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Wave function of the radion with BPS branes

G. Cynolter1 2

Institute of Theoretical Physics, ETH
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Abstract

We investigate coupled gravity and a bulk scalar field on a slice of AdS5 bulk
with special BPS branes at the two ends. With the special scalar potentials on the
branes the scalar field does not stabilize the size of the orbifold. With a careful
treatment of the general coordinate invariance the complete tensor-scalar spectrum
is presented. There are two massless zero modes in the scalar sector, the radion
and a dilatonic zero mode. The scalar KK modes acquire masses at the order of the
warped mass scale. The four dimensional effective action is of tensor-scalar type.

1 Introduction

Recently there has been a growing interest in extra dimensional models where the
standard model fields localized on a brane. Randall and Sundrum proposed a sce-
nario (RS1) with one extra dimension, two branes of opposite tension at the orb-
ifold points of an AdS bulk [1]. This setup was motivated by the recent progress
in string/M-theory and can be realized in string theory [2], [3]. Poincare invariant

solution requires a finetuning of the bulk cosmological constant Λ = −6k2

κ2 and the

brane tensions λP lanck = −λTeV = 6k
κ2 . The exponentially warped metric can gener-

ate the hierarchy between the Planck and the electroweak scale with moderate value
parameters krc ∼ O(40). However, there is an exact solution for any rc distance of
the two branes. A change in rc is described by a four dimensional massless scalar
field, the radion [4]. It couples to matter like a Brans-Dicke scalar and must have
a large Brans-Dicke parameter or a mass to recover standard 4-dimensional gravity
[5], [6].

Goldberger and Wise proposed a mechanism with a massive bulk scalar field
to stabilize the radion [7] . They added special steep λi(Φ) brane potentials. The
competition between the kinetic and potential terms generates a minimum in the
effective potential and determines rc. Approaches based on naive ansatz without
including the backreaction found that the radion acquires an O(TeV) mass and the
couplings to standard model fields are ∼ 1/TeV [5]. Effective field theory calculation
gave the same radion mass in [8]. Tanaka, Montes [9] and later independently
Csáki et al. included the backreaction and derived a single equations for the scalar
degrees of freedom based on Lorentz covariance of the linear perturbations [10]. The
equation together with the boundary conditions at the branes defines a hermitic
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operator only in special cases, like the stiff potential limit, when ∂2λi

∂Φ2 → ∞. In this
limit the physical results agree with the naive calculations.

Another mathematically well defined case is when the brane potential is equiva-
lent to the superpotential that generates the bulk scalar potential (13), we call these
BPS branes. This type of models with exponential potentials can possibly arise from
the bosonic sector of dimensionally reduced supergravity theory [11]. In this letter
we give the complete spectrum of linear perturbations around an exact background
solution of two flat BPS branes in 5 dimensions. This scenario was analyzed in
[12] using two different Gaussian normal coordinate patches with respect to the two
branes following the method of [4]. They discussed only one scalar perturbation
the massless radion. Solving the equations with two flat branes we find still one
more massless dilatonic scalar and the KK tower for the scalar field. This model
does not solve the moduli problem but the complete perturbative spectrum can be
understood, the limit to the Randall-Sundrum case is smooth and we hope that it
gives help to solve the general case with detuned brane potentials. The low energy
effective theory is of scalar-tensor nature and generally it cannot be accepted by
phenomenology and cosmology.

The paper is organized as follows. In section 2. we present the setup and discuss
the background solution using the technique of [13]. In section 3. we consider the
simple limit of the Randall Sundrum scenario with an additional bulk scalar field. In
section 4. we fix the gauge, solve the linearized equations and present the complete
spectrum and we conclude in the last section.

2 The model

In a 5 dimensional ( xa = (xµ, y = x5) ) M4 × S1/Z2 manifold, there are scalar
field, gravity and two flat branes at the orbifold fixed points y = 0, rc. Latin indices
run from 1..5 and greek indices 1..4 and prime denotes the derivation with respect
to the proper coordinate y. 4-dimensional greek indices raised and lowered by ηµν .
The action we consider is

S =

∫

d5x
√
g

(

−M3R+
1

2
gab∇aΦ∇bΦ− V (Φ)

)

−
∑

i=P,T

∫

d4x
√
giλi(Φ), (1)

gi is the induced metric on the brane, κ2 = 1/(2M3) is the 5D cosmological constant,
the integration understood on the orbifold.

We want to investigate perturbations around a background solution. The ansatz
for solving the Einstein scalar coupled system that respects Lorentz invariance is

ds2 = a2(y)ηµνdx
µdxν − dy2, (2)

Φ(x, y) = Φ0(y). (3)

The warp factor a(y) and Φ0(y) are continuous even functions. The first derivatives
may have jumps, the second derivatives delta singularities at the branes. We use
the following form of the Einstein equations

Rab = κ2T̃ab = κ2
(

Tab −
1

3
gabg

cdTcd

)

. (4)
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The gravitational and scalar equations are the following.

4

(

a′

a

)2

+

(

a′

a

)′

= −2κ2

3
V (Φ0)−

κ2

3

∑

i

λiδ(y − yi) (5)

(

a′

a

)2

= −κ2

6
V (Φ0) +

κ2

12
Φ′2
0 (6)

Φ′′
0 = −4

a′

a
Φ′
0 +

∂V (Φ0)

∂Φ
+
∑

i

∂λi

∂Φ
δ(y − yi) (7)

The boundary conditions are

[

a′

a

]

yi

= −κ2

3
λi,

[

Φ′
0

]

yi

=
∂λi

∂Φ
. (8)

With Z2 symmetry and working in the (0, rc) interval the jump is twice the value of
the derivative calculated from the inside of the interval and there is sign difference
at the two branes.

An analytic solution of these equation is generated by the technique proposed
by DeWolfe et al.[13]. With one W (Φ) superpotential a flat solution is generated
via

Φ′
0 =

1

2

∂W

∂Φ
, (9)

a′

a
= −κ2

6
W (Φ0), (10)

V (Φ0) =
1

8

(

∂W (Φ0)

∂Φ

)2

− κ2

6
W (Φ0)

2. (11)

These solve the equations of motions if the boundary conditions for W (Φ) are ful-
filled (+ for y = 0 and - for y = rc, Φi = Φ0(yi)).

λi(Φi) = ±W (Φi)
dλi

dΦ
(Φi) = ±dW

dΦ
(Φi) (12)

Exactly one fine tuning is needed to find a flat background solution. There is
no need for supersymmetry to find a solution though the bulk plus brane action
completely vanishes substituting the solution. This technique reduces the coupled
system of differential equation to decoupled ordinary differential equations and can
be solved (generally numerically) for arbitrary V (Φ) and λ1(Φ) tuning one additive
constant in λ2(Φ). Explicit solution can be constructed defining first W (Φ), like
W (Φ) = c− uΦ2 or W (Φ) = eαΦ.

We will investigate perturbations in models where the fine tuning of the scalar
brane- and superpotential (12) is valid at all order for arbitrary Φ.

λi(Φ) = ±W (Φ) (13)

We call this type of branes BPS branes. These branes allow solutions in the bosonic
sector respecting 5 dimensional bulk+brane supersymmetry, the BPS condition pre-
serves half of the supercharges corresponding to unbroken N=1 supersymmetry in 4
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dimensions [15]. This type of models with exponential potentials can possibly arise
from the bosonic sector of dimensionally reduced supergravity theory [11]. The
localization of scalar modes were discussed with one brane in [16] based on O(3)
symmetry in the generalized longitudinal gauge of [17].

There is always a flat background solution for any value of rc. The change of
rc is described by a massless modulus field, the radion in the low energy effective
theory. There is an additional dilatational invariance of the action with BPS branes
leading to a second zero mode. The value of the scalar field on the Planck brane
is an integration constant, a free parameter of the action. Choosing a definite
background solution this symmetry is broken spontaneously and the corresponding
massless Goldstone boson is expected in the scalar spectrum. In the limit of the
Randall-Sundrum scenario this invariance is obvious and is presented in the next
section.

To obtain an analytical solution for the KK modes the following particular po-
tential will be used

W (Φ) = ±λi(Φ) =
6k

κ2
eαΦ. (14)

The solution contains two integration constants c0, CP , usually both chosen to 1

a(y) = c0(CP − 3α2

κ2
ky)

κ
2

3α2 , (15)

e−αΦ0(y) = (CP − 3α2

κ2
ky). (16)

In the limit α → 0 we get back the AdS e−ky profile of the Randall-Sundrum
scenario and the scalar field decouples from gravity. We deal with solution with
0 < α2 < κ2

3krc
to avoid naked singularities in the bulk. This solution generates a

hierarchy of a(rc) = (1 − 3α2

κ2 krc)
κ
2

3α2 . The dilatational invariance corresponds to

the free choice of CP = e−αΦ0(0) the value of the scalar field on the Planck brane.
It’s change can be compensated by a change in k, c0 to have the same warp factor
a(y) and superpotential. For particular solutions we use c0 = CP = 1. In the next
section we discuss the special limit of the Randall-Sundrum scenario.

3 RS1 with bulk scalar field

In the RS1 scenario specially tuned bulk and brane cosmological constants provide
a warped solution. In a more realistic model a dynamical mechanism is needed to
produce the brane and bulk constants. A simple proposal is to add a bulk scalar field
which has constant bulk and brane potentials. This is the limit of the previously
presented model with

W (Φ) = λ(Φ) =
6k

κ2
= constant, (17)

V (Φ) = Λ = −6k2

κ2
. (18)

The classical background solution

a(y) = e−k|y|, Φ0(y) = ΦRS = constant (19)
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has two invariances. One is related to the free choice of the distance rc between the
two branes, the other is the freedom that we can shift the constant scalar field ΦRS

to ΦRS + c1, it is also an exact solution with the same warp factor.
In the linearized theory the former provides the massless radion [4] the latter

zero mode can be identified as follows. The linearized gravitational (hab) and scalar
(φ(x, y)) perturbations around (19) decouple, it was also realized in [16],[20]. The
gravitational perturbations are as in RS1, a massless radion with the wavefunction

F (x, y) = −a′

a

1

a2
f(x) = k

1

a2
f(x), ✷f(x) = 0, (20)

a massless spin-2 graviton localized on the Planck brane and its KK tower.
The scalar field perturbations are determined from

✷5φ(x, y) = 0, (21)

with the boundary condition φ′(x, yi) = 0. This is the free Klein-Gordon equations
on an AdS5 background, with ✷ = ✷4 = ∂µ∂µ

✷5 = −∂2
z − 4

a′

a
∂z +

1

a2
✷. (22)

The scalar field spectrum contains a dilaton zero mode

φ(x, y) = f1(x), ✷f1(x) = 0, (23)

reflecting the invariance of the action against the shift of the constant value of
the scalar field. The background solution brakes this symmetry spontaneously and
this zero mode is the corresponding Goldstone boson. This zero mode mixes with
gravitational perturbations if the linearized scalar equations are coupled to gravity.

We solve the equation for the KK modes in Schrödinger basis: change to conform
flat background by dy = a(z)dz with a(z) = 1/(1 + k|z|) and rescale the field by

φ(x, z) = eipxΦ′
0a

− 3

2 φ̃(z) also changing to mass eigenvectors with ✷φi = −m2
iφi.

φ̃′′ −
(

9

4

(

a′

a

)2

+
3

2

(

a′

a

)′
)

φ̃+m2φ̃ = 0 (24)

The boundary condition is (a−
3

2 φ̃(z))′ = 0. The potential term multiplying φ̃ can
be written as

V (z) =

(

a
3

2

)′′

a
3

2

=
(4− 1

4 )k
2

(1 + k|z|)2 . (25)

The massive solutions are determined by Bessel functions

φ̃ =
√

1 + k|z|
(

AJ2

(m

k
(1 + k|z|)

)

+BY2

(m

k
(1 + k|z|)

))

. (26)

The ratio A/B determined from one boundary condition the mass eigenvalues are
determined at the other brane and are of the order of the TeV scale.

The scalar spectrum then contains two zero modes and a KK tower. Turning
on smoothly the bulk and brane scalar field potentials continuous deformation of
the spectrum is expected. Quantum corrections are also expected to develop a
nontrivial bulk and brane potential for the scalar field. The linearized equations for
the action (1) is presented in the next section.

5



4 Linear perturbations

In this section we give the equation of motion for general linear perturbations keep-
ing the branes at the fixed orbifold points and discuss the role of gauge freedom. A
general perturbation is

δgµν = a2hµν(x, y), δg5ν = h5ν(x, y)
δg55 = h55 = −2G(x, y),
δΦ = φ(x, y). (27)

Infinitesimal general coordinate transformations

x5 → x5 + ξ5, xµ → xµ + ξµ, (28)

must fulfill the orbifold symmetry conditions, ξµ continuous and even, ξ5 odd and
vanishes at the branes.

ξµ(x, y + yi) = ξµ(x, y − yi) (29)

ξ5(x, y + yi) = −ξ5(x, y − yi) (30)

ξ5 gauge transformations moving the orbifold fixed points are not allowed in this
approach. The infinitesimal change of the background solution is understood as a
change in the perturbations.

δhµν = (ξµ,ν + ξν,µ)− 2
a′

a
ξ5ηµν

δh5µ = ξ5,µ + a2ξµ,5
δh55 = 2ξ′5.
δφ = −Φ′

0ξ5

The offdiagonal h5µ components can be transformed out with

ξµ = −
∫

dy
1

a2(y)
h5µ, ξ5 = 0. (31)

The branes are not moved in the 5th dimension.
Without loss of generality the Einstein equation can be used without offdiagonal

linear perturbation. The metric is

ds2 = a2(y)(ηµν + hµν(x, y))dx
µdxν − (1 + 2G(x, y))dz2. (32)

(31) was our first gauge choice and there is a restricted gauge degree of freedom to
keep h5µ = 0 . ξ5(x, y) is constrained by the orbifold conditions (30) and

ξµ(y, x) = −
∫ y

0
dy1

1

a2(y1)
ξ5,µ(x, y1) + ǫµ(x). (33)

In what follows we work on the interval (0, rc) and get the fields on the orbifold
using the Z2 symmetry.

The linearized equations are the following, ’55’, ’5µ’ and ’µν’ respectively.

✷G

a2
+ 4

a′

a
G′ +2

(

4
a′2

a2
+

(

a′

a

)′)

G− 1

2a2
(

a2h′
)′
= (34)

κ2

[

2

3

(

Φ′′
0 + 4

a′

a
Φ′
0

)

φ+ 2Φ′
0φ

′ +
2

3

∑

i

(

∂λi

∂Φ
φ+ λiG

)

δ(y − yi)

]

.
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3
a′

a
G,µ +

1

2

(

hαµ,α − h,µ
)′

= κ2Φ′
0(y)φ,µ(x, y) (35)

−G,µν −
[

a′aG′ + 2

(

4a′2 + a2
(

a′

a

)′)

G

]

ηµν +
1

2a2
(

a4h′µν
)′
+

1

2

a′

a
h′a2ηµν+

+
1

2

(

2hλ(µ,ν)λ − h ,λ
µν,λ − h,µν

)

= (36)

−2κ2

3
a2ηµν

(

Φ′′
0 + 4

a′

a
Φ′
0

)

φ+
κ2

3

∑

i

a2ηµν

(

∂λi

∂Φ
φ+ λiG

)

δ(y − yi)

Here h = hµµ, ✷ = ∂µ∂µ. The scalar equation is

1

a2
✷φ− φ′′ − 4

a′

a
φ′ +

d2V

dΦ2
φ =

(

1

2
h′ −G′

)

Φ′
0 − 2G

dV

dΦ
−
∑

i

(

d2λi

dΦ2
φ+G

dλi

dΦ

)

δ(y − yi). (37)

The singular terms at the branes define boundary conditions. The complete 5µ
equation is valid also at the branes. The 55 boundary condition is the trace of
µν boundary condition calculated from (36). It is equivalent to the Israel jump
equation calculated with the extrinsic curvature . From µν (36) we get

h′µν − 2
a′

a
G(x, y)ηµν +

2κ2

3
Φ′
0φηµν = 0 at y = yi. (38)

Already the leading order boundary conditions and Z2 symmetry were used. The
scalar equation gives

±2φ′(x, yi) =
d2λi

dΦ2
φ(x, yi) +

dλi

dΦ
G(x, yi). (39)

The equations are not idependent. The Bianchi identities ensure that from the
15 Einstein equations are only 10 independent and the bulk scalar equation can
be derived from the Einstein equations with differentiation and taking linear com-
binations. The scalar boundary condition presents a meaningful constraint. The
equation are solved for special BPS branes fulfilling (13).

4.1 Lorentz decomposition of hµν

To solve the equations we decompose hµν in a Lorentz covariant way. It contains
a TT (transverse traceless) symmetric tensor (5 components), one divergencefree
vector (3) and two scalars (1+1) giving 10 components.

hµν = h̃µν(x, y) +Aµ,ν(x, y) +Aν,µ(x, y) + ∂µ∂νb(x, y)− F (x, y)ηµν (40)

Here

h̃νµ,ν = 0, h̃µµ = 0, (41)

Aµ
,µ = 0. (42)
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The components can be uniquely defined if the perturbations are assumed to be
Lorentz covariant as the background solution is Lorentz invariant and fulfill

✷Aµ 6= 0, ✷b 6= 0, (43)

to have nonvanishing trace or divergence in hµν . They are defined by

✷
2b =

4

3

(

∂α∂β −✷
1

4
ηαβ

)

hαβ , (44)

F =
1

4
(−h+✷b) , (45)

✷Aµ =
(

hλµ,λ + F,µ −✷b,µ

)

. (46)

This sequential definition of components ensures that F,✷b describe the complete
trace and F, b,✷Aµ describe the whole divergence of hµν .

3 The TT part is defined
as the vector and scalar parts subtracted from hµν . h̃µν can still contain scalar and
vector TT combinations but those will be proved to be gauge degrees of freedom as
in four dimensional gravity.

Gauge transformations of the components can be defined as

δφ = −Φ′
0ξ5(x, y), (47)

δG = −ξ5(x, y)
′, (48)

δF = 2
a′

a
ξ5(x, y). (49)

The last two transformation can be used to fix ξ5(x, y) without moving the branes
and setting the F (x, y)−G(x, y) difference only x dependent. Make a gauge trans-
formation with

a2ξ5(x, y) = −
∫ y

0
a2(y1)(F (x, y1)−G(x, y1))dy1 + χ(y)

∫ rc

0
a2(F −G)dy1,

χ(y) =

∫ y

0 a2(y1)dy1
∫ rc
0 a2(y1)dy1

.

This ξ5 fulfills the orbifold condition and it is completely fixed. The gauge transfor-
mation was motivated by the work of Kubyshin et al. who have found the radion
wave function with fixed flat branes [14]. In the new gauge

Fn(x, y)−Gn(x, y) = f∆(x) =
1

∫ rc
0 a2(y1)dy1

∫ rc

0
a2(F −G)dy1 (50)

We work in this gauge and drop the n index in what follows. The remaining gauge
degree of freedom is

ξµ = ǫµ(x), (51)

which can be only used to set the two helicity state of the massless four dimensional
graviton. The gauge transformation of the other components is

✷δb = 2ǫµ,µ , if ✷ǫµ,µ 6= 0 (52)

δAµ = ǫµ , if ✷ǫµ 6= 0, ǫµ,µ = 0 (53)

3A subtlety of the decomposition that hµν only defines ✷2b while in the definition of F,Aµ purely ✷b
appears.
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Untill this point the equations of motion were not used and the gauge could
be partially fixed. In what follows we use the Einstein equations and show that
Aµ(x, y), b(x, y) can be gauged away and h̃µν contains only the graviton and its KK
tower. The single F (x, y) field will describe the massless radion and the scalar field
together.

4.2 Solving the Einstein equations

The equations can be written up with the general decomposition of hµν . The 5µ
equation (35) gives

1

2
✷A′

µ = κ2Φ′
0(y)φ,µ(x, y)−

3

2
F ′
,µ − 3

a′

a
G,µ. (54)

Different Lorentz spin perturbations decouple and we get

A′
µ(x, y) = 0, (55)

as it was defined as ✷Aµ 6= 0. The solution is

Aµ(x, y) = fµ(x), fµ
,µ 6= 0, ✷fµ(x) 6= 0. (56)

It can be gauged to nothing with

ǫµ(x) = −fµ(x). (57)

The RHS of (54) gives setting one y-dependent integration constant zero

2κ2

3
a2Φ′

0φ = (a2G)′. (58)

In the µν Einstein equation (36) as the result of assumed Lorentz covariance the
∂µ∂ν derivatives terms decouple from the TT and ηµν part and give the equation

1

a2
(F −G),µν +

1

2a2
(

a4b′,µν
)′
= 0. (59)

The general solution sending two integration constant in the infinite x to zero is

b(x, y) = b1(x) + b2(x)

∫

1

a4
+ 2f∆(x)

∫

1

a4

∫

a2 , if ✷f∆(x) 6= 0. (60)

The trace of the µν boundary condition (38) reads

✷b′ − 4

(

F ′ + 2
a′

a
G− 2κ2

3
a2Φ′

0φ

)

= 0. (61)

The (58) solution of 5µ is also valid at the branes giving with ✷b 6= 0

b′(x, yi) = 0. (62)

At y = 0 it sets b2(x) = 0 and at rc f∆(x) = 0. The remaining solution in b(x, y)
can be gauged to zero by

ǫλ,λ(x) = −1

2
b1(x). (63)
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If ✷f∆(x) = 0 then using the TT part of the ’µν’ equation, one gets f∆(x),µν = 0
and f∆(x) = 0.

We proved using the Lorentz covariance of the linear perturbations that the
following gauge can always be chosen. There is a TT tensor and a single F (x, y)
scalar perturbation (F = G).

hµν = h̃µν − F (x, y)ηµν (64)

h55 = −2F (x, y) (65)

2κ2

3
Φ′
0φ = F ′(x, y) + 2

a′

a
F (x, y) (66)

This gauge is called Newton gauge by Tanaka and Montes in [9] and was used in
[10]. To our knowledge this gauge choice is correct in the presence of two BPS
branes. The remaining gauge degree of freedom, ✷ǫµ(x) = 0 can transform out the
3 non-physical component of the massless graviton.

The scalar and the spin-2 TT perturbation decouple. The TT equation is

1

2a2

(

a4h̃′µν

)′
− 1

2
✷hTT

µν = 0, (67)

together with the boundary condition

h̃′µν(x, yi) = 0. (68)

The boundary condition only allow the massless solution of

h̃µν = hGµν(x) (69)

the massless graviton with 2 helicity states. It is localized at the Planck brane with
larger warp factor. There is also a massive graviton KK tower, with 5 degrees of
freedom. The KK modes are not localized.

Upon using the Newton gauge relation (66) the Einstein boundary conditions
automatically fulfilled. In the bulk the scalar part of the Einstein and the Klein-
Gordon equations are equvalent.

1

2a2
✷F − 1

2
F ′′ +

(

Φ′′
0

Φ′
0

− a′

a

)

F ′ + 2

((

a′

a

)

Φ′′
0

Φ′
0

−
(

a′

a

)′)

F = 0 (70)

This is accompanied by the scalar boundary condition (39). Eliminating φ(x, y) it
is

(a2F )′′ −
(

2
a′

a
+

Φ′′
0

Φ′
0

± 1

2

d2λi

dΦ2

)

(a2F )′ + 2

(

a′

a

)′

(a2F ) = 0. (71)

This boundary condition contains a second derivative, it makes generally the opera-
tor in the radion differential equation non-hermitic and causes the hermiticity prob-
lem observed in [10]. The different mass eigenmodes are not orthogonal to each other
and does not serve as a basis for expanding a general solution. The bulk equation
can be used to eliminate the second derivative but then the d’Alembertian appears
with different eigenvalues for different eigenfunctions. This simplified boundary
condition is

(

Φ′′
0

Φ′
0

± 1

2

d2λi

dΦ2
(Φ0)

)

(a2F )′ +✷(F ) = 0 at y = 0, rc. (72)
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It is generally still not hermitic, though with BPS branes the first term vanishes as
Φ′′

0

Φ′

0

= 1
2
d2W
dΦ2 . The

✷F (x, yi) = 0 (73)

boundary condition defines a hermitic operator for massive perturbations. Practi-
cally there is no boundary condition for the massless solutions.

4.3 Massless scalar perturbations

There are two independent massless modes as the boundary condition (73) is auto-
matically fulfilled. The radion differential equation can be written as

(

a′

a

)′

(

a′

a

)







1

a2

(

a′

a

)2

(

a′

a

)′

(

a2
1
a′

a

F

)′






′

− ✷

a2
F = 0 (74)

The wavefunction of the massless radion is

FR(x, y) = FR(y)r(x) = ǫ(y)
a′

a

1

a2(y)
r(x) ✷r(x) = 0, (75)

where ǫ(y) is the sign function and it makes the radion wavefunction even under

Z2. The radion appears in the scalar field perturbation as φR(x, y) = − Φ′

0

2a2
r(x).

In the limit of no scalar field (75) gives back the result of Charmousis et al. [4]
FR = −ke2kyr(x). The radion describes the relative free motion of the branes.
With a gauge transformation of

ξ5(x, y) = − 1

2a2
r(x), (76)

the radion solution is completely transformed to a scalar TT mode and the relative
motion of the branes. Keeping h5µ = 0 with (33) after this gauge transformation
the bulk metric is

hµν = h̃µν + r,µν(x)

∫ y

0

1

a4
− Fs(x, y)ηµν (77)

h55 = −2Fs(x, y) (78)

2κ2

3
Φ′
0φs = F ′

s(x, y) + 2
a′

a
Fs(x, y). (79)

Fs, φs here only describes the scalar field perturbations. With BPS branes this
gauge transformation is well defined and the relative motion of the branes is

∆rc =
1

2

(

1

a2(0)
− 1

a2(rc)

)

r(x). (80)

This single radion solution was analyzed in [12] without the dynamics of the scalar
field.

The scalar field has a zero mode and a complete KK tower. The even massless
scalar solution of (74) with flat branes is

FD(x, y) = FD(y)f1(x) =
a′

a

1

a2(y)
f1(x)

∫ y

0
dy1a

2

(

a′

a

)′

(

a′

a

)2 , ✷f1(x) = 0. (81)
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This is the dilatonic zero mode of the scalar field, it is the Goldstone boson of the
spontaneously broken dilatational invariance of the action. It appeared as adjusting
a meaningless constant in the limit of the Randall-Sundrum scenario with decoupled
scalar field. Brax et al. did not discuss this second zero mode in [12]. They were
aware of two scalar zero modes [18] and recently studied the cosmological evolution
of them [19].

The extra dilatonic zero mode given in (81) vanishes on the Planck brane and its
wavefunction is the radion wavefunction multiplied with an extra y-function. The
two solutions are not orthogonal to each other, they can be orthogonalized with
Gram-Schmidt method, once a scalar product is defined on the interval (0, rc). Two
solutions can be distinguished also on physical grounds. The dilatonic zero mode
(81) also describes a relative motion of the branes through changing the proper
distance

∫ rc
0

√

|g55|dy = rc +
∫ rc
0 F (x, y)dy. A new dilaton wavefunction can be

formed with linear combination that keeps the proper distance rc unchanged.

F2(y) = FD(y)−
∫ rc
0 FD(y)
∫ rc
0 FR(y)

FR(y) (82)

Now the two massless modes have different physical origin as one moves the branes
the other not. The radion orthogonal to F2(y) with respect to a specific scalar
product can be defined as F̃R(y) = FR(y)− F2(y)(FR, F2)/(F2, F2).

The dilatonic zero mode remarkably simplify with exponential superpotential.
Performing the integral in the solution (81) we get

FD(x, y) = −f1(x)
1

1 + 2κ2

3α2

(

1

k

a′

a

1

a2
+ 1

)

≃ f1(x)(FR(y)− FR(0)). (83)

Subtracting the radion part we get FD(x, y) = f1(x)/(1 +
2κ2

3α2 ) which implies via
(66) the dilaton scalar field solution

φD(x, y) = − 1

α

1

1 + 2κ2

3α2

f1(x). (84)

In the limit α → 0 it is the dilaton of (23). This solution can be found directly as
the coefficient of the term F in the radion equation (70) vanishes for W ∼ eαΦ,

((

a′

a

)

Φ′′
0

Φ′
0

−
(

a′

a

)′)

=
κ2

12
W 2

(

W ′

W

)′

= 0, here W ′ =
∂W

∂Φ
. (85)

Thus the equation (70) has a y independent FD(x, y) ≃ f1(x) dilaton solution of
(84).

The dilatonic zero mode, called ω2 was found by Bozza et al. [16] with one brane
in the case of dilatonic superpotential. This was the only propagating massless mode
as the radion ω3 is not normalizable and not physical with one brane. ω2 was iden-
tified as the dilaton in the limit of the RS1 scenario when the scalar field decouples
from gravity. The Einstein equations gave constraints between the massive modes
and there were two independent scalar KK tower. One is the scalar field KK tower.
The other completes the two component transverse traceless tensor h̄ij with two
additional 3-vector mode to a 5 componenent massive 4-dimensional KK graviton.
Bozza et al. investigated the scalar perturbation of a Lorentz invariant setup based

12



on 3 dimensional spatial covariance. At the end 4 dimensional covariant equations
described the perturbations. It would be enlightening to perform their analysis in 4
dimensional language and understand the physics of perturbations. Indeed follow-
ing their method with two branes we also got two massless scalar modes. This work
is in progress.

4.4 Massive KK tower

There is a KK tower of the massive scalar field perturbations with the well defined
hermitic boundary conditions F (x, yi) = 0. In a scenario with small backreaction
like in [10], the KK spectrum can be solved with good approximation using the
exponential warp factor a(y) = e−ky. The mass eigenvalues determined by the
zeros of the Bessel functions and are at the order of the weak scale (ke−kr0).

The radion equation (70) for the case of exponential superpotential (14) can
be analytically solved by Bessel functions. As a standard technique we change
to conform flat background by dy = a(z)dz and rescale the field F by F (x, z) =

eipxΦ′
0a

− 3

2 F̃ (z) also changing to mass eigenvectors with ✷Fi = −m2
iFi. The radion

equation in this Schrödinger basis is

F̃ ′′ −
(

9

4

(

a′

a

)2

− 5

2

(

a′

a

)′

+
a′

a

Φ′′
0

Φ′
0

+ 2

(

Φ′′
0

Φ′
0

)2

− Φ′′′
0

Φ′′
0

)

F̃ +m2F̃ = 0. (86)

This equation for each eigenmode has a mass parameter and two integration con-
stants. One integration constant is fixed by the normalization, the other from the
boundary condition at the Planck brane (y = 0) and the mass is determined from
the TeV brane (rc) boundary condition. With the exponential superpotential the
equation is

F̃ ′′ +

(

m2 − ν2 − 1
4

ζ2

)

F̃ = 0, (87)

where

ζ =
1

k(1 − 3α2

κ2 )
+ z =

1

k̃
+ z, (88)

ν = −1

2
− 3

2

1
3α2

κ2 − 1
. (89)

The range of ν is 1 ≤ ν < ∞, ν = 1 corresponding to the RS scenario. The solution
fulfilling the y = z = 0 boundary condition is given by two type of Bessel functions

F̃ =
√

ζ

(

Yν

(

m

k̃

)

Jν (mζ)− Jν

(

m

k̃

)

Yν (mζ)

)

. (90)

The mass eigenvalues are determined at y = rc from the equation

Jν

(

mi

k̃

)

Yν(miζc)

Yν

(

mi

k̃

) − Jν (miζc) = 0, (91)

with

ζc =
1

k̃
(1− 3α2

κ2
krc)

κ
2

3α2 =
a(rc)

k̃
. (92)
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There is always an mi = 0 eigenvalue, a massless solution. When the warp factor
generates a large hierarchy between the two branes a(rc) ≪ a(0) = 1 then the lowest
mass eigenvalues are practically determined from the second term, the zeros of the
Bessel function Jν (miζc). The lowest KK masses are few time the warped mass
scale k̃a−1(rc), the TeV scale.

F̃ uniquely defines φ̃ via (66) and

φ̃ ≃
(

6α2

κ2m

1√
ζ
Jν(mζ)−

(

1 +
3α2

κ2

)

J1+ν(mζ)

)

Yν(
m

k
)− (Y ↔ J) (93)

In the limit α = 0, ν = 1 we get back the masive spectrum given in (26).

5 Conclusion

In this paper we have analyzed the coupled scalar gravitational system in 5 di-
mensions. Around an exact background solution we carefully fixed the gauge and
solved the 5 dimensional linear equations of motion on the orbifold. We have found
that with the special BPS brane potentials there are two scalar zero modes and
one KK tower. The two scalar zero modes are the radion and the dilaton which
can be identified in the smooth limit of the RS1 scenario with a free bulk scalar
field. Both modes couple to the matter on the TeV brane via the induced metric.
The two massless scalar modes generally lead to unacceptable phenomenology, the
radius is not stabilized. Cosmological evolution of two scalar moduli in this model
were discussed recently [19]. However the BPS brane scenario may help us to find
the correct linear spectrum in the Goldberger-Wise stabilization mechanism. The
gauge fixing discussed in this paper and used in [10] [9] leads to non-hermitic dif-
ferential operator for scalar perturbations for general brane potentials. The GW
bulk scalar with detuned potential gives mass not just to the radion but also to the
dilaton mode. It would be very interesting to follow the fate of these two modes and
relating them to the first scalar KK mode. Effective theory and AdS/CFT based
calculation so far could only capture the radion mode [8], [21], [22]. The possible
resolution of the hermiticity problem is that a mode is droped during solving the
Einstein equations which has the the detuning of the brane potentials as a source.
This work is in progress.
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