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Abstract In case of chiral UA(1) symmetry restoration the mass of the η
′ boson (the ninth, would-be

Goldstone boson) is decreased, thus its production cross section is heavily enhanced. The η′ decays (through
one of its decay channels) into five pions. These pions will not contribute to Bose-Einsten correlations,
thus the production enhancement changes the strength of two-pion correlation functions at low momentum.
Preliminary results on Bose-Einstein correlation functions support the mass decrease of the η

′ boson. In
this paper we propose a method to select pions originating from η

′ decays. We investigate the efficiency of
the proposed kinematical cut in several collision systems and energies with several simulators. We prove
that our method can be used in all investigeted collision systems.

PACS. 2 5.75.-q, 25.75.Gz, 25.75.Nq

1 Introduction

In relativistic gold-gold collisions of the Relativistic Heavy
Ion Collider (RHIC) a strongly interacting quark gluon
plasma is produced [1]. The temperature of this matter
may reach values up to 300-600 MeV [2]. At these very
high temperatures the degrees of freedom are not hadrons
but quarks or gluons. It is expected that the broken sym-
metries of QCD may be partially restored in this matter.

In a three-quark QCD there is a UL(3)× UR(3) chiral
symmetry. According to group theory, U(3) = SU(3) ×
U(1), thus chiral symmetry can be written as SUL(3) ×
SUR(3) × UA(1) × UV (1). From this SUL(3) × SUR(3)
is the flavor-symmetry, which is spontaneously broken to
SUV (3). With this symmetry breaking eight low-mass Gold-
stone bosons are created, associated with the eight pseu-
doscalar mesons: three pions, three kaons and the η. The
UA(1) part is also broken, the ninth light Goldstone-boson
is however missing [3, 4]. This puzzle is solved by the
Adler-Bell-Jackiw anomaly: the UA(1) part of chiral sym-
metry is broken explicitly due to instantons tunneling
between topologically different QCD vacuum states. The
Goldstone-boson appearing with this symmetry breaking
is expected to be massive. It is associated with the η′ me-
son, which has a mass of 958 MeV, significantly higher
than that of the other 8 pseudoscalar mesons.

However, in case of chiral symmetry restoration, if the
UA(1) symmetry is partially restored, the mass of the η′

is decreased [3,4]. It is an important aspect of this picture
that the symmetry has to be still partially restored when
the η′ mesons are created, i.e. the quark-hadron transi-
tion has to happen earlier than the chiral transition. This
seems to be supported by lattice QCD calculations [5].

2 Chiral symmetry restoration and mass
modification of the η

′

As mentioned above, chiral symmetry may be partially
restored in hot QCD matter, and the mass of η′ meson
might be lower than it’s original mass, 958 MeV. How-
ever, the production cross sections of the light mesons are
exponentially suppressed by their mass. Hence without
mass modification roughly two orders of magnitute less η′

mesons are produced than pions. In contrast, decreased
mass η′ mesons will be created more abundantly. The en-
hancement of η′ production, according to the Hagedorn
formula, may be given as [4]:

fη′ =

(
m∗

η′

mη′

)1−d/2

e
−

m
η′−m∗

η′

Tcond (1)

if the mass of the η′ mη′ is decreased to m∗

η′ . Here Tcond

is the temperature of the medium when the η′ mesons are
created, while d is the effective dimension of the expansion.
Thus the number of η′ mesons is closely related to their
mass.

The thermalized quark gluon plasma is created at RHIC
in gold-gold collisions [1] roughly 1 fm/c after the collision.
The matter expands for a time estimated to be around 6-
10 fm/c and cools down to the quark-hadron transition
temperature range 150-170 MeV [5]. The hadrons created
at this point are then propagating freely to the detectors.
Some of them however decay throughout their journey, as
is the η′ meson. It has a mean lifetime of 1000 fm/c, thus
during its life the medium dissolves and the symmetry is
broken again, so the η′ mass increases again at the expense
of its momentum:

m∗

η′

2 + p∗η′

2 = mη′

2 + pη′

2 (2)
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where the starred quantities refer to the in-medium prop-
erties, while the others to the vacuum properties of the η′.
Thus the vacuum momentum of the η′ will be significantly
lower than its original momentum.

The decay of the η′ happens after it regained its vac-
uum mass. One important decay channel is the decay into
two leptons, η′ → l+ + l−, this is investigated in ref. [6]. It
turns out that there is an excess in the dilepton spectrum
at low invariant mass, and this excess might be related to
the η′ enhancement. There is also a decay mode when the
η′ goes into an η and two pions, and the η also decays into
three pions:

η′ → η + π+ + π− →
(
π+ + π− + π0

)
+ π+ + π− (3)

and the overall probability of this decay chain is 10% [7].
The average momentum of the resulting five pions is 138
MeV due to the low momentum of the original η′ [8]. Thus
the η′ decays will have an effect on pion correlation func-
tions. We will investigate this in the next section.

3 Two-pion Bose-Einstein correlations

Final state effects distort two-particle correlation func-
tions. One of the most important final state effect is that
of Bose-Einstein correlations. These can be reviewed as
follows. Definition of the two-particle correlation function
is:

C2 (p1, p2) =
N2 (p1, p2)

N1 (p1)N1 (p2)
(4)

where p1 and p2 are the momenta of the two particles, N1

and N2 are the one- and two-particle invariant momentum
distributions. They are defined as:

N1(p) =

∫
S(x, p)|Ψ1|2d4x (5)

N2(p1, p2) =

∫
S(x1, p1)S(x2, p2)|Ψ1,2|2d4x2d

4x1 (6)

with S (x, p) being the hadronic source function (some-
times noted as emission function), Ψ1(x, p) is the one-
particle wave function and Ψ1,2(x1, x2, p1, p2) is the two-
particle wave function. Latter has to be symmetrized in
case of identical boson pairs. In case of the plain-wave ap-
proximation (neglecting all other final state interactions),
we arrive at the following result (see details in ref. [9]):

C2(p1, p2) = 1 +
S̃(q, p1)S̃(q, p2)

∗

S̃(0, p1)S̃(0, p2)
∗

(7)

where q = p1 − p2 and S̃(q, p) is the Fourier transformed
of the source function (the Fourier transformation is in
x → q). Introducing K = (p1 + p2)/2 and taking into
account p1 ≃ p2, we get:

C2(q,K) = 1 +
|S̃(q,K)|2

|S̃(0,K)|2
. (8)

In the core-halo model [9], the hadronic source is di-
vided into two parts: a core and a halo. The core consists of
the primordial particles and decay products of very short
lifetime resonances. This part of the source has a small
size: roughly 10 fm at maximum. The halo consists then
of decay products of long lived resonances, such as η, η′

or K0
S . The halo hadrons are created very far from the

core (note the very large lifetime of the previously men-
tioned particles). When measuring correlation functions
however, due to finite momentum resolution of the detec-
tors very small momentum differences cannot be resolved,
i.e. pairs with such similar momenta are regarded as one
by the detectors. In the Fourier transformation, large sizes
correspond to small momenta, thus the halo correlations
are not seen in measurements. Therefore we introduce the
core source function, and denote it by SC(q,K) (and use
the H subscript for the halo part). It holds that

S̃(q,K) = S̃C(q,K) + S̃H(q,K) (9)

However, for measureable q values (at least several MeV

values), S̃(q,K) = S̃C(q,K) (again, large size of SH cor-

responds to small width of S̃H). Let then the number of
particles in the core be NC , number of particles in the
halo be NH . Clearly, for q = 0:

S̃(0,K) =
NC +NH

NC
S̃C(0,K) (10)

thus finally

C2(q,K) = 1 + λ
|S̃C(q,K)|2

|S̃C(0,K)|2
(11)

with λ being

√
λ =

NC

NC +NH
(12)

Thus

C2(q → 0,K) = 1 + λ∗ (13)

The λ parameter is thus the q → 0 extrapolated value of
the correlation function C2, and it depends on the ratio of
the core to the halo. Thus if the mass of the η′ is decreased,
more of it are produced (see in the previous section), their
decay pions will be also be enhanced in number, so the
halo will be larger. This means, that the λ parameter is
decreased [8]. Hence η′ mass and λ value are connected.

It was found [4, 10, 11] that the λ parameter is indeed
decreasing at the kinematical domain of η′ decay pions.
However, it is not experimentally proven that the η′ decay
pions are causing the decrease. In this paper we investigate
a method to kinematically filter out pions from η′ decays.
If applied to the experimental sample, in case of an η′

mass modification the λ decrese will vanish.
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4 Kinematical domain of pions from η
′

decays

Our method is based on the invariant mass of pions from
the decay chain of eq. (3). The invariant mass of pion pairs
in this decay is:

m2
inv = (E1 + E2)

2 − (p1 + p2)
2

(14)

with E1 and E2 being the energy of the pions, p1 and p2
their three-momentum. Using E2 = p2 +m2 we get

m2
inv =m2

1 +m2
2 + 2

√
m2

1 + p21

√
m2

2 + p22 − 2p1p2 cosϕ

=2m2
π + 2

√
m2

π + p21

√
m2

π + p22 − 2p1p2 cosϕ (15)

where ϕ is the angle between the two pions. If being in
the rest system of the η′, Eη′ = mη′ holds, and due to
momentum conservation pη = −p1− p2 is also true, so we
get

mη′ =
√
m2

π + p21 +
√
m2

π + p22+
√
m2

η + p21 + p22 + 2p1p2 cosϕ (16)

which can be substituted into eq. (15). The η can take
most of the energy if p1 = p2 (thus ϕ = 0), and it has
the least energy if ϕ = π. This yields a lower and an up-
per bound for m2

inv, and the result for the interval will be
0.078–0.168 GeV4/c2. Similarly for the second part of the
decay chain the same calculation can be done, and we get
0.078–0.166 GeV2/c4. This can be checked in our simula-
tions, and the intervals could been verified. Based on the
simulations, we chose the 0.075–0.171GeV2/c4 interval for
all pairs. Thus this interval provides a selection method of
η′ decay pions. However, it is not the most effective, since
a significant fraction of all other pion pair is also in this in-
terval. Thus we also checked the invariant mass of all four
pions from this decay. It falls in the 0.43–0.69 GeV2/c4

interval, which, together with the two-pion invariant mass
cut, yields an effective method of kinematical selection of
η′ decay pions. See example plots on fig. 1, from 200 GeV
center-of-mass energy p+p collisions, simulated with HI-
JING 1.411.

5 Method of tagging η
′ decay pions

Our method, based on the previous section, is the follow-
ing. Let us have for example a π+ from the experimen-
tal sample. Let us then select any π−, π+,π− to form a
quadruplet. We then check if the invariant mass of the +,−
pairs is in the above mentioned interval, and also check if
the invariant mass of the quadruplet is in the mentioned
interval for quadruplets. If for our starting π+ there exist
three other pions (one same sign and two opposite sign)
with which all invariant mass criteria are fulfilled, we tag
this pion “found”, as quite probably it comes from an η′

decay. A different method is, when we start from a π+,π+
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Figure 1. Invariant mass distributions for
√

s =200 GeV p+p
collisions from Hijing simulations. The first (second) plot shows
the minv distribution of all pairs (quadruplets). The last three
plots show the minv distribution for pairs and quadruplets
coming from η

′ (or from the η of the same decay).

pair and select an opposite sign pair to form a quadruplet.
Then we check if the quadruplet and the two +,− pairs
also fulfill the invariant mass criteria, and if yes, we tag
this pair “found”. This latter method is expected to have
one advantage compared to the single particle method: the
probability of “finding” a non-η′ pair than a non-η′ pion
is expected to be smaller. If applied to experimental data,
tagged pairs or pions can be removed from the data thus
creating a sample poor in η′ decay pions.

In simulations, we can determine if the pair of the par-
ticle comes from an η′ decay, so the efficiency of the selec-
tion method can be tested. Whether using the pair or the
single particle method, we can form four different groups
of them:

a) Comes from an η′ and fulfills the minv criteria
b) Comes from an η′ and does not fulfill the minv criteria
c) Does not come from an η′ and fulfills the minv criteria
d) Does not come from an η′ and does not fulfill the minv

criteria

Here fulfilling the minv criteria means that, with our pair
or particle, a quadruplet can be formed that fulfills all
minv criteria. Ideally all η′ pions go into the first group,
while all others fall into the last group. Let us call the
number of pions (or pairs in the other method) in the
four groups Na, Nb, Nc and Nd, respectively. Then the
number of all pions (pairs) is Na+Nb+Nc+Nd, while all
pions (pairs) from an η′ are Na +Nb, and the ratio of the
number of all pions (pairs) from an η′ over the number
of all others is (Na + Nb)/(Nc + Nd) before the filtering.
This ratio is Nb/Nd after applying our method. Both ratios
are important, since they are directly connected to the λ
parameter. The “goodness” of our method is basically the
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Figure 2. Geometrical cuts used in the simulations. PHENIX
has the smallest acceptance, thus the efficiency is the worse
there.

double ratio (Na + Nb)/(Nc + Nd) over Nb/Nd, as this
shows whether the cleaned sample contains less η′ decay
pions.

Note that the kinematic acceptance of our detectors
clearly distorts our method. It is possible that not all four
pions from an η′ are detected, thus the required quadru-
plet cannot be formed in the sample. In this case not all
pions (pairs) will be found (and filtered out), this is what
we call efficiency (and can be calculated as Na/(Na+Nb).
Also, if the sample is significantly large, there will be
a high probability of random quadruplets to fulfill the
minv criteria. This we call loss, and can be calculated as
Nc/(Nc + Nd). This causes our experimental sample to
be smaller, thus we will lose statistics. With proper align-
ment of the minv intervals these effects can be minimized.
Goal of present paper is however to investigate the effi-
ciency and loss connected to our the method. A similar
method was investigated in ref. [12] for e+e− collisions.
We test the method in p+p and Au+Au collisions, at sev-
eral center-of-mass energies.

6 Results

We used two simulations to test our method: Pythia [13]
(version 8.135) and Hijing [14] (version 1.411). In the lat-
ter, proton-proton and gold-gold collisions could also be
analyzed, while Pythia was used only in case of proton-
proton collisions. We also simulated the geometric accep-
tance of the detectors. In case of the 200 GeV RHIC en-
ergy, we used the geometry of STAR and PHENIX detec-
tors, while in case of 14 TeV energy, we used the geometry
of ALICE and CMS detectors. See details on fig. 2.

In the next part, we will give the following three num-
bers for each type of simulation:

Efficiency of finding η′ pions:
Na

Na +Nb
(17)

Loss (found non-η′ pions):
Nc

Nc +Nd
(18)

Change of η′ fraction:
Nb

Nd

/
Na +Nb

Nc +Nd
(19)

The optimal value for efficiency is 1 (in this case we could
cut out all pions coming from η′ mesons), 0 for loss (in
this case we kept all non-η′ pions) and 0 for the third, the
purification ratio (if it is zero, then after the cut, there are
no η′ decay products at all).

We generated 1 000 000 p+p
√
s = 200 GeV events

with both Pythia and Hijing. Geometrical cuts largely in-
fluence our method, but it is working in all cases. However,
in case of PHENIX cuts, the efficiency is very low, because
a large fraction of pions are not detected, thus we can’t
“find” them to form quadruplets. See fig. 3 for details. We
also generated 10 000 p+p

√
s = 14 TeV events. Here due

to the larger average pion number the efficiency is much
larger, and the purification ratio is very good. See details
on fig. 4 for details. At both energies, the pair method is
better than the single particle method. We finally gener-
ated 100 Au+Au

√
sNN = 200 events with Hijing. Here

only the pair method was working, as essentially all single
particles are found, due to the very large statistics. See
fig. 5 for details. Note that if we “find” a pair or particle
that is not coming from an η′, then it will be a loss for
us, as it decreases our experimental sample. For example
if the loss is 50%, then the sample is reduced by a factor
of 2, so the statistical errors will be increased by a factor
of

√
2.

7 Summary

We investigated a method of rejecting η′ decay products in
an experimental sample from high energy collisions. Such
a method, if used experimentally, would help to validate
signs of partial chiral symmetry restoration. Our method
proposes kinematic cuts in the invariant mass spectrum
of pion pairs and quadruplets. The basic idea is to take
a given particle or pair, complement it to a quadruplet
with any other random pions, and check if they fulfill the
kinematic criteria. If there is such a complementation for
the given pair or particle, that specific pair or particle can
be tagged as coming from an η′. We find that our method
is working for several systems and several energies. We
used to simulations for cross-checking purposes. The most
important system is that of

√
sNN =200 GeV Au+Au

collisions, the pair version of our method is working there.
This method can thus be used in an experimental analysis
to search for partial chiral symmetry restoration and the
modification of the η′ mass.
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