southeastern block, Chicago and Detroit are also marked by having
the characteristic slang word pattern, as well as a higher proportion of African-American population. A
similarly large correlation (0.500) with ethnicity (Hispanic or Latino origin) also arises is the case of the
sixth component, as expected from the observed Spanish words and the Southwestern positive weights
on the map. Fig. 3. shows the percent of people with Hispanic or Latino origin in US counties, the
distribution resembling that of the right singular vector.

The data series that show the largest correlation with the third component are resident total pop-
ulation rank (0.844) and rural-urban continuum code 8 (0.630). Since neither are continuous variables,
we instead show population density values in each county on the map of Fig. 3b. Densely populated
areas mark the biggest cities and their surrounding agglomerations of the US, and these areas are also
discernible in the brown patches of the third singular vector in Fig. 2b. It confirms the idea of the most
densely populated areas giving the negative end of the third singular vector in both the words and their
regional distribution. A basic feature of the Twitter corpus is thus linked simply to city lifestyle, more
generally to the associated socioeconomic status.

Correlation values show whether there exists some relation between the language patterns and demo-
graphic data (see Table 1). Analyzing scatterplots of the greatest correlations provides us some insight
into the structure of these relations. Plotting the regional weights of the second and sixth singular vector
against African-American and Hispanic or Latino ethnicity percentages exhibits very similar features
(Fig. 3f,3j). Correlation analysis also revealed that a prevalence of evangelical religious groups (Baptists
and Methodists) is related to (-0.372) the religious content of the fifth component (see Fig. 3i); county-
level rates of adherence of evangelical churches are plotted in Fig. 3d. The existence of a virtual ’Bible
Belt’ is thus confirmed in the Twitter-space, corresponding to former identification of religious groups
in cyberspaces [58, 59]. An opposite correlation is present with Catholic and Orthodox churches, which
we speculate to be the consequence of these having a smaller attendance in counties where evangelical
churches are more prominent.

Although almost all of the above-described correlations could be explained by an underlying function,
a boolean implication model description seems more plausible. Boolean implications have already been
used in gene expression research [57], to uncover non-symmetric relationships where correlation analysis
would only partially or not at all measure connection between two variables. In the case of ethnicities, if we
take y values as a measure of how strongly slang (Fig. 3f) or Spanish (Fig. 3j) (see the wordclouds of Fig. 2f
and Fig. 2j) is present in the Twitter messages of the counties, we can observe that below a certain ratio
of ethnicity prevalence (6.0% in the second component and 7.6% in the sixth), language patterns show
different levels of non-slang or non-Spanish usage. If ethnicity prevalence is greater than the threshold
value, slang or Spanish usage rises steeply with growing ethnicity proportion. Above the threshold, there
are very few counties with non-slang or non-Spanish language patterns. In this terminology, the two
scatterplots corresponding to ethnicity prevalence can be translated to ’high ethnicity rates ⇒ missing
non-slang/non-Spanish’ words implication. The limits corresponding to the best implication model were
the mentioned 5.99%±1.28% and 7.65%±1.43% of prevalence for the two ethnic groups, with −0.00328±
0.00123 and −0, 00277±0.00209 as a limit on the axes of the second and sixth component. The measures of
sparseness for the lower right segments were δ = 21.941, ε = 0.036, and δ = 12.98, ε = 0.15, respectively.

A boolean implication also describes the scatterplot of the fifth component measured against evan-
gelical adherence rates (Fig. 3i). Here the y axis represents a level of swearing (cf. the words in Fig. 2i)
present in the Twitter-sphere of tweets posted in a county. Thus the implication can be translated to ’high
evangelical prevalence rates ⇒ low swearing level’. The pattern implies a stronger connection between
the two variables, as could be inferred from the symmetric correlation measure. It seems as if above a
certain adherence rate, a text with a high swearing level could not propagate further or could not find way
to broader discussion. Here the automatically detected limit was at a 19.67% ± 1.55% adherence level,
the limit on the ’swearing’ axis lies at 0.02230±0.00177, and the lower right corner showed a significantly
large sparseness with δ = 8.579 and ε = 0.013.

8http://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx
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4 Discussion

We can conclude that the applied unsupervised learning method successfully discovers topics and their
regional patterns in the Twitter-sphere, with county weights in right singular vectors representing a
distance in the semantic space along a topic given by word weights of the left singular vectors. It is
also remarkable that geographical closeness implies closeness in the semantic space, which suggests that
language usage is on a certain level bound to geographical proximity.

We also find that regional patterns in language use are driven not just by geographical proximity, but
socioeconomical and cultural similarities, like degree of urbanization, religion or ethnicity. It seems that
the most important factor behind the variation in the language use of different counties is the presence
of Afro-American ethnicity, as confirmed by the significant correlation between the census-based share of
Afro-American population and the appropriate county weights. Corresponding word weights mirror this
observation with words representative of the typical slang use associated with this ethnicity. This type
of slang use thus turns out to be the most distinguishing factor in everyday US Twitter conversation.

Following ethnicity, the second most important feature found in Twitter language is related to the
population density of a county. The interpretation could be that beyond ethnicity, our everyday lan-
guage is largely influenced by our surroundings. Thus living in densely populated places, which means
mostly living in urban areas, results in words specific to urban lifestyle appearing more frequently in user
messages.

The language footprints of tourism can also be captured by our method, suggesting that the effect of
messages or users being on a holiday should always be considered, when trying to relate online content
to real-world phenomena.

Some relations are better described by a non-symmetric boolean implication model instead of the
symmetric correlation measure. We find that the presence of ethnic groups above a certain threshold
implies a weight greater than a certain level along the semantic axis corresponding to the component
connected to this ethnic group. We also find that counties exhibiting high evangelical adherence rates
show low level on the ’swearing scale’ given by the corresponding component. This is interesting, since
the phenomenon cannot be observed with the two other major denominations, the Catholic and Orthodox
churches. It suggests that the online presence of Evangelical churches is inherently different from that of
the other denominations, and its adherents have a significant effect on the word choice on the Twitter
platform.

Our results suggest that online social network activity can be used effectively to monitor the spatial
variation of cultural traits as represented in language use, yielding an up-to-date picture of important
social phenomena. We believe our present study demonstrates an approach for measuring the importance
of certain demographic attitudes when working with textual Twitter data. We suggest, therefore, that
it could form the basis of further research focusing on the evaluation of demographic data estimation
from other sources, or on the dynamical processes that result in the patterns found here. While our
results were obtained using the Twitter microblogging platform, research could be further extended to
investigate whether the incorporation of other metadata (e.g. user activity, user mobility, user profile
descriptions etc) or the analysis of different text sources could refine or enhance our findings.
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Languages cool as they expand: Allometric scaling and the decreasing need for new words. Scientific
Reports, 2:943, 2012.

[39] M. Perc. Evolution of the most common English words and phrases over the centuries. Journal of
The Royal Society Interface, 9(July):3323–3328, 2012.

9



[40] Johannes C Eichstaedt, Hansen Andrew Schwartz, Margaret L Kern, Gregory Park, Darwin R
Labarthe, Raina M Merchant, Sneha Jha, Megha Agrawal, Lukasz a Dziurzynski, Maarten Sap,
Christopher Weeg, Emily E Larson, Lyle H Ungar, and Martin E P Seligman. Psychological Language
on Twitter Predicts County-Level Heart Disease Mortality. Psychological Science, 26(2):159–169,
2015.

[41] Chanuki Illushka Seresinhe, Tobias Preis, and Helen Susannah Moat. Quantifying the Impact of
Scenic Environments on Health. Scientific Reports, 5:16899, 2015.

[42] Alejandro Llorente, Manuel Cebrian, and Esteban Moro. Social media fingerprints of unemployment.
PLoS ONE, 10(5):e0128692, 2015.

[43] Jaroslav Pavlicek and Ladislav Kristoufek. Nowcasting Unemployment Rates with Google Searches:
Evidence from the Visegrad Group Countries. Plos One, 10(5):e0127084, 2015.

[44] C. Curme, T. Preis, H. E. Stanley, and H. S. Moat. Quantifying the semantics of search behavior
before stock market moves. Proceedings of the National Academy of Sciences, 111(32):11600–11605,
2014.

[45] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: a content-based
approach to geo-locating twitter users. In Proceedings of the 19th ACM International Conference on
Information and Knowledge Management, pages 759–768, 2010.

[46] Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can: improving geographical
prediction with social and spatial proximity. In Proceedings of the 19th international conference on
World wide web, pages 61–70. ACM, 2010.

[47] Emilio Ferrara, Onur Varol, Filippo Menczer, and Alessandro Flammini. Traveling trends: social
butterflies or frequent fliers? In COSN ’13 Proceedings of the first ACM conference on Online social
networks, pages 213–222, 2013.

[48] Jacob Eisenstein, Brendan O’Connor, Noah a. Smith, and Eric P. Xing. Diffusion of Lexical Change
in Social Media. PLoS ONE, 9(11):e113114, 11 2014.

[49] Lewis Mitchell, Morgan R Frank, Kameron Decker Harris, Peter Sheridan Dodds, and Christopher M
Danforth. The geography of happiness: connecting twitter sentiment and expression, demographics,
and objective characteristics of place. PloS one, 8(5):e64417, jan 2013.

[50] Zhouchen Lin, Minming Chen, and Yi Ma. The Augmented Lagrange Multiplier Method for Exact
Recovery of Corrupted Low-Rank Matrices. 2010.

[51] EJ Candès, Xiaodong Li, Y Ma, and John Wright. Robust principal component analysis? Journal
of the ACM, 58(3):11, 2011.

[52] F Morstatter, J Pfeffer, H Liu, and K Carley. Is the Sample Good Enough ? Comparing Data from
Twitter ’ s Streaming API with Twitter ’ s Firehose. In International Conference on Weblogs and
Social Media, pages 400–408, 2013.

[53] Laszlo Dobos, Janos Szule, Tamas Bodnar, Tamas Hanyecz, Tamas Sebok, Daniel Kondor, Zsofia
Kallus, Jozsef Steger, Istvan Csabai, and Gabor Vattay. A multi-terabyte relational database for geo-
tagged social network data. In 4th IEEE International Conference on Cognitive Infocommunications,
CogInfoCom 2013 - Proceedings, pages 289–294, 2013.

[54] AS Szalay, Jim Gray, George Fekete, and PZ Kunszt. Indexing the sphere with the hierarchical
triangular mesh. arXiv, (arXiv:cs/0701164), 2007.
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Alexander S. Szalay. Efficient classification of billions of points into complex geographic regions using
hierarchical triangular mesh. In Proceedings of the 26th International Conference on Scientific and
Statistical Database Management - SSDBM ’14, pages 1–4, New York, New York, USA, 2014. ACM
Press.

[56] Y Gotoh and S Renals. Document space models using latent semantic analysis. In Proc. Eurospeech,
pages 1443–1446, 1997.

10



[57] Debashis Sahoo, David L Dill, Andrew J Gentles, Robert Tibshirani, and Sylvia K Plevritis. Boolean
implication networks derived from large scale whole genome microarray datasets. Genome Biology,
9(10):R157, 2008.

[58] Taylor Shelton, Matthew Zook, and Mark Graham. The Technology of Religion: Mapping Religious
Cyberscapes. The Professional Geographer, 64(4):602–617, nov 2012.

[59] Matthew Zook and Mark Graham. Featured graphic: The virtual ‘bible belt’. Environ. Plann. A,
42(4):763–764, 2010.

5 Data availability statement

Owing to Twitter’s policy we cannot publicly share the original dataset used in this analysis. The
county-wide word frequency matrix and the results of the LSA compiled are available in the Dataverse
repository at http://dx.doi.org/10.7910/DVN/EXWJRJ and also at http://www.vo.elte.hu/papers/
2016/twitter-pca.

11

http://dx.doi.org/10.7910/ DVN/EXWJRJ
http://www.vo.elte.hu/papers/2016/twitter-pca
http://www.vo.elte.hu/papers/2016/twitter-pca


●●

●

●

●
●

●●
●

●●

●

●

●

●
●
●

●
●
●
●

●

●●
●

●●

●

●
●

●

●

●

●

●

●
●
●●

●
●
●

●
●

●
●
●

●●
●●●

●●

●

●
●

●

●●
●
●

●

●
●●

●

●●
●

●

●

●
●

●
●

●

●

●

●
●●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●●
●
●

●

●

●

●●●

●

●

●
●●●●

●

●●
●
●

●●

●

●

●
●

●
●●

●

●●

●
●
●

●●●

●

●

●

●
●
●●

●

●
●

●

●
●

●

●

●

●●●
●

●

●
●
●

●
●

●

●
●
●

●

●

●●

●●
●

●●

●

●

●

●
●
●

●

●
●

0.126

0.127

0.128

0 500 1000 1500 2000
County−to−county distance in km (binw.=40 km)

P
C

A
 d

is
ta

nc
e 

(f
irs

t 2
5 

co
m

po
ne

nt
s 

us
ed

)

Figure 1: Semantic versus real-world distance of counties. Euclidean distance of counties in the
semantic subspace of the first 25 components obtained from LSA as a function of geographical distance
(red dots). Baseline calculated from a random permutation of counties (blue dots). Errorbars correspond
to the error of the binwise means.
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Figure 2: Representations of the first few right (a-e) and left (f-o) singular vectors. Weights
corresponding to counties are plotted on a US map, brown representing the negatively, blue the positively
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Figure 3: Census data with most correlation for each component displayed on a map (a-e) and
scatterplots of these data series with county weights from corresponding singular vectors
(f-j). Lines representing a symmetric relationship (Pearson correlation) are drawn on scatterplots (g)
and (h). On scatterplots (f), (i) and (j), horizontal and vertical lines correspond to the best segmentation
when testing for a Boolean relationship between variables. The points between the dashed lines were not
taken into account when calculating the test statistics for the sparseness of each segment.
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Comp. no. ρ Dataset

2 0.87 Population of one race - percent Black or African American alone (2010)
0.77 Owner-occupied housing units, African American householder, per population (2010)

-0.75 Population of one race - percent White alone (2010)
0.65 Black Protestant - Rates of adherence per 1,000 population (2010)

3 0.84 Resident total population estimate - rank (2007)
-0.72 Population density (2010)
-0.72 Percent of adults with a bachelor’s degree or higher (2008-2012)
0.63 Rural-urban Continuum Code (2013)

4 0.28 All Other Travel Arrangement and Reservation Services Total Number of Establishments
0.28 Tour Operators Total Number of Establishments
0.26 Convention and Visitors Bureaus Total Number of Establishments
0.26 Accommodation establishments with payroll per population (2007)

5 0.39 Catholic - Rates of adherence per 1,000 population (2010)
-0.37 Evangelical Protestant - Rates of adherence per 1,000 population (2010)
0.36 Orthodox - Total number of adherents (2010)

-0.29 Evangelical Protestant - Total number of adherents per population (2010)
6 0.50 Percent Hispanic or Latino population (2010)

0.50 Hispanic or Latino population - Percent Mexican (2010)
0.38 Average household size (2010)
0.36 Percent households with persons under 18 years (2010)

Table 1: Correlations with demographic data series. Greatest Pearson-correlations (p<0.0001 at
a Bonferroni-corrected level) in the demographic datasets with the first few singular vectors

15


	1 Introduction
	2 Methods
	2.1 Twitter dataset
	2.2 Latent Semantic Indexing and Robust Principal Component Analysis
	2.3 Demographic data
	2.4 Boolean relationship detection

	3 Results
	4 Discussion
	5 Data availability statement

