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ABSTRACT

Aims. We study the perturbations of a relatively close third stamadidally distorted eccentric eclipsing binary. We coesiddoth
the observational consequences of the variations of thtabBdements and the interactions of the stellar rotatidth whe orbital
revolution in the presence of dissipation. We concentramiy on the &ect of a hypothetical third companion on both the real, and
the observed apsidal motion period. We investigate how biserved period derived mainly from some variants of the Cel@tes to
the real apsidal motion period.

Methods. We carried out both analytical and numerical investigatiand give the time variations of the orbital elements of iharty
both in the dynamical and the observational reference fsaitve give the direct analytical form of an eclipsing O-ffizeted simul-
taneously by the mutual tidal forces and the gravitationedractions with a tertiary. We also integrated numerycsitnultaneously
the orbital and rotational equations for the possible hadiaal triple stellar system AS Camelopardalis.

Results. We find that there is a significant domain of the possible hidriaal triple system configurations, where both the dymaini
and the observationaffects tend to measure longer apsidal advance rate than istegfbeoretically. This happens when the mutual
inclination of the close and the wide orbits is large, anddtiztal plane of the tertiary almost coincides with the garf the sky. We
also obtain new numerical results on the interaction of théal evolution and stellar rotation in such triplets. Thest important fact

is that resonances might occur as the stellar rotationaMaties during the dissipation-driven synchronizatioocpss, for example
in the case when the rotational rate of one of the stars redbleaverage Keplerian angular velocity of the orbital heon.

Key words. methods: analytical — methods: numerical — celestial m@icha- stars: binaries: close — stars: individual: AS Cam

1. Introduction relativistic apsidal motion. There is a small subgroup agsbn
these eccentric eclipsing binaries which have an additioma

In a previous paper_(Borkovits etial. 2004), we introduced &) »ce a5 their apsidal advance period is significartly (
new nlumencallcode Wh'Ch !ntegrated S|multang0usly th.eajrb more tha,n 10-20%)fEected by the relativistic apsidal motion
equations of hierarchical triple systems, |_ncIud|ng tluialt!and contribution. It is well-known, that the period of AME in the
dissipative terms, and the Eulerian equations of stell@tim. ¢y stems can be used as further confirmation or even as opellen
First we "J!Pp"ed _the method for the AIgoI system 't$e'f- ISt for the General Relativity Theory. Unfortunately, thesedries
fmple the inner b|r_1ary had an almpst circular orbit W'th opp necessarily have larger separation, so in such systemsthe a
imately synchronized stellar rotation (another appl@af an  gjya motion period falls into the order of centuries or eogn
earlier version of the code, not including t|da] d|SS|patwas millenia. Consequently, in these systems first we have teesol
aIso’presented for the ternary system IM Aur in Borkovitslet gy, problem of the accfjrate determination of the apsidabger
2002). from a small portion of one revolution of the apsidal line; be

In the present study we concentrate on a dynamically Ie§5ze \ye can label them as a challenge for the General Reativi
relaxed scenario, namely when the inner binary has a sign eory.

cant eccentricity, i.e. the system is far from its synchrediand

circularized state. Perhaps the most important featuraicfis ~ For our study we chose the eclipsing binary AS
systems is the apsidal motioffect (AME), i.e. the revolution Camelopardalis, which is a member of an even smaller sub-
of the orbital axis with a constant period which is deterrdinegroup of the previously mentioned small group of the ecéentr
mainly by the orbital separation, eccentricity, massesthadh- eclipsing binaries, as this system, together with appreueéty

ner mass-distribution of the binary members. Neverthekess Six others, shows a significantly lower apsidal motion ragent
eral other physical processes also force AME. The two ma&hat is calculated from theory. Since this disrepancy wasifio

significant ones are the perturbation of a third body, and tf@r the first time at DI Herculis (Semeniuk 1968), several au-
thors have investigated this phenomenon. A summary of their

Send offprint requests to: T. Borkovits results can be found in_Claret (1998). One of the possible ex-
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planations is the perturbations by a third component. Tfece such as e.g. DI Her or AS Cam could have non-aligned rotdtiona
of the perturbations of a tertiary for the apsidal motioniger axes (cf.. Zahh 1977), which can produce even a reversed net ap
has already been investigated only in a few previous studidal revolution. Analytical formulae are given e.g. in 8hi
(Khodykin & Vedeneyev 1997; Khodykin etlal. 2004, and ref§1985), and Company etlal. (1988). However, for the case of AS
erences therein). These papers mainly focused on the abdvam in the thorough discussion Maloney et al. (1989) showed
mentioned two systems. Furthermore, in our opinion, thase ethat this solution might be excluded, as thg sini values de-

lier studies have two fundamental disadvantages. Fimstthtind rived from radial velocity measurements [of Hilditch (19Y2b
body dfect and the tidal ffect were considered independentlystrongly suggest nearly synchronized rotation. Clare®&) also

and the resultant net apsidal motion period was calculated s refutes this solution in the case of DI Herculis. We also ttloat

ply as an algebraic sum, which is very far from the realityitasalthough in the presence of a third companion, stellar grece
will be shown in the present paper. Second, the relationdetw sion could be forced by the misalignment of the orbital ptane
the observed parameters and the physical quantities wene-noeven in the case when perfect synchronization is expected. A
cluded in the scope of these papers. However, as we show, lemall amount of amplitude precession of the rotational aces
the observed quantities, which are mainly deduced from somuelly occured in our numerical integrations presenteckict 3.
variants of the eclipsing O—C curves, relate to the realdgbsi Nevertheless, their amplitudes are so small that they cootd
motion period, is a sophisticated problem. Note, as we knoaffect the apsidal motion significantly

Claret (1998) was the first to mention this problem, nevdegse In the next section we give the general mathematical form of
in his paper this was not examined in the light of the perturbthe orbital elements and the O—C curve of an eccentric eclips
tions by a third body. ing binary when the revolution of the stars afteated by both

In this paper we mainly focus on the short term observatiortidal interactions and third-body perturbations. Then &tt$3
consequences of the perturbations of a third body for anrecceve present several short-time numerical integrations diitier-
tric binary. We carry out both analytical and numerical ssd ent initial configurations of the AS Camelopardalis system f
We give an analytical form of the time-dependence of thetarbi supporting the analytical results of Sédt. 2, and, furtleaywe
elements of the close binary both in the dynamical and the aidso study the dynamical evolution of the system on a longer
servational reference frames up to fifth order in the ecastytr time-scale, including also dissipative forces. In Selt.edfur-
and related quantities. We also present the analytical tditine  ther discuss our results and conclude. Finally, in AppelAdive
O-C diagram of such a binary. We show that the complex varidescribe our mathematical calculations in details.
tions of the orbital elements on a time-scale similar to ithalty
forced apsidal motion period may result in significant diger ) . )
ancies in the shape of the O—C curve from the pure eccentticMathematical form of the O-C in a tidally and
two body case, even without the remarkable real variatichef  third-body perturbed eccenteric eclipsing binary
apsidal advance rate. Finally, we carry out some longeg-tion
merical integration to investigate the variation of theitaibas
well as the stellar rotational parameters with and withassiel
pation.

In a previous paper (Borkovits et/ al. 2003) we calculatedethe

fect of the third-body perturbations on the moments of thipec

ing minima of such eclipsing binaries which are members of
S : close hierarchical triple stellar systems. Here we maialipfv

It is important to note, that we restrict ourselves only fo[rhe same method described that paper, so we give here only a

the simultaneous investigation of the third body and thellyd ;¢ s\, mary, except the steps where we substantially modi
forced perturbations in the orbital elements in the frame ﬂéd the earlier’methods

the classical, Newtonian mechanics. It may seem contradic-

tory that despite the fact that our purpose is to give some ac-

ceptable explanations for the anomalously slow apsidalanot 2.1. General considerations and equations of the problem
for those systems, where the relativistic contributiorei;mark-
able, we do not consider the relativistic apsidal motiontgen
bution at all. However, this contradiction can be resolvad-e Vs

ily, as follows. The previous papers considered the thftsces U~ iz + 2k, 1)
(tidal, third body, relativistic) as being independentwié ac- i _ i _
cept this, then our results should only be modified by somydereu is the true longitude measured from_the intersection
additive constants, which does not influence our qualitata+ ©Of the orbital plane and the plane of sky, akds an integer.
sults. Nevertheless, in the following we show that in thesgenAn exact equality stands only if the binary has a circular or-
of the tidal and third body terms this is not the case. Siryilar Pit. or if the orbit is seen edge-on exactly (for the correct i
we can assume, that neither the third body nor the relatvisglination dependence of the occurrence of the mid-eclipses
terms can be considered independently from the tidal dmntri Gimenez & Garcia-Pelayo 1983). This latter condition @t
tion. Consequently, to correctly consider the varyingtigistic satisfied in those binaries which are of interest to us novs It
malism, which is far beyond the scope of this paper. However, ¢

As is well-known, at the moment of the mid-eclipse

in contrast to the tidal term, the relativistic apsidal oathas U = — —£Cosi,
a notably smaller dependence on the eccentricity. Thisestgg '011 o3 o , _
that the linear, additive approximation is more realistighis = x"2a (1 - €®)3%(1 + ecosv)? - Qcosi, (2)

latter case. Consequently, we believe that our calculatiive
significant and well-applicable results.
We also omit the investigation of thefect of the non-
synchronized and even non-aligned stellar rotational erdgke ty 2Nr+n/2 54312 (1-e?)3?2 du
dt =
I

consequently, the moment of tiNeth primary minimum after
an epochy can be calculated as

perturbations of the orbital elements. Theoreticallyait e ex-
pected that such relatively young early-type eclipsingesys

7/2 pH2[1+ecosti—w)]? g ﬁ—iQ cosi’
1
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3/2 _ )32 2 o ; i thi ioh i
N f a (1-€) [1 N ﬂQcosi)du. 3) expansion is used widely (as in this paper), which is asVi|o

u12[1 + ecosi — w)]2 L up to the fifth order ire:

In the equations abovg denotes the specific angular momen-. Pl 1 3 1, .

tum of the inner binaryp; is the radius vector of the secondanPi = PsE + o— | =27 F 2ecosw + (Zez + 3¢ )5'” 2w

with respect to the primary, while the orbital elements hifnedr

usual meanings. FL_thhermore, in EHd. (3) we applied tha.trthet + (:_Les + }es) cos 3 — Ee“ sin4w ¥ ies cos 50}’
anomaly can be written as= u — w. Nevertheless, to avoid any 3 32

confusion we emphasize that the angular elementaxie, Q, (7)

i) are expressed in the “observational” frame of refererica, t
is, its fundamental plane is the plane of the sky, ayaks well as  wherePs s the sidereal (or eclipsing) period of, for example, the
w is measured from the intersection of the binary’s orbitahg! first cycle, ancE is the cycle-number. Nevertheless, thé&et
with that plane, while® is measured along the plane of the skgnce of the two quantities (usually denoted®yis often quoted
from an arbitrary origin. In order to evaluate Eg. (3) firstiave In the literature in its closed form.
to express the perturbations in the orbital elements witheet ~ We now formulate the direct perturbations. To do this we
to u. write ecosv as

Itis well known from the basic works of the three-body prob- . .
lem that in the present problem the perturbations in theairel  ©C0SV = €COSwCOSU+eSinwsinu, (8)
ements areféective on three dierent time-scales. Nevertheless, (ecosw)o cosu + (esinw)o sinu +
the so-called “short-term”, as well as the “long-term” peba- Y/ de do . ,
tions can be omitted due to their small amplitude. Striqplgak- + f (w Cosw —e v 3'“‘”) du’ cosu +
ing, the second kind of the above perturbations might releh t “‘L
limit of detectability in some systems (See Borkovits ¢2aD3), N f (E sine + 9% COS(,()) U sinu. ©)
but from our point of view the “apse-node” terms have an ex- w \du’ duw
clusive importance. So, in what follows we concentrate an th . .
so-called “apse-node” time-scale perturbative termsyTdan V/hen we concentrate only on the short-period terms in the
be divided into two groups according to theiffdrent origin in  derivatives (i.e. those which are functions of aasor sinnu),
Eq. [3). First, the “apse-node” time-scale perturbatiortge or- W€ €an take the cas and sirw terms out of the integrand, and

bital elemente andw arises also naturally in the formula abov&@'Ty Out the integrations only for the derivatives, so thpse-
(as is well-known, there are neither “apse-node’-type Seau- node” time-scale direct perturbationséeosv could be derived

lar perturbations in the semi-major ais We will refer to this 70

group in the following as indirect perturbations. Furtherms U/ de L U dw ,

some other terms which represent low-amplitude, shoibger €COSVgir = COSV (d_) du’ - Sanf (edu') du’,  (10)
perturbations ira, e, w give large-amplitude “apse-node” terms to u to u

in U due to the multiplication with some of the costerms. where the subscriptrefers to those terms which contaii in
These are the direct perturbationsin the orbital motioth@dgh  their arguments, and, generally

our calculation of these latter direct perturbations wogile “lg

. - X e

back the first group too, we found that it is more convenient '@‘cosnvdir — me™cosnv L) oqu -
calculate the two groups in twoftirent ways. U ' Jou

First, we consider the indirect perturbations. As one can se

u
later (e.g. Eqs[184][185]), the variation in both the edcieity, —ne™? sinnvf (ed—ai) du’. (12)
and the argument of periastron during a few revolutions @n b w \ AU/,
expressed as Furthermore, the direct perturbations coming from the semi
P\? major axis can be calculated as
Ae ~ e(E) Au, 4)
: 31uY2a¥2(1-e)%? [ da
Py’ @ = 320 . 12
Aw ~ (5) Au, (5) 2a (1+ecosv) du’
so it is a quite good approximation to carry out the integrati The derivatives are as follows:
Eq. (3) first for one revolution treating, e andw formally as 45 253/2 dt
constant. In this case taking into account only the first term w- [fresinv+ fi(1+ ecosv)] au
the right hand side (rhs) we arrive at an analogue of the well- u Vu(l-€?) u
known Keplerian equation, which has the following closeldiso 2a3 1-¢ )
tion ~ [fresinv + fi(1+ ecosv)], (13)

1 (1+ ecosv)?

— P l1-e cosw ecosw 2 _ &)
B, = —|2arctar] | =22 |_(1_ )y2_S0 | de a (1-¢) _ cosv+e
' T 2n arcar[ 1+e1+sma)) ( ) Tresing du ~ 7 (T+ecos? fesinv+ f{cosv+ -—————]I.(14)
= P [1-e -cosw 12 €COSw do & (1-¢€) [ . ¢ [si sinv_ )
P = o 2arctar( 1+e1—sina))+(1_e2) 1—esina)]’ ®au ~ u (1+ ecosv? rOOSY A | SV e Cosv
(6) ecoti sinu
- ) ~h T ecosv I” (15)
for the two types of minima, respectively. (HelPedenotes the +ecosv
anomalistic or Keplerian period which is considered to be-co dQ@ & (1-¢€%)? esinu

stant.) Note, that instead of the exact forms above, naital G, ~ % (1+ ecosv)? "sini(1 + ecosv)’ (16)
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wheref,, represent the radial, transversal and normal comg
nents of the perturbing force (see later). We applied thevol
ing approximation:

Observer

e by,
‘\e Ibe’

a s
du” ¢
Finally, considering the last term on the rhs of Hd. (3), by tr
use of Eqs.[(TI5) and (1L6) it can be seen that all the direce‘ap:
node” terms ire™ cosnv-s which would occur from thé, force-

2
component are cancelled by the opposite-sign ter@f\%ﬁ cosi,

and only the indirect term from=%/2a%292 cosi gives a further
contribution.

As a next step we calculate the secular perturbations in t
above-listed orbital elements. For the calculations wadated
the perturbing force at the second order term. In this case
force componentsfiective on the close binary are as follows:

(17)

b
Iane of the Sky

3Gmg p1 2 ,
frn = §¥p_2 [(1 +1)"cos(af —2u-a) Fig. 1. The spatial configuration of the system.
+(1 - 1)’cos(ar + 2u - f)+2(1- 1%) cos(2 - 2um)| .(18)
_ 3Gmz p1 2 , , 2 1 reference, in which the fundamental plane is the invariplzlae
fro = Zgg [(1_ %) cos(@r — 2u) + 17 - 5]’ (19 ttthe triple system. The angular orbital elements in theeolzs
tional frame can then be expressed from these by the forrofilae
fg = _H (E + R) , (20) spherical geometry. To avoid any confusion, the argumepéof
,0‘11 pf riastron, and the longitude of the corresponding ascenuiiuig
3Gmg p1 5 . ) in this system are denoted lgyandh, respectively (which are
fi = 3 7 o [(1 +1)"sin(A’ - 2u - a) their usual notations in the perturbation theories). Farrtiore,
Pz P2 the inclination of the orbital plane of the binary with respto
—(1 - D3sin(AV + 2u - B)-2(1- 1) sin(2u — 2Um)] , (21) the invariable plane is denoted by It can be clearly seen, that
3Gms the relation between the two periastron elementsweteg + Un
f, ___2"2{2 cos(i — Uy,) Sin 2@’ — u},) sinip, + (see Fig[L)[ In the frame of our approximation the studied
4 p; problemis reduced to one degree of freedom. Consequertty, fi
[1 - cos2( - ul,)] sin(u — Um) Sin Ay} (22) we express the variations of all the interesting orbitainelats

o _ _ ~in the function of the argument of periastrgrof the binary in
We divided the radial component into three parts, relatve the dynamical reference frame, and then, we givegtfunc-

their different significances. Namelfjs is the tidal term, while tion. So, the secular parts of the perturbational equativess
amongst the two three-body ternfg, is formally analogous to follows:

fr3, I.€. gives a similar secular contribution to the considerer-
turbations (see later). Furthermorestands for the cosine of the du

2 .
TS (SEe 1Al >l _ 1-2Qcosi
mutual inclination {,,) of the two orbitsp, is the radius vector of —— 1

the tertiaryu, U’ are the true longitude of the close and the widéld ~ A+ Bcosy’
orbits measured from the plane of the sky, while uy, are the _ 1 (o [O 25
true longitudes of the intersection of the orbital planessueed ~ A+ Bcosy B d_g cos, (25)
from the plane of the sky along the close and the wide orbitgly eA sin g
planes, respectively (see Hig. 1). Finally, the contritmgiof the — = —————, (26)
mutual tidal, and the rotational oblateness are as follows: dg A+Bcosy
dh 1 Aut+An—Ancosy @27)
T, = G(ﬁkgl)R?+ ﬂkgz)Rg , (23) dg  cosi  A+Bcosy
M M % = tani M (28)
kgl)wail kgz)ngiz dg ~ * ‘'A+Bcosy’
= Gm ' Gm (24) = cotin 2 29
T T1oe Mmag (29)
wherekgl’z) are the usual apsidal motion constaiig; are the g5 A, + Bycos 2
average radii of the stars, whilg,, are the rotational angular dg = A+Bcos®m (30)
velocities of the star (which are treated as constant here).
As in the present approximation there are no “apse-node”or

secular changes in the orbital elements of the tertiary,onsid-
ered its orbital elements as constant. Although the equatd
perturbations can be written directly for the above-mergbor-
bital elements, it is more convenient to use the equationthéo
orbital elements expressed in the so-called dynamicaldram

Note, that in some studies on apsidal motion for the equialef
Eq.[8 the signw is used, which is meant as+ h. Naturally, it is correct
if the perturbative force lies perfectly in the orbital ptaof the binary,
which is fulfilled as far as only the tidalffiect of the distorted binary
members with perpendicular rotation axes are considemartheless,
in the present situation this is no longer the case.
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wheres denotes the direct perturbations i), while for the
angular elements in the observational frame of referencebwe
tain that

d_Q 3 @coslo—cosilcosi N %sinlosinh (31)
dg ~ dg  1-cogi dg 1-cogi’
d_(,() = 1+%
dg dg
= 1+@cosi — —cosi
a dg~ ' dg
14 @cosil— coslg cosi _ %sinlocosi sinh
a dg  1-cogi dg 1-cogi
A=Ay -Ap+Acosy dQ
B A+Bcos2 dg cosl, (32)
ﬂ 3 _@sinlosinilsinh
dg  dg sini
+d|1 coslosm|1+c05|1smlocosh (33)
dg sini
In the equations above the tidal contributions are:
1 1+ 3+ e 1
Ao = 5| aser T Raser) 54
2 1+37e2+59e4+113
Agr3 = —g [7_2 (1 e2)5
1+ 2%+ 36 + 26
+R -y , (35)
while the third body terms are as follows:
15 mg (P)? 2n-3/2
AG_.gaE(a)a_e) : (36)
3 1/2(2 1
Az = ZAs(1-€)"2l —5 : (37)
4 25 15
Adrz = 5(1+§ € )Arz, (38)
A= Ag(1-€)3(1-17), (39)
51 31 23
Ag = 20e2(1+ =&+ 75 )At (40)
— 1/2 (2 Cl
Aa = 2AcL- @2 (124 21| (41)
5 C
& , C1
Anp = Aem [l +C—2|], (42)
and, finally,
A=Az+Ap+An+ A,
1 1+ 32+ iet 1
=2 | aoep T Raoee
As ;| }(1_e2)1/2+2ﬁg|
(1-ex)l2 5 5(1-e)2¢C, |’
(43)
B=A-An
1 &€ C
_ _2\l2 2 _ “1
pol1-7- gt - gy | @
Ad = Adgrz + Adrz, (45)
Ba = Aav (46)

5

At the calculation of the formulae above it was also used that

. CC,
- = 47
COSiy ccy 47
.. |CXC1|
= 48
siniy G, (48)

whereC; means the orbital angular momentum of the close bi-
nary, whileC is the same for the whole system. Supposing that
the rotational angular momenta of the three stars are riklglig
we obtain that

cosi; = % + %I (49)
sini; = —% siNim, (50)
and it is well known, that

C1 = o7 Gmoall - &) (51)
Co = T Gmyzaal(1- &), (52)

2.2. Solution for edge-on binary orbits with small eccentricity
variations

2.2.1. Closed form solutions for the binary’s orbital elements

For the first time we assume an edge-on binary orbit in the ob-
servational frame, which is a plausible expectation in #eeof

the relatively wider eccentric eclipsing binaries. Consagly,

at this stage we omit terms multiplied by dodVe consider
Egs. [25)-f(3R). One can see thaBif> A these equations be-
come singular at certain directions of the axis. This is #ydae
case which defines the so-called Kozai resonance (Kozal)1962
We are interested in such binaries whére- B, i.e. this res-
onance does not occur. In this case as far as thfficeats at

the rhs of the equations can be treated as constant, or &t leas
their variations are small, all the equations have closédisa,
which, forB # 0 are as follows:

g
U= U+ &arctar{\/% tang]go, (53)
e=¢g- % %In(%), (54)
= ot o e 09~ o (R
g

X \/%arctar{\/g tang]go, (55)
i1 = (i)o— étamlﬂl (%), (56)

X &arctar{\/% tang):, (57)
5 = do+ (g g9

+ (% - %) 11_ = arctar{ \/Etang]zo, (58)
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where
B
E=4. (59)

Egs. [6B) and[(35) are equivalent to the results of Sodenhje

(1984). Nevertheless, in his paper the eccentricity eqoatias
not calculated, as the eccentricity was considered aslgican-
stant. Furthermore, we stress again, that the last equatianis
calculated in the observational and not in the dynamicaté&af
reference. The first equation reveals that in this case wehget
following constant angular velocity (iRs units) for the apsidal
motion in the dynamical system:

IM=AVi-E2 (60)

Similarly, the secular terms, i.e. the mean angular vakxcibf

the invariant nodeh), and the observable argument of periastron

(w) are as follows:

T. Borkovits et al.: Tidal and rotationaffects in the perturbations of hierarchical triple stellesteyns

where
0 = - ;(%)Oln(l— Eo C0S Bo), (73)
1 (A
0 = _cosil( ) %
(Anl + Az + Anz)o Hiogo, (74)
e An
(i1)o = (i1)o— (tan|1 )In(l Eo cos &), (75)
wy = wo—(é) go+(Anl+An2+%) Hiogo
= (Um)o + (h0 - ho) COoSiq, (76)
% = 00 (2), 00~ (A - ), 7160 (7)

g = L | A2 _ (Anl +Anz E) 1 |g (61) respectively. In what follows, we omit the subscripirom the
°~ Cosi 1] B A B/ vVvi_gz| "~ parameterg, &, because these parameters will always be used
Oo = II + cositHo as constants, with the value calculate@ atey.
A (AntAn A 1 n 62
“|IB A B Vieel 62) 522 The analytical form of the apsidal part of the O-C
while the secular part of the direct perturbations gives By the use of the Taylorian expansion of Eqsl (67)] (71) B@i (7
we obtain for the analytical form of the apsidal part of theGO—
Do = Ba + (& + %) 1 I (63) as follows:
B \A B/vi—e o )
In the following we introduce the new varialias 5P = 57~ 2je(l+ e)coshy + (1 + UG
3 o
G= arctar( N 1; EO tang). (64) +Ze‘2’(1 + €)’ sin[2wg + (2 + 2U)G]
0
1 .
It can be seen easily that +] §eg(1 + €0)° cos[Av; + (3+ 3U)G]
(1 1 )
dudg 1 1-Eocos G V1-ES (65) +jeo| g1+ )" + ZSE] cosly + (1 + U)G]
dgdG  A1-EEq+ (E-Ep)cosd 1-Egcosdy’ 1
and, as in the current approximatign= Ey = congt., +Je°§€°8 cosky + 3+ UGl
—u=11"Ye - | 1
U= U = IT"(G - Go). (66) tjeo|E+ 5608] cosp;, — (1 - U)G]
Similarly, L L L
1 _ _ 2 _ - *
e = e(l+eo)+ e0 (At) In(1— Eo cos &), (67) +ieo| 751~ @)~ geobE| cospp + (5+ 1G]
[ 1 )
g = arctar( \/ i Eo tang), (68) 1% 7_ﬂ3(3 + €)&
1
. A2\ 1 +—(2 + €)EE | coswg — (3 - U)G]
i e nae 3 2 o
0~ Cosi; Ant + Anz + HOQ
. 1. E) arcta I_[ 1+E g] (69) +€5 eo(l + €)& | sin[2wy + (4 + 2U)G)]
cosi 1 0 -Eo
2ve | cin(o, *
= (05 taml(A”) In(1— Eycos 29). (70) +€5 —§(2+3€0+GO)S]SIH(ZUO+2([/I§)
51 .
w = (An1+An2+ E) Hig +Ee%85|n2g+0[(e E)*]. (78)
0
Eo From now on we suppose, tha(e) = O(E) = O(E), or more
+ (E)o arcta 5 tang|, (1) generallyo(e) = O(%¢). Furthermore,
By
= -= T A
o +(A" )o nog &= 7. (79)
By + Ep Az A+ A Ax 1
+ (—)0 arctar( 5 tang], (72) U = B (T + F) = (80)
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the latter is the period ratio ¢fcosiy (or in the present approxi- iaz n iES n iEZ
mation,uy,) andg. This term gives the relative fllerence of the 192 32 24
speed of the apsidal advance in the observational and treatyn
ical frames of reference. Furthermore, note, that in thigax- 1 1 1
mation the direct terms give only a small contribution to@heC —6+=1+ 22\ Esinag + =E?sin
(the last term of Eq[]748]). Nevertheless, the secular pffastioh 9=6 2 4 G 8 G
perturbations are added to the observed eclipsing perindlly;

&cos 69} , (84)

j + 1 for the two diferent types of minima. +—E%sin6g
We consider the two extreme cases. First, if the two orbits 1 1
are coplanar (i.d2 = 1), then the angular velocity of the apsidal - [_Ala + = (AL + A)E+ _AlE} 60} sin 26
motion is 4 4 2
(1 + I = Ay + As. (81) + 6—14(A1 + A)E? - %AlES} sin4G, (85)

Furthermore, a& = 0, (i.e.Ae = 0, which is true as far as we do
not consider the octuple term in the perturbing force), £§) ( Where
reduces for its usual form, apart from thétfdient period given . .
by Eq. [81). Second, in the case of two perpendicular orbés ( G=1I'(u-w)
I = 0), U diminishes, as well a& = E occurs, and, conse-
guently, Eq.[(7B) also becomes somewhat simpler. Morether,
more important feature is that these are generally the avdy t
cases, when the O-C curve has only one fundamental periéél.
Finally, in these two extreme cases

(86)
while

1 3 1 1
Z+ & - —_E&+ —Ez}é‘coszgo

1
= Z(1-A)&?
gl A)E + |5+ 78 — B8+ 5

1 1
O=0, 82) + 1—6(1 -A)E - §E] &cos 4y
so the results above are rigorously correct for not only enfye L Lo, Teoleos 87
visible orbits, as far as the orbital eccentricity can besidered " 192 32 " 24 Bo. &7)
as constant on the rhs of the perturbation equat(ods (Z3)—(3 1 dA
Al = eO— TR (88)
Ade
2.3. Solution for the general case 1 d’A
2.3.1. Formulae for €, g and h — results and discussion on
the dynamical apsidal motion period and on the nodal Before continuing with theféects of those quantities which
regression relate to the observational system, we discuss our resulthé

One can see that the assumption of the constant eccentgeitydynamical apsidal advance rate. First, we consider thaniest
mains plausible only iB << A, or if A; ~ 0, which may happen neous angular velocity of the apsidal line,lile= VAZ — B2. As

in two different ways. The trivial case, when no third body exist&e are concentrating on hierarchical triple systems, wtteréo-

in the system, or at least its influence can be disregarddd wi@l angular momentum is highly concentrated in the wideitprb
respect to the tidal forces, or the other possibility ist tte Wwe omit the terms itA andB which are multiplied byC,/C;. In
two orbits are nearly coplanar. (Note, that this latter aame- this case we can easily have that upo= 6343 (i.e.12 > 0.2)
ally also could satisfy th®& << A condition, as in this casB A > As. So, when

is in the order ofe’Ag.) Nevertheless, in the really interesting

systems neither of these conditions are fulfilled, so we tiaveA:2 + An + Anz > Ac — Anz (90)
solve the equations above in several iteration steps. lardaod . . .

do this we used the Taylorian expansions of EGS. (25), (26) Wfhen the third body féected instantaneous apsidal angular ve-

respect tce. Our calculation is listed in AppendixIA. Here we!OCiLY is surely larger, and, consequently, the apsidaiomgpe-

give only the final forms up to the third order in the inner acce riod is shprter than in the only tidally _p_erturbed case. Nutat
tricity, together with such assumption that the other gitiast Eq. [90) is also th_e ZEro Ofdef condition fo_r the occurrerice o
given above are also in the first order of eccentricity. Sahis 1€ SO-called Kozai resonance in a mass-point three-bodgmo
approximation the modified angular velocity of the apsidi a Thisgivesim < 3923 fi)re = 0. We now concentrate on the a,}’ef'
vance, the inner eccentricity, and the argument of pedastr age angular velocityI". There is only one quantity in tHe/I1

; ratio, Eq. [88) which can be negative, namealyConsequently,
the dynamical frameg) become all of the other terms would produce a shorter average period
1 . , 1 1., than the instantaneous one. According to Eg|. (87), theréirista
= =1 (1 ~ 16728 — MBS~ Ao - §A2€o)v (83)  order term ink, L& cos 2y, which may give the largest contribu-
tion in the wholell/IT* ratio. One can see that we could expect
L L a longer average apsidal motion period than the instanteneo
_ 2 one, when cos@ =~ —1. This happens when the argument of
€= eo(l et ZES B §A18 ) periastron igy ~ +90° in the dynamical system in the moment
1 1 1 1 of the calculation of the orbital element (i.e. at the tim@bs§er-
—& {— [1 - &+ —_ES+-E%+(1- Al)eo} &cosy vation). Note that as one can see from e.g.[Eq| (54)gfar 90°
2 32 16 4 the eccentricity takes its maximum value, and as is wellwkmo
1 1 1 1 the larger the eccentricity the faster the tidally-forcpeidal ad-
h [E(l ~A)E+ 8 E+ (Ea t3g E) 60] &cos4g vance speed, this result is not an unexpected one.
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For the sake of completeness, we give our result for the dy- Here we would like to stress that in this case a further im-
namical nodal regression, although up to third ordeg B itis portant diference to those mentioned earlier is that there will

identical with the Taylorian of EqL{69): no longer be one true period for the apsidal advance in the ob-
servational system, now we can speak only about only quasi-
h = h + HoG — 1 1. An2 sin 25, (91) periodicity. (This latter statement applies even bettehigher
2 cosiy IT* orders where the fferent linear combinations of the angular ve-
h locities of g andh appear.) One can see this clearly in Fij. 2,
where where we plotted the variations of the eccentricity and the o
1 1 1 1 dAnp servable argument of periastrow)(in a hypothetical eccen-
Ho = 1T cosi, {Anl + Anz (1 + EE) + ZGOES}' (92) tric triple system for two dferent initial mutual inclinations

(im = 20, 60°) of the close and the wide orbital planes. (The

We emphasize again, that this term gives further, negative c initial parameters are listed in Tablels 1 and 2.) In thesedigu
tribution to the observable apsidal motion period, throtiglh We connected the = 2r values with the corresponding eccen-
hcosi; expression, which is independent of the observable ifficity values by dashed lines. Here it is clearly visibleat the
clination of the system. periods are not equal to the correspondingnd w. It can be

At this point we refer to the paper 6f Hegediis & Nusp¥een also that in the caseipf= 20" (left panel) the eccentricity
(1986). In their work they investigate the possible obstowal obtained from numerical integration (see next sectionifiig
effects of nodal motion forced by inclined stellar rotationeds. ~ cantly departs from the analytical value, while the arguneén
Although their treatment is entirely correct, they unfortely Periastron ¢) shows a good fit, at least as far as one omits the
denoted the dynamica| node (WhICh hHdan the present paper) small CumuIaFlve error in the perl_oq. On the contrary in theec
by Q, which usually means the longitude of the node in the sigf im = 60° (right panel) eccentricity curves produce very sat-
(as used in the present work) in the observational astréghysisfactory fits, while the analyticab departs from the numerical
From this notation some misinterpretations occured l&er. curve suddenly after approx. 1000 years. In the first casesth
when[Khodykih [(1989) reacts to the previously mentioned pRlanation can be found in the small mutual inclination, iriebh
per, and states that the orbital plane precession of anseclipase, as was mentioned earlier, the higher order terms frethe
ing binary is unable to significantly distort the observediap turbative forces are also important, while in the secone tias
dal motion rate (see al$o Khaliullin eflal. 1991), he is right departure arises from the fact, that due to the large anaelitu
the sense of the observed node (see t@aki term in dv), Orbital precession the cog term becomes so large that our ap-
but/Hegedus & Nuspl (1986) consider the dynamical node (tR€oximation will no longer be satisfactory.
contribution of dhcosi; in dw). We note also, that in the inclined
rotation case; is small, which justifies the omission of the ¢gs : : : . :
multiplicator in the work of Hegediis & Nuspl (1986). 2.3.3. Direct perturbations in the orbital motion
We also calculate the direct terms for higher accuracy. Ehis
slightly problematic, as due to the very stramgependence, the
derivatives ofAq could increase to very large values already for
medium eccentricities. Fortunately, if the timéfdrences of the
We know continue with allowing non-exactly edge-on orbit&vo types of minima are used instead of the usual O—C fungtion
(i.e. cos # 0). We then have to take into account th@ cbsi  these direct terms will fall out, as at the same time they have
terms, too. According to EJ_{B1), as far as we omit the snmail a the same value for primary and secondary minima. Neveihele
plitude term dh this can be written as a function ofidosi;. The We use them in the following, considering the quantitiesSveer
detailed calculations together with the results up to fiftep in  from the derivatives ofy as first order, and those froBy as
eandE, & are given in AppendiXA (see EqE. [A.114]=[A.120]).second order (in our present sample configuration of AS Cam
Here we list the form of the result up to the fourth order in thiis can be done approx. upe¢b= 0.3 for perpendicular orbits).
secular term, and to the third order in the trigonometricsonel he results up to fifth order can be found in Egs. (A.70)=(A.75

2.3.2. Non edge-on orbits: further observational effects from
nodal motion (w, Um)

Namely, while up to third order are listed below:
w =g+ Un, (93) 6 = 65+ DoG
1 1 .
whereg is given by [85), while + {_Z [Vi(1+ e) + Voeo] € + EW(l + eo)} sin2G
1A . . 1 1 1 1
= o+ UG- = 1 5+ H — 2_ - = = i
Un = (Um)g + UoG > TI (1+Co)sin2G + C1sin(g + HoG) |52 (Vi+ Vo) & 3 2V1E8 T 6W18 + 8WE}sm 4G,
+%c2 sin(2h; + 2HoG) + %cg sin(@; + 3HoG),  (94) (96)
where
where )
1 dAq ( 1 ) d?Aq ( 1., 1 2)
Do =— +e— e+ -EE|+6f— [ =E + SV
Uo= - {Anl + Anz(1+ %E) ' %eo—djfa} (1+C). (95) ° IT [A“ Ve @7 35 S ae |67 2"
1 1 dBy 1 ,d’By
The Co_3 terms are coming from the Taylorian expansion of _QB"E B ZGOE(EO +&)- Zeg de O (o7)

(1 - cog i)™ which arises in the equation foxtosi. These _
are trigonometric functions df andi;. They are listed only in while

AppendiXA, Eqs.[(A.86)HAT113)(AI21] (AIR2). In owale v 1

culations we considet, as it would ben-th order ine. = —A4, (98)
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motion is diferent. (See text for an explanation of the discrepancy bmtwhee numerical and analytical results.)

1 dAg
V) = gp——2
1= 0% e
1 A
V, = g— "9
2 e‘z)n* dez”
W= =B,
H*
1 dBy
W, = GOEE,
1 d?By
W, = €———9
2 e‘z)n* de?

2.3.4. Generalized form of the O-C

(99)
(100)
(101)
(102)

(103)

Finally, now we report the generalized form of the O-C curve,

which is as follows:
2
FO -C =~ V100COSEUS + (1 + Uo)g]

+V20()Sin[2a)6 + (2 + 2U0)g]
+V300COS[3L)6 + (3 + 3U0)g]
+V1_20C0sk; — (1 - Uo)G]
+V120COSEL)B + (3 + Uo)g]
+V1_40C0Skw; — (3 - Uo)G]
+V140COSEL)6 + (5 + Uo)g]
+Vo_20 Sln[2u)8 + 2Uog]
+V2205in[2w6 + (4 + 2U0)g]

+Vip-1 COSEUB - hB + (1 +Up - HO)Q]

+V101COSE:)6 + hg + (1 + Up + Ho)g]
+Vig-2 COSE,L)B - Zhg + (1 + Ug — 2H0)Q]
+V102COSEL)B + 2h6 + (1 + Ug + 2H0)g]
+V1,2,1 COSEL)S - ha - (1 - Uo + Ho)g]
+V1,21 COSE,L)S + hg - (1 - Uo - Ho)g]

where

V100

V120

V120

V140

V140

V200
Vo_20

Va2

+V12,1 COSEL)S - ha + (3 + Uo - Ho)g]
+V]_2]_COSE,L)S + hg + (3 + Uo + Ho)g]
+Vao_1 Sin[2w} — b + (2 + 2Ug — Ho)G]
+V201sin[2wf; + hg + (2 +2Ug + Ho)g]

+V02()Sin 2G
+V0408in 4G

+Voo1 sm[h’{) + Hog]

+V0023in[21’5 + 2Hog]
+V003sin[3h’5 + 3Hog] + 0(64, E4),

. 1
-2jep (1 - Zci) (1+ ),
j }(8+E)(1+ )—:—LAS
J€ 5 €0 279e)
(1 1
jo | 36~ B)L+ @) + 3|

1—6190(—8 +E9),

. 1., 1 3,
jeo(—ES +4—1E8_E8)’
3

2551+ 2e0).

3

—§e2(8+E),

3
gez(—a +E),

(104)

(105)
(106)
(107)
(108)
(109)

(110)
(111)

(112)
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Vago = }Jeg (113) constant“eccentricity and apsidal motion period were _dedl_Jc
3 from the “measuredg, = e(tp) value. We note, that the signifi-
cant departure of the numerical and the analytical curvastwh
Vioer = FjepCi(l + ), (114) occurs inthe,, = 60° case after approximately 700 years.(u.pper
1. 5 right panel) should arise from the fact that due to the viamat
Vigz = _ZJeO(Cl - 2C»), (115) of the observable inclinatiori)(for this time our fundamental
1 principle, i.e. Eq.[(Il) ceases to be correct. Neverthekgsthis
Vigz = = jeo(Ci + 2C»), (116) value ofi, our system is already no longer an eclipsing one, con-
41 sequently, this situation is out of our scope.
Vios1 = ¢‘—11'9001(8"‘ E). (117)
1 2.4. Discussion on observational effects
Viz = * 416001(8 E). (118) When only a small fraction of the O—C curve is observed, sdver
vV _ +§e§C 119 serious problems occur in the sense of the determinatiolneof t
20e1 = =D (119) apsidal motion period with respectable accuracy. To demates

this we consider only th¥;9o andV;_,g terms (we omit/129 be-
1 1 1 cause we concentrate mainly on such configurations where the
Vozo = —= [Vi(1 + €) + V2eo] & + s W(1 + €0) + 5MCo, (120) mutual inclination of the inner and the outer orbit is largad
4 2 2
consequently, we suppose tlfatz E). Furthermore, when the

Voao = i(Al + A)E? iAlES, (121) period of the nodal motion is significantly longer than tfukatiy
64 32 induced apsidal motion (as in the case of AS Cam, but not neces

Voon = _}Cn- (122) sarilyin e.g. DI Her), themi,, as well ah can be considered as

n constant. Then instead of the usual O—C we apply terdince
Furthermore function of the primary and secondary minima, as

1 P . _—

M = A (123) A ~ —ep{-2cosfug +Go +IT'(u~ Uo)]
A more detailed result up to fifth order containing 102 trigen +Ecosjwy — Go - I (U - UO)]}' (124)

metric terms is also listed in AppendiX A, Eds. (A.128)—(Z52.
Here we note, that the indices refer to the multiplicatore o),
andh in the trigonometric terms, respectively. We separated tag = up, (125)
different terms by blank lines. All four groups besides the pertu ) ] o

bations ineandg, give the additional contribution of the precesfurthermore, according to its definition

sion of the orbital plane with respect to the obsefl/€ne first, 1

and second groups give the nodal contribution to the obbrvaGo = 9o — EE Sin2o + ..., (126)
argument of periastronu), while the third one comes both di-

rectly from theQ cosi, and the direct orbiatl motion terms in = SO

As far as the nodal motion is neglected it can easily be sesn th

Finally, the fourth one also contains the contributiorfogosi. 1

These latter two terms, naturally haséndependent parts, con-wp + Go ~ wo — EE sin 2o, (127)
sequently they do not disappear even in the case of a ciricular 1

ner orbit. Nevertheless, as was mentioned above, due t@te aw| - Go ~ wo — 20 + §E sin 290. (128)

multiplicator, their significance is very limited in the easf the
relatively wider eccentric eclipsing binaries. Similarue to We concentrate continuously on perpendicular orbital gdan
this latter condition, the contribution of the second greaglso configuration. In this case, taking into account that theahjn
very minimal, as these terms arise exactly from the sam@neass an eclipsing one, i.e. its observable inclination is eltzs90,
as the terms of the fourth groups, manifesting the same preage plane of the outer orbit should lie either close to thegla
sion indirectly, through the variation @5. On the contrary, the of the sky, or perpendicular to both the planes of the innbit or
first group contains such terms of the nodal motion which rand the sky. In the previous case (which is the more intergsti
main dfective even in the edge-on cos 0 case, too. These areone, because it makes it possible not to observe light-tifieet
coming from thehcosi; term as was discussed in Sefis. 2.2i@is easy to see thab ~ g + [0, 1] x , while in the latter one
andZ.3.1. w ~ g+nr/2 (we also used the fact that in these hierarchical sys-
To illustrate the net féect to the O—C we plotted in Figl 3tems the outer plane is close to the invariable plane). Irivtioe
the O—C diagram of AS Camelopardalis for the same two codifferent situations we get that
figurations for which the variations & andw were shown in

Fig.[2. The upper panels represent the numerical resulitseder Aoy ~ —ZEeo(l + }(‘Jcos 200 — }8) cosfwo + IT* (U — U)]
directly from the numerical integrations as well as anabftre- ” g 2 2 ’
sults calculated according to the higher order formuladisn (129)
Appendix[A, Eq. [AI2B). The lower panels represent the nu- p

merical curve and the “unperturbed” (i.e. only two-bodyatid A.,/, = —2—eo(1 - }8 C0S 2ug + E8) cos[wp + IT*(u — ug)]
distortion is present, as usual) theoretical curve wheth the T 2 2
(130)

2 We do not use intentionally the usual phrase ‘nodal regoassas ] )
we concentrate on the observational frame of referencetemiie can The subscript ofA refers to the approximate value of, and
observe even nodal progression (see $éct. 3). we omitted the sin@, terms inside the arguments. Ef. (1.29)



T. Borkovits et al.: Tidal and rotationaffects in the perturbations of hierarchical triple stellasteyns 11
0.60 . T T YT 0.60 T T i TUMIN, (um,) X
MIN (num.) MIN (num.)
040 [ MIN| (anal’) ] o040 [ MIN, (anal) ]

MIN;, (anal.)

MIN; (anal.)

B 020 % B
3 0.00 [ Y 4
Bl -0.20 Bl
-0.40 Bl -0.40 Bl
1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Years Years
0.60 T T T T 0.60 T T T T
MIN, (num.) ~ x MIN, (num.) ~ x
MIN; (num.) x MIN; (num.) x
0.40 B B

MIN;; (unp.)

-0.40

1 1 1
0 500 1000 1500
Years

1
2000

1
2500

3000

MIN,;, (unp.)

1
0 500

1 1
1000 1500
Years

1 1
2000 2500

3000

Fig.3. The numerically (AS2 and AS3 runs — see next section) andyticelly generated O-C curve in the case of the AS
Camelopardalis with the perturbations of a third body. Tiigal mutual inclinations aré,, = 20° (left panel), and, = 60°
(right panel). Upper panels show the numerically gener@e@s, as well as the analytical ones calculated accorditigetdor-
mulae of the present paper. Lower panels demonstrate fiizeetice between the numerical (i.e. “observed”) curvestlamdnly
tidally forced apsidal motion produced O—C.
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Fig.4. As in Fig.[3, but the initial mutual inclinations aig ~ 90° for both panels (AS4 and AS4b runs — see next section). The
only difference is that in the left panel the orbital plane of thedeytis almost perpendicular to the plane of the sky, whilehim t
right panel this nearly coincides with it. Note that at tresend configuration the amplitude of the O—C is definitelylfméhan in

the first case.

shows a very important result. In the situation when a thadyb ference in the physical configuration of the entire triplsteyn,
revolves around the eclipsing binary in a nearly perperdicuonly its orientation rotated with 9@long the inner orbital plane,
plane which lies close to the plane of the sky, the amplitude ice. the outer orbital plane from an almost perpendiculaitimm

the A curve — which is used several times for the calculatidmecame nearly coincident with the plane of the sky. Moreover
of the period of the apsidal motion — could be lower than it isesides the smaller amplitude, Fig. 5 reveals a more impbrta
expected (by the multiplicator @ ¢ > 1 — &), consequently, result. As one can see, when the orbital plane of the terisary
the numerical fitting will result in a smaller angular velgci close to the plane of the sky, large almost horizontal regyaam

i.e. longer period. This is demonstrated in Figs. 4 [and 5,revhébe found in the dierence curve. (This means that in these inter-
two numerically integrated O—C curves are shown (togetlithr wvals the primary and the secondary minima vary almost in the
the corresponding analytically calculated ones). Thermidif- same manner.) The mathematical cause can be understood from
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[y Table 1. Fixed initial parameters of the binary as well as of the
100 | =178 (um) [r249] tertiary for every run. Thek(i') constants are taken from the ta-
P=178 (anal) [+249y] - bles of Claret & Gimenez (1991). The other parameters fer th

] binary (with the exception of2 which has an arbitrary value)
are from Khodykin & Vedeneyev (1997). The parameters of the

f third companion (primed guantities) are partly from ouriear
light-time solution (see Borkoviis 2003).

0 560 1000 1500 2000 2500 3000 a 17'195% a 73698%
Vonre e 017 ¢ 041
78 50000HJD 7 52085HJD
Fig.5. The diference of the O-C of the primary and the sec- 50 00082
ondary minima for the O-Cs plotted in Fig. 4. We shifted the ~ 500017
i’ = 178 curve with approx. 249 years in order to coincide with i 8878
the “unperturbed” curve of the two cases. Q130
m 3.3Mg my, 2.5M,
, L _ ms 1.1Mg
the third order approximation. In this case gy, Viz20 and R, 260R, R, 196R,
the V300 terms should be counted. Limiting ourselves only for k(%l) 0.0049 @ 0038
the third-body-in-the-sky case, then KD 00011 |K? 00008
p 1 1 1 A3 00 Ay 0.0
Ao = —2—&y [(1 - 58 + 58 CoS 2ug + éaz 0.0001 0.0001
T
1 1 1 a: The three values refer to departure from periastron, mateeous-
—282 cos 2ug + ESZ c0S 4ug + s Ala] cosG angular-velocity-equal-to-average, and apastron postirespectively.
LW 1e§ kel 131
~(gMet %)oY (131 poth in the observationaly, ', €', i’), and the dynamicaky

h, i1, I’, i2) coordinate systems. Note, our input parameters for

The flat extrema occur whe@ = 0 + kr. Around these inter- the integrator are only the observational angular elememis
vals the two cosine terms have opposite signs. This alsodmppthe others are only derived quantities. All columns of thisdr
in the “unperturbed” case of course. However, a significéiAt dtable refer to four individual runs. One of them is the dissip
ference is that, whilst we considered b&thand& as formally tionless case, starting the binary from its periastron, tnele
having the same order tha both could be somewhat largerof them with dissipation{; = 1, = 10™%), with initial posi-
thane, and in some cases they can reach almost the ordertigh of the binary in its periastron, apastron, and at trusnaaly
e'/2. Consequently, the superposition of the opposite sign6os § ~ 104, where the instantaneous orbital angular velocity in the
curve onto the co§ may cause further flattening almost in thgresent configurations is nearly equal to the averaged sneda
order ofe. These areas might cover even the 40-50% of the totgled the option of our code which makes the angular velocity
curve. Itis trivial, that if this system were observed withhis vectors of the stellar rotation for both stars equally lond par-
time interval, the apsidal motion period would be found #ign allel to the initial instantaneous orbital angular velgarector
cantly longer than the theoretically expected value. Orother  in an iterative way, it means that the initial rotation of #tars
side, there is no region, where the slope of thitedénce curve is were synchronized in these threéfdient ways.) We emphasize
significantly larger than the “unperturbed” reference euihe again, that as we were not interested in it exclusively dyinam
consequences of the fact above will be discussed in[Sect. 4. eyolution, but for observational consequences too, wéethout

We now study numerically the eclipsing systengome runs where the dynamics of the triple were the same, but
AS Camelopardalis, where only about a 10% or less @b orientation with respect to the Earth werelient (e.g. AS3,
the total period is covered by observations. AS4 and AS3b, AS4b runs).

3. Numerical studies 3.1. Non-dissipative runs

We carried out several sets of integrations with the nuriaric The variation of the orbital elements during the integnagioan
tegrator described in_Borkovits et/al. (2004). These runflypa be seen in Fig$]BH9. These figures represent the dissifessnn
serve as numerical support for the analytical calculatides departed from periastron runs. The left panels cover a time i
scribed in the previous section, and partly serve as study tenval of 100 years, which is naturally briefer than a moment
the dynamical evolution of eccentric hierarchical tripjstems from dynamical point of view, but this is the time intervah (i
with and without dissipation. The initial parameters ofltfieary  the best scenarios) which can usually be reached for themtres
were taken fromm Khodykin & Vedeneyev (1997), with the excefstudies. The numerically generated O-C curve, as well as the
tion of the inner structure constants which were set acogrtti  variations of the orbital elemen¢gsandw of the AS2—-AS4b runs
the tables of Claret & Giménez (1991). The physical paranset were also used in the previous section as an illustratiothier

of the three stars as well as those initial orbital elemeritiefiv oretical thinkings (see FigEl 2-5). Additional integrasowvere
are the same in theffiérent runs are listed in Talile 1, while thos@erformed for the close binary without the tertiary comptne
orbital elements which lier in the individual runs are listed in both in the quasi-synchronized rotator, and the precessng
Table[2. In this latter table we give the angular orbital édats ondary component case (this latter is not presented here).



T. Borkovits et al.: Tidal and rotationaffects in the perturbations of hierarchical triple stellasteyns 13

s I~ ]

S E—— |

L1 : /% ASL _AS2 AS3_AS3b AS4  AS4D
|
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In the quasi-synchronized binary case = 381800d ~
1046y was found for the period of the apsidal motion without
the relativistic contribution. This yields = g = 344/100y
for the classical part of the apsidal advance rate, whiahgobd
agreement with the theoretical valuelof Maloney etlal. (3989

|
i
P— m %/ //j Jo = 35:8 + 5:8/100y.
|
|
|

In Fig.[1Q we plotted the variation of the apsidal line both in
the observational{), and in the dynamicalg) frame of refer-
ences for five dferent configurations of the system. Comparing
the four third-body perturbed runs with the quasi-syncized
binary configuration, one can see that there are no casegwher
the apsidal motion period would be significantly longer tiran
the reference case. However, on the contrary, for the lowaatut
inclination cases (AS1, AS2), the apsidal motion perioaisid
be remarkably smaller. This is in good correspondande wit
r discussion onI{*)™! in Sect[Z.3]1. Consequently, we can
conclude again, that the observationgigets due to the specific
spatial configuration of the orbital plane of the perturbiinigd
star should play a more important role in the explanatiorhef t
anomalously slow apsidal motion than the dynamical peaurb
tions themselves.

£ T E) o0 B0

time fin yoars]
Fig. 8. The variation of both the dynamical and the observationté,)lJ
orbital elements of the binary during 100 and approx. 28G0ye
(1 million days). Semi-major axis is given R, while the angu-
lar elements in degrees. The mutual inclinatioiyjss 60°. See
Col. AS3 of TabléR for the initial values.
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3.2. Dissipative runs ously negative transversal force component (which has a-max
mum amplitude at periastron, and almost zero only around the
apastron).

The amplitude of thee-cycles is also somewhat larger in
these latter cases, and the period of the apsidal advarureger
Nevertheless, the flerence in the period between the periastron-
synchronized and apastron-synchronized case is about %%,
it remains clearly under the amount of the observed discr@pa
Eurthermore, we note that, although the orbital shrinkingall
as the synchronization of the angular rotation are eviderhe
time-scale of the present integration, it can be clearly sbhat
there is no evidence for the circularization of the innetitofithis
suggests that the presence of a not so distant third body eray b

p1-P1 sically modify the dissipative circularization procesatitally,
fais ~ =4 (3 > PL— B Xpl), (132)  further investigations are needed in this question.

P In contradiction to these smallerftéirences in the behaviour
wherep; is the Jacobian vector directed from the primary to thef the above-mentioned orbital elements, the angular aitsne
secondary, angh is the diference vector of the rotational an-(both in the observational and the dynamical frames) shaw-co
gular velocity vector of the-th star ( = 1,2) and the orbital pletely diferent variations in these latter two cases than in the
angular velocity vector. As one can see easily, in the apastr periastron-synchronized one. The reason can be found spthe
synchronized case ttenstant - p x p; terms give a continu- cial initial configuration, i.e. in the (almost) perpendeuposi-

Considering the dissipative runs, in Higl 11 we give theatiarn
of the orbital elements in the case of the AS4 configuratioatfo
the three initial synchronizations, i.e. when the synchration
was done to the periastron (left panel), the average valtieeof
orbital angular velocity (medium panel), and the apastanes
(right panel). The following dferences can be observed.

The shrinkage of the binary orbit is more than thre
times faster during the total integration time in the apastr
synchronized case. For a qualitative explanation we réeat
the simplified dissipative part of the equation of motionhsf bi-
nary from Eq. (23) of Borkovits et al. (2004). According tasth
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tion of the inner and outer orbital plane. In this positioa thf- We found that there is a significant domain of the possible hi-
ference in the angular momentum stored initially in thelatel erarchical triple body system configurations where bothdhe
rotation was able to change the direction of the orbital @sec namical and the observationdtects appear corresponding the
sion. tendency to measure a longer, and even remarkably longer aps
Finally, we consider the stellar rotatioffected by the dis- dal advance rate, than is theoretically expected accotdittge
sipation. As is well known, the phase space of the rotation kfiown physical parameters, and the measured eccentriuity a
oblate bodies usually contains large chaotic regions @rsémse visible argument of periastron. This happens when the nhutua
of our Solar system see elg. Laskar & Robutel 1993). In[Ely. irxclination of the close and the wide orbits is large, i.e. dinbits
we show some interesting resonances. We found in several dife nearly perpendicular to each other, and, furthermioesot-
ferent runs, that when the angular velocity of the rotatibar® bital plane of the tertiary almost coincides with the plaféhe
of the stars becomes temporarily equal to the average babita sky. As the observable inclination of the anomalously slpsia
gular velocity of the binary, typical resonance phenomestaig  dal motion eclipsing binaries is necessarily close£d90°, this
i.e. the amplitude of the stellar precession suddenly asas, or means that almost every second near a perpendicular tyiple s
even some fluctuations arise in the stellar rotational ratel, tem might belong to the ideal case. Note, that the first camdit
consequently, this can manifest even in some similar fluctuahich mainly (but not exclusively) comes from the dynamical
tions in the binary’s semi-major axis, as happens in our AS8halculations is in accordance with the results of the preslp
run. Detailed investigations of such resonance phenomerya nmentioned studies. However, we have shown that it has alyotab
be the subject of future studies. lower significance alone as stated previously. So, we cadeclu
that the observationalfiects can play a remarkably more im-
portant role in the detection of anomalously slow apsidaiomo
4. Discussion and conclusion rate than the dynamical ones.
. . This result is all the more impressive, becausdtiis a nat-
In this paper we gave analytically the nelieet of the perturba- \, o answer for a further serious question: why have we net ob
gerved these third companions yet? We consider this quéstio
detail. Several direct and indirect methods can be used oow t
detect a not so distant tertiary in a binary system. A redyiv
tdetailed, but not complete listing of these methods is fond
Pribulla & Rucinski (2006). However, despite the diversitly
the methods, most were applied only for a few binary systems,
8and we do not know that any of the direct methods would have
been applied for any anomalously slow apsidal motion system
we mainly concentrate here on the most usual, perhaps we
say: “classical”, althoughin several cases very uatenay

distortion of the binary members for the orbital elementaiof
eccentric binary star. We investigated primarily how thesence
of the third body can féect the O—C curve, which is the mos
important source of the apsidal motion information in riglat
tic eccentric eclipsing binaries. For this purpose we hdwe c
sen one particular eclipsing system, namely AS Camelofiard
Nevertheless, naturally, most of our results are valid imegal,
independently of this specific system, although we stréss
the case of other systems, or even in the same system with @é)n

ferent third body parameters, the magnitude of some pagage{yt e detection of a third component in an eclipsing bingss: s

can difer from our assumptions. _ _ _tem, the method of which is based on the light-tirfieet (LITE)
Our work on this topic is not the first, but one of its Malfanifesting on the O—C diagram. However, the light-tirffeet
novelties is that we calculated simultaneously thiea of the gises from the varying distance of the eclipsing systemnfitee
tidal distortion and the tertiary perturbations. There S@ng pserver, due to the revolution of the binary around thereenft
interaction between the two physical processes. Here veg ref 555 of the triple system. Consequently, when this moticesta
to the strong dependence of the tidal forces on the ecc&ymtncmace nearly in the plane of the sky, the distance of the sickp

Consequently, the third body forced eccentricity variaiiufiu- E;l

. . inary remains almost constant, so the amplitude of the LITE
ences notably the tidal phenomena, and besides the pue, t{jig|ated toa’ sini’) might remain under the detection limit. (The

star forced apsidal motion rate variation, thifeet produces fur- same can be said about the detection via the systematid radia
ther remarkable change in the apsidal motion speed. AtiiE p ye|oity variation.) Unfortunately, this is exactly theusition in

we emphasize again the necessity of the common treatmenpgf ideal case for miscalculating the real apsidal motiarioge
the two diferent physical processes, as their simultaneous pregiim a small fraction of a complete revolution.

ence can basically change the evolution of a close binary sys

tem. We mainly refer to the so-called Kozai resonance, but flfhat in the case of AS Camelopardalis. Kozyreva etal. (1999)

ther consideration of this topic can be found.in Eggleton.et 3eall :
Y y reported that the O—C curve shows small amplitude pe-
(1998). Note that from our Eq.{26) naturally almost the SaMfodic variations after the removal of the apsidal motiomts.

condition for the tidal prevention of the Kozai resonandses, Thev fitted light-time solution. and found a third bodv of reas

which was given iKhodykin et al (2004) by E_q. (38)' ms i 11- 1.g7 M) orbiting in :;m eccentricg = 0.5) orb)i/t with
_The other novelty, as we already emphasized, is the calgisriogp = 805 d. However, we also carried out the analysis of

lation the mathematical shape of the O—C curve, and we th & O—C diagram, but only a very poor, and consequently, very

oughly investigated the reliability of the data which candi® o, estionable fit was found (see Borkovits 2003). Nevertele
tained from such a distorted O-C when only a small portion gfe ysed our calculated orbital elements as input paramieters
the total apsidal motion period is covered. our numerical studies.

The question naturally arises of what could be #icient

At this point we have to stop for a short interplay, and note,

3 We said “almost”, because it is not clear for us why the agtluse : . - . .
in their analytical stability investigation such orbitdements which method to detect perturbing bodies (if they exist at all)uofs

refer to the observable system. It should be clear that tiseme con- Conflguratlons. There are several ”.‘e”‘.OdS listed n the ebov
nection between the physical instability in the system &ndrientation Mentioned paper of Pribulla & Rucinski_(2006) which could
with respect to the Earth. So in their Eq. (37) which definesstability Pe satisfactory for this purpose. Instead of repeating theen

criterium they should use (according to their notatign(this is—gin would like to suggest a further dynamical method, which is
the present paper), insteadwof based on the direct detection of the perturbations of the ter
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Fig.12. Resonance phenomena between the orbital revolution anstdhliar rotation. When the stellar rotation rate reaches th
average orbital revolution rate, the amplitude of the pssiman of the stellar rotational axes suddenly grows. Thisréighows the

dissipative AS4 (left) and AS3b (right) runs where the riot@dl angular velocities initially were set to close to thveraged orbital
one.

tiary. As one can see from our results, the variation of the eReferences
centricity e of the binary may reach even some-1@luring Bgfovis, T. Csizmadia, Sz, Hegedus, T. et al, 200264892, 695
some decades in our sample system. Such a variation cogfifkovits, T., 2003, Proc. of the “3rd Austrian-Hungariamikshop on Trojans
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that the third body revolves close to the plane of the skygdhe Khaliullin, Kh., F., & Kozyreva, V.S., 1983, Ap&SS, 94, 115

. . . Khaliullin, Kh.F., Khodykin, S.A., & Zakharov, A.l., 19914pJ, 375, 314
namical argument of periastrog)(should have a similar value. y,oqvkin. S.A.. 1989, Astron. Tsirk. 1536

Then, according to our Eq._(b4)e is positive, which is also khodykin, S.A., & Vedeneyev, V.G., 1997, ApJ, 475, 798
in good correspondence with the measured tendency. Iniwonddhodykin, S.A., Zakharov, A.l., & Andersen, W.L., 2004, A5, 506
sion, we stress, that it is very important to obtain new meiﬁﬁ?ﬁ'e :,(5 1\?221 ?;khﬁ;b 59/11 L. & Khalidlin, Kh.F.. 198BS, No. 4690
light curves, as well as radial vel_ocny measurements friois t Laszar’ 3. & Robutel, P.. 1993, Nature, 361, 608 e
and other anomalously slow apsidal motion systems. MoreoV@ajoney, F.P., Guinan, E.F., & Boyd, P.T., 1989, AJ, 98, 1800
as we predict the motion of the tertiary in the plane of the skiylaloney, F.P., Guinan, E.F., & Mukherjee, J., 1991, AJ, TBE
we can expect positive results mainly from the newest iaterf Padalia, T.D., & Srivastava, R.K., 1975, Ap&SS, 38, 87
metric equipments in the near future. Pribulla, T., & Rucinski, S.M., 2006, AJ, 131, 2986
Finally, we also obtained new numerical results on the i ﬁg]ki':';k,’\ﬁ: ﬁ;gg” o~ ﬁ;trr."l_lei’.‘lll, -
teraction of the orbital evolution and stellar rotation lose hi-  sgderhjelm, S., 1984, AA, 141, 232
erarchical triple stellar systems containing an eccetiri@ry. Zahn, J.-P., 1977, A&A, 57, 383
The most important fact is that resonances might occur due to
the variation of the stellar rotational rate during the ighason-
driven synchronization process. Such resonances weré foun
example in the case when the rotational rate of one of the star
reached the average Keplerian angular velocity of theantat/-
olution. It is necessary to investigate these phenometiagiuin
detail.
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Appendix A: Calculation of higher order perturbative terms

As mentioned in the text, in the most interesting cases thgliarde of the eccentricity variation on the apse-node tsoale
reaches the unity. Consequently, the eccentricity no looge be considered as constant on the rhs of the perturbedications.
Consequently, first the eccentric#yshould be calculated as a functiongdih an iterative manner.

The corresponding perturbation equation can be writtehérfallowing Taylor-expansion:

2
j—g = (S—S)eo + (aﬁeg—z)% Ae+ %(%g—g)% (Ae)? + ... (A.1)
= {[510 To +{[E + B1+ Ny = EA] Zo + [E(B1 — EA)] Z1}o éAe
+:—2L {[(2 — 2A1)(B1 + N1 — EA1) + B2 + N2 — 8A2] Xo
+|2(B1 + Nu)(By — EAL) + E(B2 - EAg + 2By — 2EA; — 4A1B; + 4EAD)| 34
+% |6(BZ + E2AZ - 2EAB,)| zz}o %(Ae)z}, (A.2)
where
E - % (A3)
& = % , (A4)
A = e%(;—é, (A.5)
A = é%%, (A.6)
B, = e% ‘;_z, (A7)
B, = ezizie?, (A.8)
N, = e% %, (A.9)
N, = é%d:;”"’, (A.10)
Yo = % (A.11)
n= 0 (A12)
T, = %. (A.13)
(In the calculation of the derivatives above, it should dsaonsidered, that, as it can be seen easily
- (| + %) (A14)
% _ —&CL (A.15)
% 0 (A.16)

as far as the present approximation is used.) As the tidalstelepend on the fifth power of the separation, and, consdyuthis
produces a very strong eccentricity dependenceAihe\, derivatives may produce some numerical problems even icdke
of medium eccentricities. Nevertheless, in the presenasdn they have the same order of magnitud&ay &, at least at the
near-perpendicular configurations. Carrying out the fiegantegrations, and writing into the following Fourier-series

e=e(l+e+eC0SY+ e, COSA+ 6 COSB + gCOS YY) + ... (A.17)
the codficients up to fifth order ik, &, A1, A, are as follows:

11 3 33 3 9 3 9 9
=[S -SA|E+ [ - A - A E [ AL - A |EER | - —A|E%E?
@ ( 1) +(512 512" 128 2) +( 256 256 2) +(128 64 1)
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For G @ similar equation can be written as Hg. (A.2) and this gikiesifg) relation as follows:
IT"(u—up) = g+ y2SiN 29+ yaSin4g + ye Sin 63 + yg SiN 83 + y10sin 10y + ..., (A.24)

where {1*)~! gives the apsidal motion period in the invariable plane auhit of the inner orbital period, i.e.

1 1 1 3 3 1 1
#\—1 _ - 2 2 _ = __2 . V- 4
(= {1+( Tehe 8A)8 2A1E8+(1024A ARG AL 256A)8
1 7 9 2, 15 3 5 45 103,,\ oo 23, 3
+(64A1 PEAMEYT AN 256A1A2) &7+ ( 62" " 25e 2t o) E O T gpMEe
+ZB]_8+ 128( By + 82)8 + (64Bl+ aBz) EES + 1—681E (o)
+ A1+( 8A2+4A1+8A1A2 4A1)8 ( 2A1 2A2+2A EE - ALE +512A28
5 55 23
_ = 3 . Ve 202 &V 30 4
+ 64A1 128A2) EE® + ( 64A1 128A2)E & 32(A1+A2)E & - AE
1 1 1
+ Z(Bl + Bg) - —A]_B]_ - —Az(Bl + Nl))(g + (Bl - —Al(Bl + Nl)) ]
1 1 1 1 1 3 1 5
—§A2+A2 ( Tehe+ 8A1+ 7Pk + 16A§)82+(—§A2+2A§+ZA1A2) E8+(—§A2+§A§) E?
1 1
+7BE+ EEszE] eg}, (A.25)
where as before
I=AVi-E2 (A.26)
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vg = 6i4E4 - ﬁts(Al + TA)EY - m(Al +3A))EES - m(Al + AY)E2E% - 15; 6A1E38 (A.30)
Y10 = —%)ES, (A.31)
and, finally,

IT"ujy = IT*Uo — (o + 2 SN 2o + 4 SiN 4do + 6 SN 6o + 8 SiN 8Jo + y10Sin 1) + O(€®, EO). (A.32)
As the next step we carry out the inverse transformationothicing the variable

G=1II"(u-up), (A.33)
the Fourier cofficients of the following equation

g=G+G,sin2G + G4Sin4G + Gg Sin6G + Gg sin8G + Gpsin 145 + ... (A.34)
can be calculated as e.qg.

6= [“(a- 9560 (A.35)

where both simG(g) and‘é—i can easily be calculated from Ef.{Al24). The individualficents are as follows:
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By the use of Eq[{A.34) the other orbital elements can alsedsdy expressed as a functionupfnamely
e = ey(l+ Ego+ Exc0s37 + E4c0s45 + Egcos G5 + Egcos &7 + Ejpcos1@) + ..., (A.42)
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The perturbations of the other orbital elements can be kaliin a similar way, but as our final purpose is to obtain the
analytical form of the O—C in the function of the eclipsingleynumber (which is highly related tg as well ag7), now we use the
following direct relation,

dX [dX 0 dX 1( 6% dX 2
whereX means any of the remaining orbital elements or related giemtSo, for the nodehj in the dynamical system, as well as
for um1 (which the latter denotes that partuy which can be derived fromittosiy):

h = hy+ HoG + H2sin2G + Hasin4G + Hg Sin6G + Hgsin8G + ..., (A.50)
Uni = (Um1)g + UoG + U2sin2G + Ussin4G + Ugsin6G + Ugsin8g + ..., (A.51)
where
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while An2 could be derived fronf\,; in a similar manner. Herd was treated as second ordereinwvhile J; 2, K, andKj »-s were
considered as third order. To obtain the correspondingessins foluni, An12 and its derivatives should be simply replaced by
—An12 and derivatives. As these quantities will be used lateriHersake of the clarity we define them here:
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M = _EA”Z’ (A.67)
1 dAn2
M, = -e——— A.68
! °F de (A.68)
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M, = —e2ﬁ o (A.69)

Formally, similar expression can be written for the diregttprbative terms in the orbital motion)( Nevertheless, in this case
the magnitude of the derivativestidir from those above, so we rewrite the results accordingemtters of the direct terms as
follows:

0 =0y + DoG + D2sin2G + D4 sin4G + Dgsin6G + Dgsin8g + ..., (A.70)
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In the above equations

V = %Aﬁ, (A.76)
Vi = e%%:, (A.77)
V, = ezédd%", (A.78)
W = %Bd, (A.79)
W, = eé%, (A.80)
W, = eZ%%, (A.81)

where in our computationgs were considered as first, whilés as second order quantitiesin(or &, €).
As a next step we calculate the angular elements in the odtsmmal system of references. We apply the following relzi
from the theory of spherical geometry:

cosi = coslgcosi; — sinlgsiniq cosh, (A.82)
_,Cosiy —coslgcosi . Sinlgsinhcosi
du = dhn 1 - coZi —dn 1-cogi ° (A.83)
coslg — cosiq COoSi . sinlgsinh

dQ = dh : d -, A.84
1 - cogi * Il1 cogi ( )

di = di, coslg siniy + cosiq sinlgcosh dhsmhsmlosmll (A.85)

sini sini

By the use of these relations, after some algebra and therTarylexpansion of the 2 cos’ i denominator we obtain

—dQcosi = dhcosii(Cgp + Coz2€c0s 21 + CpqcOS 41 + CopCOS 67)
+dh coshsini; (Cig + C12€0s 23 + C14c084; + Cy16C0S 61)
+dh cos 2 cosi (Cyo + Ca2 €05 21 + Coq €054 + CpsCOS 61)
+dh cos isiniy (Czp + Csz2€0S 21 + C34 €05 4 + CgzpC0S 61)
+dh cos 4 cosii(Cyo + Ca2€0S 21 + Cyqc054; + CypC0S 61)
+dh cos Hisiniy(Csp + Csp c0S 21 + Cs4 €05 44 + Cs6C0OS 61)
+dh cos 61cosi1(Cgg + Cg2C0S 21 + Cgq €054 + Cgp COS 61)

—diz sinhcosi1(S10 + S12€08 21 + S14€0844) + ..., (A.86)
where
Coo = 10—692— %;gcosz 55976003 40— B?L;ZCOS @o, (A.87)
Coz = %+ %Sgcos do- %ggcos4 1zzz4cos @o, (A.88)
Cos = %f %gszcos Ao+ %gsfscos 40— 81992003 8o, (A.89)
Cos = %59)2+ %324005 Ao+ 8?_9200340 + 123;4%3 fo, (A.90)
Ci = —jg—gzsin 20— 1(3);4sm4lo 20965in 8o, (A.91)
Cus = —53—1125n2|0 1285in4lo—5i123in6lo, (A.92)
Cis = —%gessin Ao = 75555140 - 4026sm 6lo. (A.93)
Coo = %— %4894005 Ao+ %cos 40 - %cos 8o, (A.94)
Cx = —%‘ﬁ %;cos do- %??;cos 0+ %8“35 do, (A.95)
Co = —%— %4005 Ao+ 515500540 - %4005 8o, (A.96)
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Cxp = —%4— %BCOS Ao - %3584(:03 40 + %BCOS Go, (A.97)
Ca2 = 8nglzsln 2o + 25())3189” Ao+ 8:1LE€;23m 6lo, (A.98)
Csy = 13;4sm 20— 256sin4l0+ 10524sm 6lo, (A.99)
Csg = 8igzsm 2o+ 2348&” 4 - 8igzsm 6lo, (A.100)
Cao = 410—1976— %cosz 409600340 812200560, (A.101)
Ca = —%+ %4003 do - %cos 4o + 16224003 @o, (A.102)
Cu = %36_ %99200320+ %300340 Bigzcosﬂo, (A.103)
Cus = %‘:2+ %584005 4o - %cos% + 163::)84COS do, (A.104)
Cs = —%Sln 20+ 20483|n4l0 8192sm 6o,

Csyq = ﬁsinzo—z—;sinmo+ 10124sm6lo, (A.105)
Css = 8122&” 2o + 2(?483”1‘“ 8::L3923m 6lo, (A.106)
Ceo = %22— %;8400320+ 8122cos40 16284C0360’ (A.107)
Ce2 = —%2+ %BCOS A9 - %3584(:03 40 + ?’Z:LTBCOS do, (A.108)
Ces = %59)2— %;3400520+ 819200340 16:13384(30360’ (A.109)
Ces = —%‘ﬁ ﬁfscoszo— %384% 4y 321768C0360’ (A.110)
Si0 = —%sin 20 - 51—1723in Ao - 23285"1 6lo, (A.111)
Sip = —;112 Sin2o — g sindlo - Silzsin 6lo, (A.112)
Sy = S sin2g — sindlg — 33 sinBlg (A.113)

2048 512 2048

As Eq. [29) reveals there is only a very small cyclic variatioi;. Consequently, in EqL{A.86) can be considered as constant.
With this approximation the integration is a very easy tasid we do not feel the necessity to report its result herevditleeless,

it can be read directly — with the exclusion of the seculanterfrom theVonm codTicients [Eqs.[(A.2T1)E(A.225)] of the final form
of the O—C given below [EqL{A.I23)].) Instead we list the lstieal form of the argument of periastron in the observagicframe

of referenced):

w = g + Um,
= wj+ O0pG + 025N 2G + O45in 4G + Og Sin 6G + Og sin 8G
+Oro Sin(nhy + NHoG) + Opzm sin[nhg + (NHo ¥ MG], (A.114)
where
Op = 1+ Ug(1+ Co), (A.115)
On = G+ Up(1+ Co), (A.116)
1
Ono = ﬁCn, (A.117)
1 1 1 5 1
Ons2 = +Cnd =K+ =(J1+K — (K1 + 3K2)E? + —K,EE — —KE?
2 +Cn{4 +8( 1+ 1)8+128( 1+ 3Ko)E + a2kt & 16
1 1 1 5
+ ZKl + —(Jl + Jz + K]_ + K2)8 € + §K2€O , (A118)

1
On¢4 = +Cp {——(Kl + AlK)S + —KE - (Jl +Jo+ Ky + K2)8 + —(Jl + Kl)ES

16 128
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+ —3i2(|<1 +K)E + %KlE} eo}, (A.119)
Ons = +Cn [i(Kl +Kp)&2 - iKlEa + ke , (A.120)
384 64 48
and, furthermore, we applied the following abbreviations:
Co = Cgo + Cpoc0s 21 + Cpscos 4, + CpsCOS 61, (A.121)
but e.g.
C1 = siniy(Cyo + C12€0s 21 + C14c08 44 + C16C0S 61), (A.122)

i.e. at the trigonometric terms the $iror cosi; multiplicators outside the parenthesis are also inclu¢dte, in the following for
the sake of the simplicity we consid@ys as being in the order @f. This is not necessarily exactly correct, buitas come from
the Taylorian expansion of 4 cog i it may be partly verified.)

We are now in the position to give the final analytic form of @eC curve up to the fifth order. This is given as follows:

2n .
FO - C = Vigo COS@B + Oog) + V200$|ﬂ(20_)6 + ZOOQ) + V300 COS(3/_)* + 300@)

+V4005in(41.)6 + 40og) + V500 COS(E/_)* + 5006)

+V120C0skwg + (Oo + 2)G] + Vi-20COSkwy + (0o — 2)G]

+V140C0skw; + (Op + 4)G] + V140 COSfwg + (Oo — 4)G]

+V160C0Skwg + (Op + 6)G] + V160 COSfwg + (Oo — 6)G]

+V1g0C0Skwy + (Op + 8)G] + V180 COSkwg + (Oo — 8)G]

+V2205in[2w’6 + (200 + Z)Q] + Vo_o0 sin[2w’6 + (200 - Z)Q]

+V24osin[2a)’6 + (200 + 4)@] + Vo_a0 5|n[2a)’6 + (200 - 4)@]

+V2605in[2a)’6 + (200 + G)Q] + Vo_g0 5|n[2a)’6 + (200 - G)Q]

+V3205in[3a)’6 + (300 + 2)@] + Vo_o0 sm[&ué + (300 - 2)@]

+V3405in[3a)6 + (300 + 4)@] + Vo_40 Sln[&ug + (300 - 4)@]

+V4205in[4a)’6 + (400 + 2)@] + Va_20 Sln[4a)6 + (400 - 2)@]

+V101 €08k + hg + (Oo + Ho)G] + Vio-1 Coskwy — hy + (Oo — Ho)G]

+V1i02 COSE:)B + 2h6 + (O() + 2Ho)g] + V102 COSE:)B - 2h6 + (O() - 2Ho)g]
+V103COSE:)6 + 3h6 + (O() + 3Ho)g] + Vi0-3 COSE:)B - 3h6 + (O() - 3H0)g]
+V104COSE:)B + 4h6 + (O() + 4H0)g] + V104 COSE:)B - 4h6 + (O() - 4H0)g]
+V121COSEL)B + h6 + (OO +2+ Ho)g] + Vi1 COSEL)B - h6 + (OO +2- Ho)g]
+V1_21 €08y + hy + (Op — 2 + Ho)G] + Vi-2-1 CoSlwy — hy + (Op — 2 — Ho)G]
+V122COSEL)6 + ZhS + (OO +2+ 2Ho)g] + V122 COSE/_)S - ZhS + (Oo +2- 2H0)g]
+Vi_2 COSE}.)S + ZhS + (Oo -2+ 2H0)Q] + Vi COSE}.)S - Zhs + (Oo -2- ZHo)g]
+V123COSE:)6 + 3h8 + (O() +2+ 3H0)g] + Vi2_3 COSEUS - 3h6 + (Oo +2- 3H0)§]
+Vi_03 COSEUS + 3h6 + (Oo -2+ 3H0)Q] +Vio3 COSEUS - 3h6 + (Oo -2- 3H0)Q]
+V14100$E1)6 + hg + (O() +4+ Ho)g] + Va1 COSE:)B - hg + (O() +4 - Ho)g]
+V1_41 COSlwy + hy + (Og — 4 + Ho)G] + V1-2-1 COSlwy — hy + (Op — 4 - Ho)G]
+V14200$E1)6 + 2h6 + (O() +4+ 2Ho)g] + V122 COSEUB - ZhB + (Oo +4 - 2H0)g]
+Vi_42 COSE,L)S + Zhg + (Oo -4+ 2H0)Q] +Vioo COSE,L)S - Zhg + (Oo -4 - ZHo)g]
+V161COSEI)6 + ha + (Oo +6+ Ho)g] + Vie-1 COSEI)S - ha + (Oo +6-— Ho)g]
+V1_61 €08y + hy + (Op — 6 + Ho)G] + V1-6-1 COSkwy — hy + (Op — 6 — Ho)G]
+V201sin[2w’6 + hg + (200 + Ho)g] + Vo1 5|n[2w’6 - hg + (200 - Ho)g]
+V2025in[2w5 + 2h8 + (200 + 2Ho)g] + Voo_1 sin[ZwS - 2h6 + (200 - 2Ho)g]
+V2035in[2w’6 + 3h6 + (200 + 3Ho)g] + Voo_1 sin[Zw(’g - 3h6 + (200 - 3Ho)g]
+V221$in[20)6 + ha + (200 +2+ Ho)g] + Voo_1 sin[2w’5 - hB + (200 +2- Ho)g]
+Vo_o1 sin[Zw(’; + hB + (200 -2+ Ho)g] +Vo_o_1 sin[2w’5 - hB + (200 -2- Ho)g]
+V2225in[2w’6 + 2h6 + (200 +2+ ZHo)g] + Voo o Sln[2w6 — 2h6 + (200 +2- ZHo)g]
+Vo_oo Sln[2w6 + Zhg + (200 -2+ 2H0)Q] + Voo Sln[2w6 - 2h6 + (200 -2- ZHo)g]
+V2415in[2w6 + ha + (200 +4+ Ho)g] + Vog 1 5|n[2w6 - hg + (200 +4 - Ho)g]
+Vo_a1 Sln[2w6 + hg + (200 -4+ Ho)g] + Vo 41 5|n[2w6 - hg + (200 -4 - Ho)g]
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+V301COS[31.)6 + hg + (300 + Ho)g] + V301 COS[?U.)S - hg + (300 - Ho)g]
+V302COS[31.)6 + 2h6 + (300 + 2Ho)g] + V302 COS[SU_)S - ZhB + (300 - 2H0)Q]
+V32100$[306 + hg + (300 +2+ Ho)g] + V3o_1 COS[&US - hg + (300 +2- Ho)g]
+V3 01 COS[&US + ha + (300 -2+ Ho)g] + V3 o1 COS[&US - hB + (300 -2- Ho)g]
+V401sin[4w’6 + ha + (400 + Ho)g] + V401 sin[4w’6 - ha + (400 - Ho)g]

+V02()Sin 2G + V04()Sin 4G + VosoSiI’l 6G + VogoSiI’l &G

+V001sin(h6 + Hog) + VoozSin(mS + 2H0g) + VoogSin(af{) + 3Hog)

+Voo45in(4h6 + 4H0g) + Voo5Sin(a16 + 5Hog)

+Voz1sinfhy + (Ho + 2)G] + Vo-21 sin[hg + (Ho - 2)G]

+V0225in[2h3 + (2H0 + Z)Q] + Vo_22 SIn[ZhS + (2H0 - Z)Q] +

+Voarsin[ng + (Ho + 4)G] + Vo-a sin[ng + (Ho — 4)G] + O(€°, ES, £9), (A.123)
where
. 1 oo 1 1., 1_., 17 _,., 37 _,. 35_,
Vigo = jeo{ 2+ 32(8A1+A1)8 8(4+A1)E8+ gE + 54BE° - S B8 - B+ T

11 1 )\, 1., 1, 1
+(2+8E8 32E)cl 35C1+ gC3 ~ ZME(L+ Co)

+

-2+ %1(2A1 +AY)E? - %(4 — 6A1 + A))EE + %(1 — 2A))E? + %cﬁ] eo}, (A.124)

1.1

— i 1 3 1 2 1 2 9 3
Vio0 = jeo{4(2 A1)8+ 2E 256(4+ 7A1+9A2)8 + 256(20 T1A; 21A2)E8 + 64(15 22A1)E E+ 64E

1 1 > |1 1
- |:1—6(2— A1)8+ éE Cl - EM + Z(Ll + M1)8 (1+C0)
1 9 1 1 ., 5__, 15, 9 _, 1
+ 4(2 4A; — Ay + 2A7)E + 2(1 A)E 648 + 64E8 + 64E E+ 64E + B+ 2N1
1 1 > 1 3 1 2
- §8+§E Cl—E(M+ M1)(1+ Co) | + _Z(A1+A2)8_ Z(2A1+A2)E € (> (A.125)

1 1_ 1 s 1 , 1 s 5 4
Vi = jQ){4(2+ A1)8 2E 256(4+ 13A; + 3A2)8 + 256(28+ 25A + 23A2)E8 64(1 17A1)E (o) 64E

1.M + %(Ll + M]_)S

1 1
—E(2+A1)8+—E >

+ 5 Ci+ (1+Co)

%(2+A2— 2M9)E — %(1—A1)E— Lea, Teer Lpog_ Spay ENl

+ 64 64 64 64 2

+(_}8+ le)cg +2(M+ Mi)(L+ Co)| o +

8 8

1 1
Z(—Al +A)E + Z(2Al + AZ)E] eg} , (A.126)

1 1 1 1 1 29 1 9
Vigo = jeod —(-4+ A+ A)E% - —ASE+ —E2+ —&*- —E&* - ——FE%82+ —E38+ —F*
1-40 190{64( AL A)E — BB+ TeE 2278~ 56EC " 768t © T oet Ot 256

1 1 1 1 1 1
—(=By+ =N —& - —E|C?+ =M + =M1 | &1
(8 1+16 1)8+(648 64 )Cl+(8 +16 1)8( +Co)

1 1 1
+ 3—2(—2 +5A1 + 2A0)E% - 3—2(2A1 + A)EE + E(l — 2A1)E?

60} , (A.127)

1 1 3 1 1 19 13 19
Vio = jeod——(4+9A; + Ay + 2AD)E? + —(8+ 5A))EE - —E? + —&* - —E&% + ——F%8% + —E%¢ - —F*
0 Jeo{ gald T Ot Aot 2M)E"+ 58+ SAJEE — 5B+ 228~ 2858+ 768F € * 1925 € 256
1 1 1 3
——&N il 2__E —E2 2 1
168 1+(648 16 8+64 )Cl+ (1+Co)

1 1 1
—(éM + 1—6M1)8+ ZME

+

1 1 3
—3—2(2 +5A1 + BAY)E? + 3—2(8 — B6A; + 5A)ES + E(_l + 2A1)E2] eo}, (A.128)

1 3 1 2 1 2 1 3
m(12+ 13A;1 - 9A) &7 + ﬁ(_ler 5A; + 3A)EE - %(3 + 7A)EE + —E

Vieo = Jeo{ 64
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(1 .5 1, 1o 1o
+ 1925 8B - 1g5E 64E €F (A.129)
1 5
_ - 3+ 2 - 2 3
V160 = jeo{2304(12+ 71A1 + 21A2)8 768(36+ 91A1+ 9A2)8 E+ (69+ 52A )SE 64E
+ 1928 5,5 E+ 1555E 64E €F (A.130)
— 1 1 3 7 202 1 3 5 4
Vi-eo = Jeo{ 3077 " 38 " saE © " 38dF T 1028 | (A.131)
~ 1 4 1 4 43 , ., 11 _ ., 35 _,
Vieo = Jeo{ 3072 T192° T 1536 © T 19T 1024 | (A.132)
. 1 1 1 1 1
Vig-1 = Ja)cl {1_ éAISZ + _(4+ A1)8E - 1—6E2 - éCi + ZCZ
1 1o 2
+ 1+4aE—EE —éc + Cz s (A.133)
L 1. . 1 ., 1, 1
Vior = Jeocl{ 1+ 8A18 (4+ A)EE + 16E + 801 + 402
+>—1—E8E iE2+ ~C2+ c & (A.134)
4 16 8 21900 -
1 1 1 5 15 9
Viog = j “(-2+A)E-SE+—&3- —&%E- E2- —E3
1-2-1 Jeocl{s( +ANE~ ZE+ 18"~ T8 E - 1tE 13
1 1 1 1 1
+(3—28+3—2E)c§ (168+16 )Cz K+ Z |v|(1+co)
+ é(_2+4A1+A2)8+Z(-1+A1)E] eo}, (A.135)
1 1 1 5 15 9
Viop = | ~(2-A CE- —&%E+ —&E%*+ —FE3
-2 Jeocl{s( 06+ 2B~ 1588 + g0 B+ 126tF * 128
1 1 1 1 1
— ==&+ =E|C? REPSEIVI
(328+32 )Cl (168+16 )Cz 7K~ gMl+Co
+ %(2—4A1—A2)8+Z(1—A1)E] eo}, (A.136)
1 1 1 7 1 5
Vio g = | —-Z(2+A “E - —&E+—8E%2+ —E3
121 Jeocl{ g2+ AE+ 2B+ 5a8 ~ g B+ TogfE + g
1 1 1.1 1
+(3—2 3 )02 ( AT )C2+ K- —M(1+Co)
t—glét+tA)o+ —(l-A)E|e, .
(2 A)E (1 A)E (A.137)
L 1 1, 7o 1 .., 5 4
Via = Je"cl{ @+ A8 - 7B~ 1568 + 126 F ~ 125 ~ 128t
1 1)z, (L2 1 1
+( 328+ 3—2E)C ( 168+16 )CZ+ZK+ZM(1+CO)
+ §(2+A2)3+%(—1+A1)E eo}, (A.138)
\% = jeC (4 A - A)E” + Lpee-te(leo Ll (A.139)
i FF- A v - T L P e Tl A :
Vi = jeC (4+A + A)E? — L AEE+ B2 (-2 2B (A.140)
1-41 = J€C1 128 1 2 64 L 30 3 3 0 (> .
3 1 1 3
— i 2__ -~ 2 2 = Y E2
Vigq = 16061{128(4+9A1+A2)8 4(8+5A)EE + —E (328 SEE + F )eo} (A.141)



V141 =

Vie-1

V161

Vig1 =

Vip2

V102

Vizo

V1o

Vio2

V122

Vigo

Vi

Va2

V142

Vip3z =

Vip3 =

Vi3
V123
Vio-3

V123

Vig4 =

Vios =
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128

E3}

128 " 3_248E B 1_28
- %SZE - ﬁaE + %é},
+ 1—:;382E - %&E % 53}
- %SZE 32—2;8E2 _ 1_28E3

}

3

32

——(4 +9A; + A)E? + —(8 +5A)EE — —E2 +

|

1
=824
32

1
8

1
) +2C1C3 — CECZ + Esc‘l‘},

Jeo{(%cz - %C )(1+ €+ iaE - 1_];352
I&o {(%Cz + %Cf) (—1 -6 - iSE + %Ez
jeo(C2 - 2C5) {3i(2 AJE + TE + (1168
jeo(C? + 2C») {3%(2 A)E + —E + (1_3
jeo(C2 - 2C») {3i2(2 +ANE - _E N (%3
jeo(CT + 2C7) {si(z + A)E - —E + (%a
jen(C - 202){ 2 T EZ},

JeolC + 202){ e %EZ}’

jeo(C5 - 202){ @8 %ZSE— 1_28EZ}
jen(C? + 2C2) {_ 1_2832 3&285 _ 1_5;‘8,52}
1.

2—4190((31 - 6C1C2 + 8C3)(1 + &),

1 H 3
—9—6160(01—

1.
—ﬂjeo(CE +6C1C> + 8C3)(1 + €o),

6C1C2 + 803)(8 + E),

1.
9—6160(02 +6C1C; + 8C3)(E + E),

1 H 3
—9—6160(01—

6C1C> + 8C3)(E — E),

1.
9—6160(02 +6C1C2 + 8C3)(E - E),

1
= je0(~C1 + 12C3C; — 32C1C3 — 12C5 + 48Cy),

192

192

——Jeo(C4 +12C2C; + 32C1C3 + 12C2 + 48Cy),

1, 1,
)+ gC1Cs + gC1C2 + 4861}’

lees 22

32

Jo

29

(A.142)

(A.143)
(A.144)
(A.145)

(A.146)

(A.147)

(A.148)

(A.149)

(A.150)

(A.151)

(A.152)

(A.153)
(A.154)
(A.155)

(A.156)

(A.157)

(A.158)

(A.159)
(A.160)
(A.161)

(A.162)

(A.163)

(A.164)
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3 1, 1 , 1 1.,
V0o = 4e§{1+ 6e§+8(1 2A)E +4(2+A1)E8 4E c?
2 1 2 1 2 2 2
+[2+ §e§+ 2E+EE-SEP -2 e+ & (A.165)
1 1 9 15 3
Voo = —(-6+3A; - 260)E - —(6 E- —&%E- —&E°- —E°3
2-20 e§{16( +3A; - 26))8 16( +€) 648 648 32

3 3 3
+(§8+ éE)Ci-’- gM(l‘FCO)

+ %(—4 + 5A1 + 3A2)E + §(—2 + A)E

3 3
«+(-36- 3¢ eg}, (A166)

1 9
V220 = 8(2) {—1—6(6 + 3A1 + 2e§)8 + — (6 + e%)E - _SZE alrgEZ

+(§8— §E)c§— §M(1+co)

8~ 8
3 3 3.3
+ _E(4 + AL+ A)E + é(2 - A)E|e + (—58 + éE) eg} , (A.167)
Voo = € i8 5A —A)82+—(4 A)EE + 382+36Ee (A.168)
240 = %0 256 1o 128 . 16° 167 ) '
Vago = eg 3 8+13A + A)E? - (12+7A)8E+ Sees i82—3&5 g2 (A.169)
240 = 1T 128 1 16 160 168 )9 '
1 3 2
Voo = € 528+ 8E (A.170)
~ 1., 3, 11_.., 3 _,
Vago = eg{ 5287+ 350 B - 56E + B (A.171)
3 3 3 3 3
Voo 1 = —egcl{z(1+ €0)? + eg + —82 + gEE - EEZ - =C3+ —Cz}, (A.172)
- 3 2, 2,3 32 3, 3
Voor = €C1 { 71+ @)+ eg *3 8 + gEE - 1B - 5Ci - 5Ca (A.173)
3 (1 ]
Vo1 = gegcl (1 - éAl)a +E+2E+E)e|, (A.174)
3. [ 1 _
Vo1 = —éegcl [(1 = EAl)a +E+2E+ E)eo] , (A.175)
3 (. 1 ]
Voo 1 = éegcl (1+ éAl)a -E+2E-E)e|, (A.176)
3, [ 1 _
Vo —éegcl (1 + EAl)a ~E+2E- E)eo], (A.177)
3 2
Vo4q = —3—2e§cl(8 + EE), (A.178)
Vg1 = 332egcl(52+55), (A.179)
3
Vog 1 = —3—2e§cl(82 - 38E + 2E?), (A.180)
Vo1 = 332egc1(52 - 38E + 2E?), (A.181)
3 2
Voo o = éeg(cl — C1)(1+ 2«), (A.182)

3
Vaoz = éeg(Cf +C1)(1 + 2¢0), (A.183)



Voo
Voo,

\Z7)

Voo =

Vo3

V203

V300 =

V3_20

V320

V3_40

Vas0

V3g1

V301

V3 o 1
V3 o1
V3o g

V321

V32

V302

Vago =

Va0 =

V20 =

1
3
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- (G- CoE + B,
—%e%(@ +C2)(E+E),
- (G - Co)E - B,

(G + CAE - B),

1
—ge%(CE - 30102 + 203),

1
éeg(ci +3C1C2 + 2C3),

3
4

jeg{%(—u A)E - %E +(

jeg{—:—é(2+ A)E + 1 +(

4
3., 1 1_,
eg{s—za +8E8+3—2E},
3., 1 5,
eg{s—za —ZE8+3—2E},

1.
—EJe(S)Cl(1+ 3eo),

1.
> jeC1(1 + 3e),

3.

5 jE3C1(E + E),
3.

-5 JE3C1(E +E),

3.

gJES’C’l(S - E),

3.
—§JE801(8— E).

1.
é]eg(%i — ZCZ)’

1.
5163(305 + 202),

5
3581+ 4e0).

5 5
4 — —
%{328 " 32E}’

5 5
4 —_ —_——
% {328 32E}’

4

4

38—

9

je§{1+ ge§+ 282+ CEE- —E2- §C§+3eo+3e§},

16

3
ZE) 60} 5

3 3
E+ ZE)EO},

31
(A.184)
(A.185)
(A.186)

(A.187)

(A.188)

(A.189)

(A.190)

(A.191)

(A.192)

(A.193)

(A.194)

(A.195)
(A.196)
(A.197)
(A.198)
(A.199)
(A.200)

(A.201)

(A.202)

(A.203)

(A.204)
(A.205)

(A.206)

(A.207)
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Vio1 =

Vo1

Vso0

Vo20

Voao

Voso

Vogo =

Voo1

Vo_21
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36 ey, (A.208)
5
eocl, (A.209)
3.
~20 i€ (A.210)
ivla + ﬁs(zvl — 2V + 5A1Vp + 3AV; + 6A1V)E® — —(esvl + 6V, — 7TA1V,)EE? - 1—16v E2&?
+ ;W + Ea(2W1 + 6Wo — AYW — AW — 10AWH)E? + —(10w1 + TA\W)EE — %WEZ
[ 1
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