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Abstract. A “quasiclassical” approximation to the quantum spectrum of the Schrö-
dinger equation is obtained from the trace of a quasiclassical evolution operator for
the “hydrodynamical” version of the theory, in which the dynamical evolution takes
place in the extended phase space [q(t), p(t),M(t)] = [qi, ∂iS, ∂i∂jS]. The quasiclassical
evolution operator is multiplicative along the classical flow, the corresponding quasi-
classical zeta function is entire for nice hyperbolic flows, and its eigenvalue spectrum
contains the spectrum of the semiclassical zeta function. The advantage of the quasi-
classical zeta function is that it has a larger analyticity domain than the original
semiclassical zeta function; the disadvantage is that it contains eigenvalues extraneous
to the quantum problem. Numerical investigations indicate that the presence of these
extraneous eigenvalues renders the original Gutzwiller-Voros semiclassical zeta function
preferable in practice to the quasiclassical zeta function presented here. The cumulant
expansion of the exact quantum mechanical scattering kernel and the cycle expansion
of the corresponding semiclassical zeta function part ways at a threshold given by
the topological entropy; beyond this threshold quantum mechanics cannot resolve fine
details of the classical chaotic dynamics.

Introduction

What we shall describe here is very much in the spirit of early quantum mechan-
ics, and were physicists of the period as familiar with classical chaos as we are
today, this theory would have been developed in 1920’s. The main idea is this: in
the Bohr–de Broglie visualization of quantization, one places a wave instead of
a particle on a Keplerian orbit around the hydrogen nucleus. The quantization
condition is that only allowed orbits are those for which such wave is stationary;
from this follows the Balmer spectrum, the old quantum theory, and the more
sophisticated theory of Schrödinger and others. Today we are very aware of the
fact that integrable systems are exceptional and that chaos is the rule. So, can
the Bohr quantization be generalized to chaotic systems? The answer was pro-
vided by Gutzwiller in 1971; the trace of the quantum evolution operator for a
chaotic system in a semiclassical approximation is given by the Gutzwiller trace
formula, an oscillating sum over all periodic orbits of the system.

There is however a hidden intellectual challenge in Gutzwiller’s derivation:
the derivation is based on the semiclassical Van Vleck approximation K(x, x′, t)
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to the quantum propagator which does not satisfy the semigroup property
∫

dx′′K(x, x′′, t1)K(x′′, x′, t2) 6= K(x, x′, t1 + t2) . (1)

In the literature this problem is usually sidestepped by saying that an equality
holds if the integral is carried out by the saddle point method. Here we offer
an alternative “quasiclassical” quantization scheme based on a quasiclassical
evolution operator which is multiplicative along the flow. Our main result is
the quasiclassical trace formula for the quantization of a Hamiltonian dynamical
system. For a system of 2 degrees of freedom the quasiclassical trace formula
takes the form

trLt(E) =
∑

p

Tp

∞∑

r=1

δ(t− rTp) e
i
h̄
(Sp−ETp)r−iπ

mp

2
r

|Λp|r/2(1− 1/Λr
p)

2(1− 1/Λ2r
p )

.

Throughout this paper we reserve the term “quasiclassical” to distinguish this
class of formulae from the original Gutzwiller formulae which we shall refer to
as “semiclassical”.

Search for the above formula was motivated by the classical periodic orbit
theory, where convergence of cycle expansions is under much firmer control than
in the semiclassical quantizations. One of the main lessons of the classical theory
is that the “exponential proliferation of orbits” in itself is not the problem; what
limits the convergence of cycle expansions for generic flows is the proliferation of
the grammar rules, or the “algorithmic complexity”. Indeed, for nice hyperbolic
flows a theorem of H.H. Rugh (1992) asserts that the appropriate spectral deter-
minants are entire and that their cycle expansions converge superexponentially.

On the basis of close analogy between the classical and the quantum zeta
functions, it has been hoped (Cvitanović 1992) that for nice hyperbolic systems
the semiclassical zeta functions of Gutzwiller (1988) and Voros (1988) should
also be entire. This hope was dashed by Eckhardt and Russberg (1992) who es-
tablished that the semiclassical zeta functions for the 3-disk repeller have poles.
Their result had in turn motivated guesses for spectral determinants with im-
proved convergence properties by Cvitanović and Rosenqvist (1993) and Cvi-
tanović et al. (1993), which eventually lead to the first derivation of the above
trace formula by Cvitanović and Vattay (1993). In this paper we offer a different
derivation and interpretation of this formula.

Improved analyticity has been very useful in sorting out the relative im-
portance of the semiclassical, diffraction (Wirzba (1992), Wirzba (1993), Vat-
tay, Wirzba and Rosenqvist (1994)) and quantum contributions (Gaspard and
Alonso Ramirez (1992), Vattay (1996), Vattay (1994), Vattay and Rosenqvist
(1996)). One had also hoped that improved analiticity would yield cycle expan-
sions that would converge faster with the maximal cycle length truncation than
the Gutzwiller-Voros type zeta functions. As is shown here, this is not the case.
Improved analyticity comes at a cost; the quasiclassical zeta functions predicts
extraneous eigenvalues which are purely classical and do not belong to the quan-
tum spectrum, but their presence degrades significantly the convergence of the
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cycle expansions. Furthermore, the investigation of Wirzba (1996) has clarified
the relationship between the cumulant expansion of the exact quantum mechan-
ical scattering kernel and the cycle expansion of the semiclassical zeta function;
the order of expansion at which the two part their ways is determined by the
value of the topological entropy, and beyond this threshold quantum mechanics
fails to resolve the arbitrarily fine details of the classical chaotic dynamics.

The paper is organized as follows: in Sect. 1 through Sect. 3 we develop the
quasiclassical evolution operator formalism for a semiclassical approximation to
the Schrödinger equation, and in Sect. 4 we derive the trace and zeta function
formulae for quasiclassical quantization. In Sect. 5 we confront in numerical ex-
periments the cycle expansions of the quasiclassical zeta functions with the cycle
expansions of the more standard semiclassical zeta functions and dynamical zeta
functions, as well as with the exact quantum mechanical results, and in Sect. 6
we explain the distinction between the asymptotic nature of quantum mechani-
cal cumulant expansions and the convergence of semiclassical cycle expansions.
Appendices contain some technical details as well as a discussion of the relation
of the quasiclassical quantization to the Selberg zeta function.

1 Quantum Mechanics in Hydrodynamical Form

The Schrödinger equation for a particle in a d-dimensional potential V is

(
ih̄
∂

∂t
+
h̄2

2
∆− V (q)

)
ψ(q, t) = 0 , (2)

where ψ(q, t) is the wave function, and we set the particle mass m = 1 through-
out. The ansatz

ψ = ϕeiS/h̄ (3)

is as old as quantum mechanics itself. Schrödinger’s first wave mechanics paper
was submitted 27 January 1926. Submission date for Madelung (1926) “quantum
theory in hydrodynamical form” paper, where this ansatz is interpreted as a fluid
flow, was 25 October 1926.

Substituting the ansatz into (2), differentiating, and separating the result
into the real and imaginary parts (under assumption that both ϕ and S are real
functions) yields

∂S

∂t
+

1

2
(∇S)2 + V (q)− h̄2

2

∆ϕ

ϕ
= 0 (4)

∂ϕ

∂t
+∇S∇ϕ+

1

2
∆Sϕ = 0 . (5)

The h̄2 term has many names and is called the “quantum potential” by Bohm
(1952), “enthalpy” by Spiegel (1995), by fluid dynamics analogy, or “quantum
pressure” by Feynman (1972). While Schrödinger in his 21 June 1926 paper noted
that ρ = ϕϕ∗ satisfies the continuity equation, it was Born who (in a footnote of
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his 24 june 1926 paper) identified ρ as the probability density. Interpretations of
quantum mechanics bifurcate here; keeping the h̄ term in the potential (4) leads
to the Madelung “fluid” theory. Shifting the h̄ term into the second equation
enforces that S satisfies the classical Hamilton-Jacobi equation

∂S

∂t
+

1

2
(∇S)2 + V (q) = 0 , (6)

while the “diffusive” h̄ term in the equation for the amplitude

∂ϕ

∂t
+∇S∇ϕ+

1

2
∆Sϕ =

ih̄

2
∆ϕ , (7)

motivates the “stochastic” interpretation of Nelson (1985).

1.1 Semiclassical Approximation

Our goal here is to study the semiclassical approximation of quantum mechan-
ics, with h̄ small, and concentrate on the leading order expressions. This can
be achieved by setting h̄ formally zero in either the “hydrodynamic” or the
“stochastic” picture. Either way we get

∂S

∂t
+

1

2
(∇S)2 + V (q) = 0 (8)

∂ϕ

∂t
+∇S∇ϕ+

1

2
∆Sϕ = 0 . (9)

As long as we concentrate on the leading semiclassical contribution, we can steer
clear of the passions aroused by the differences between different interpretations
of quantum mechanics, and follow the original Gutzwiller derivation of the semi-
classical trace formula via Van-Vleck approximation to the quantum propagator,
Gutzwiller (1971), Gutzwiller (1990).

Nevertheless, the procedure is unsatisfactory in the sense that in order to get
an operator with the semigroup property we need to impose the saddle point
condition. In order to overcome this problem we have to learn more about the
technical details of the semiclassical dynamics first. This analysis will show that
the semiclassical wave function evolution can be described as an evolution over
an extended dynamical space.

2 Semiclassical Evolution as a Set of ODE’s

We now examine the semiclassical approximation to the quantum wave evolution
(a linear partial differential equation) and show that it can be reformulated in
terms of a finite number of ordinary differential equations. We start by traversing
a well trodden ground: Hamilton’s 1823 formulation of wave mechanics.
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2.1 Hamilton’s Wave Mechanics

In the wave equation (2) q is not a variable; the variable is the wave function ψ
that evolves with time, and one can think of ψ as an (infinite dimensional) vector
where q plays a role of an index. S(q, t) plotted as a function of the position q
for two different times looks something like Fig. 1(a). A smooth “wavefront”

f t
0
),p(q

0

S(q,t)

+ dt0t

t0t0

q
0

S(q ,t )
0 0

S(q,t)

qt
0
),p(q

0
t

0
),p(q

0

p

q
p

0

q

dS

0q
0

q + dq

slope 

(a) (b)

Fig. 1. (a) A wavefront S(q, t) plotted as a function of the position q for two different
times. (b) The phase of the wavefront S(q, t) transported by a swarm of “particles”;
Hamilton’s equations (15) construct S(q, t) by transporting q0 → q(t) and p0, the slope
of S(q0, t0), to p0 → p(t).

S(q, t0) deforms smoothly with time into the “wavefront” S(q, t) at time t. At
this point one can ask: could we think of this front as a swarm of particles that
move in such a way that if we know S(q, t) and its slope ∂S/∂q at q at initial
time t = t0, we can construct a corresponding piece of S(q, t) and its slope at
time t, Fig. 1(b)? For notational convenience, define

pi = pi(q, t) :=
∂S

∂qi
, i = 1, 2, . . . , d . (10)

In the semiclassical approximation (4) reduces to the Hamilton-Jacobi equation

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0 , (11)

where H(q, p) is the Hamiltonian, in this case

H = p2/2m+ V (q) . (12)
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For sake of simplicity we set m = 1 throughout. We shall also assume that the
Hamiltonian is time independent (energy is conserved) and separable into a sum
of kinetic and potential parts.

Infinitesimal variation of S(q, t), Fig. 1(a), is given by

dS = dt
∂S

∂t
+ dq

∂S

∂q
.

Dividing through by dt and substituting (11) we obtain

dS

dt
= −H(q, p) + q̇p . (13)

The “velocity” q̇ is arbitrary, and now comes Hamilton’s idea: can we adjust q̇
so that p is promoted to a variable independent of q? Take a ∂

∂q derivative of

both sides of (13):

∂

∂q

d

dt
S = −∂H

∂q
− ∂H

∂p

∂p

∂q
+ p

∂

∂q

d

dt
q + q̇

∂p

∂q
.

(remember that H(q, p) depends on q also through p(q, t) := ∂qS, hence the ∂H
∂p

term in the above). Exchanging ∂q and d/dt derivatives leads to

ṗ+
∂H

∂q
=

(
q̇ − ∂H

∂p

)
∂p

∂q
. (14)

Now we use the freedom of choosing q̇, and trade the ∂p
∂q dependence for a set of

ordinary differential equations, the Hamilton’s equations

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
(15)

with the “wavefront” S(q, t) replaced by the action increment St(q0, p0), the
integral of (13) evaluated along the phase space flow (q0, p0) → (q(t), p(t)):

St(q0, p0) =

∫ t

t0

dτ {q̇(τ) · p(τ) −H(q(τ), p(τ))} . (16)

If the energy is conserved, H(q(τ), p(τ)) = E, and the second term is simply
(t0 − t)E.

To summarize: the Hamilton-Jacobi partial differential equation (11) for the
evolution of a wave front can be reformulated as a finite number of ordinary
differential equations of motion which increment the initial action S(q0, t0) by
the integral (16) along the phase space trajectory (q(τ), p(τ)). In order to obtain
the full quasiclassical evolution we also have to deal with the amplitude evolution
(9).
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2.2 Amplitude Evolution

The amplitude evolution (9) now takes place in the velocity field given by

v(q, t) = ∇S(q, t) . (17)

We can define q(t) = f t(q) as a solution of the differential equation

q̇ = v(q, t) (18)

with initial condition q(0) = q at time t = 0. This solution will coincide with
qt(q,∇S(q, 0)), which is the q solution of the Hamilton’s equations with ini-
tial conditions q′ = q and p′ = ∇S(q′, 0). We introduce the notation κ(q, t) =
∆S(q, t) and write (9) as

{
∂

∂t
+ v(q, t) · ∇+

1

2
κ(q, t)

}
ϕ(q, t) = 0 . (19)

This is a linear equation in ϕ, so its solution can be written in terms of its
Green’s function as

ϕ(q, t) =

∫
dq′ L̃t(q, q′)ϕ(q′, 0) (20)

where the kernel L̃t(q, q′) is the special solution of (19) with initial condition
L̃0(q, q′) = δ(q−q′). It is easily checked by direct substitution into (20) and (19)
that this Green’s function is given by

L̃t(q, q′) = exp

{
1

2

∫ t

0

κ(f τ (q′), τ) dτ

}
δ(q − f t(q′)) , (21)

where an extra negative contribution to (19) results from v(q, t)∇δ(q−f t(q′)) =
−(∇v(q, t))δ(q − f t(q′)) and ∇v(q, t) = κ(q, t).

2.3 Quasiclassical Evolution

The whole quasiclassical evolution procedure can now be summarized. First we
take our initial wave function ψ(q, 0). We pick a function S(q, t), a solution of
(8), and compute the initial amplitude ϕ(q, 0) = e−iS(q,0)/h̄ψ(q, 0). We evolve
this amplitude for time t and put back the phase:

ψ(q, t) = eiS(q,t)/h̄

∫
dq′ L̃t(q, q′)e−iS(q′,0)/h̄ψ(q′, 0) . (22)

The whole evolution can be cast into the semiclassical evolution operator

ψ(q, t) =

∫
dq′ Lt(q, q′, S)ψ(q′, 0) , (23)
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where

Lt(q, q′, S) = exp

{
i

h̄
(S(q, t)− S(q′, 0)) +

1

2

∫ t

0

κ(f τ (q′), τ) dτ

}
δ(q − f t(q′)) .

(24)
The functional dependence on S(q′, 0) sounds somewhat discouraging; we have
to see it in an explicit form in order to understand the machinery of this operator.

The most complicated looking object here is the function

λ(q′, t) =

∫ t

0

κ(f τ (q′), τ) dτ .

We do not need the full information about S(q, t) in order to compute this
integral of ∆S(q, t) along the trajectory; as we shall see, an ODE suffices to
evaluate this function. Consider the curvature matrix

Mij =
∂2S(q, t)

∂qi∂qj
. (25)

The time evolution equation for this matrix is obtained by taking the second
derivatives of (8):

∂M

∂t
+ v(q, t) · ∇M +M2 +D2V = 0 , (26)

where D2V is the second derivative matrix of the potential. The first two terms
combine to the full time derivative, and the evolution of M along a trajectory is
given by

Ṁ = −M2 −D2V . (27)

So in the extended dynamical space we do not only keep track of q and slope of
S at q, but also the curvature of S at q, see Fig. 2. Let us denote the solution of
this ODE along a trajectory with starting point (q, p) and an initial matrix M
by Mt(q, p,M). The function λ(q, t) now can be expressed as

λ(q, t) =

∫ t

0

dτ trMτ (q, p,M) (28)

with p initialized as p = ∇S(q, 0).
Another point where the “functional dependence” can be simplified is the

phase term. We can make the replacement

S(q, t)− S(q′, 0) = St(q′, p′) (29)

in the kernel (24), where St is the integral (16) with initial point (q′, p′ =
∇S(q′, 0)) and t0 = 0.

With these observations the kernel (24) can be written as

Lt(q, q′, S) =

∫
dp′ dM′ e

iSt(q′,p′)/h̄+ 1
2

∫
t

0
dτ trMτ (q′,p′,M′) ×

δ(q − qt(q′, p′)) δ(p′ −∇S(q′, 0)) δ(M′ −D2S(q′, 0)) , (30)

where we have made the functional dependence explicit.
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t0

q
0

f t
0

,p(q
0

,M )
0

t
0
),p(q

0
q

S(q,t)

q

0

t

t
0

,p(q
0

,M )
0

M

M
curvature

Fig. 2. The evolution of the curvature matrix Mij of the wavefront S(q, t) along the
trajectory [q(t), p(t),M(t)] in the extended dynamical space.

3 Quasiclassical Evolution Operator

If we write the time evolution of a wave function we get

ψ(q, t) =

∫
dq′ dp′ dM′W t(q′, p′,M′) δ(q − qt(q′, p′))

×ψ(q′, 0) δ(p′ −∇S(q′, 0)) δ(M′ −D2S(q′, 0)) , (31)

where W t(q, p,M) is a short hand notation for the exponential in (30). We
now make a new proposal: let us regard the last deltas δ(p′ −∇S(q′, 0)) δ(M′ −
D2S(q′, 0)) as a part of the wave function. In other words, we think Ψ(q′, p′,M′) =
ψ(q′, 0) δ(p′−∇S(q′, 0)) δ(M′−D2S(q′, 0)) as a function defined on the (q, p,M)
space. We can multiply (31) by δ(p−∇S(q, t)) δ(M −D2S(q, t)) and write the
evolved function in the extended space as

Ψ(q, p,M) =

∫
dq′ dp′ dM′Lt(q, p,M|q′, p′,M′)Ψ(q′, p′,M′) ,

where the kernel of this integral operator shall be referred to as the quasiclassical
evolution operator

Lt(q, p,M|q′, p′,M′) = e
iSt(q′,p′)/h̄+ 1

2

∫
t

0
dτ trMτ (q′,p′,M′)

×δ(q − qt(q′, p′)) δ(p− pt(q′, p′)) δ(M −Mt(q′, p′,M′)) . (32)

Here the quantities ∇S(q, t) and D2S(q, t) are computed from their initial values
and replaced with pt(q′, p′) and Mt(q′, p′,M′) using (29).

So, what does this mean? We have constructed an evolution operator which
acts on functions of the (q, p,M) space. Because of the three delta functions the
evolution operator has the semigroup property. However, there will be a price to
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pay: while a wave function can be embedded into the enlarged space, not all the
functions living in the enlarged space represent functions in the old space. The
spectrum of the quasiclassical operator will contain the semiclassical spectrum,
but as we shall see in Sect. 5, it will also contain extraneous eigenvalues without
quantum mechanical counterpart.

3.1 Wave Packet Evolution

There is also an easy way back from the extended space to the original one. If the
function Ψ(q, p,M) is a representation of a q space wave function or represents
a linear combination of such functions, the delta function dependence on p and
M insures that a q dependent wave function can be recovered by

ψ(q, t) =

∫
dp dMΨ t(q, p,M) . (33)

The quasiclassical evolution introduced here is closely related to the Gaussian
wave packet evolution theories of Heller (1975), Heller, Tomsovic and Sepúlveda
(1992). There a wave packet

ψ(q, 0) = A0e
ip0(q−q0)/h̄+

i
2h̄

(q−q0)M0(q−q0) (34)

is “launched” at t = 0, with the parameters (q0, p0,M0) evolving in time accord-
ing to the equations we have for q, p and M, and with the amplitude evolving
as

At = A0e
iSt(q0,p0)/h̄−

1
2

∫
t

0
dτ trMτ (q0,p0,M0) . (35)

Initial wave functions can be decomposed into a linear combination of wave
packets and the pieces can be evolved separately. Each packet is characterized
by a phase point in the (q, p,M) phase space and evolves according to (15) and
(27), with clouds of points representing initial wave packets evolving as in the
Heller, Tomsovic and Sepúlveda (1992) picture.

3.2 A Classical Motivation for the Extended Dynamical Space

The above discussion might lead the reader to believe that the extended dy-
namical phase space is a peculiarity of quantum quasiclassics. However, what
we have done is an example of a much more general procedure for constructing
multiplicative evolution operators in settings where the multiplicative property
seems to have been lost.

The problem can be illustrated by the Ruelle (1987) “thermodynamic” evo-
lution operator of form

Lt(x, x′) = eh
t(x′) δ(x− f t(x′))

1

|Λt(x′)|β−1
,

with Λt(x) an eigenvalue of the Jacobi matrix Jt(x) (see Appendix A) and ht(x)
is a weight additive along the trajectory f t(x). For one-dimensional maps this
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operator is multiplicative, but not so for flows with two or more transverse
dimensions, for the simple reason that the eigenvalues of successive stability
matrices are in general not multiplicative

Λab 6= ΛaΛb .

Here Jab = JbJa is the Jacobian matrix of the trajectory consisting of consecu-
tive segments a and b, Ja and Jb are the stability matrices for these segments
separately, and Λ’s are their leading eigenvalues. It was this lack of multiplicative
property for Λ’s that had for long time frustrated attempts to construct evolu-
tion operators whose spectrum contains the semiclassical Gutzwiller spectrum,
until the method presented here was developed.

The main idea, extending the dynamical system to the tangent space of
the flow, is suggested by one of the standard numerical methods for evaluation
of Lyapunov exponents; instead of computing eigenvalues of linearized stability
matrices, one monitors the growth rate of separation between nearby trajectories,
i.e. one adjoins space x ∈ U ⊂ IRd. The dynamics in the (x, ξ) ∈ U × TUx space
is governed by the system of equations of variations, Arnold (1978):

ẋ = v(x) , ξ̇ = Dv(x)ξ .

Here Dv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(x0) , ξ(t) = Jt(x0) · ξ0

with the tangent space vector ξ transported by the transverse stability matrix
Jt(x0) = ∂x(t)/∂x0. Multiplicative evolution operators and the corresponding
trace and determinant formulae for such flows are given in Cvitanović and Vattay
(1993) and Pollner and Vattay (1996).

4 Quasiclassical Trace and Determinant Formulae

Determination of the approximate eigenvalues of the Schrödinger operator (2) is
now reduced to the computation of the eigenvalues of the quasiclassical evolu-
tion operator (32). But before we do this, a warning is in order. The spectrum of
the new operator contains the semiclassical spectrum, i.e. we might find eigen-
values beyond those found in quantum mechanics. Optimally these extraneous
eigenvalues should be filtered out, but at present we know of no practical tech-
nique for doing this, other than comparison with the exact quantum mechanical
spectrum.

We shall determine the eigenvalues of our operator by first deriving the clas-
sical trace formula (Cvitanović and Eckhardt (1991), Cvitanović et al. (1996)),
and then determining the zeros of the associated Fredholm determinant, in this
context called the quasiclassical zeta function. The (p, q) integrations can be
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carried out first, and yield a weighted sum over primitive periodic orbits p and
their repetitions r

trLt(E) =
∑

p

Tp

∞∑

r=1

δ(t− rTp) e
i
h̄
(Sp−ETp)r

| det(1− Jr
p) |

∆p,r . (36)

By the periodicity condition δ(t− rTp) the M trace is restricted to a transverse
Poincaré section of the flow, evaluated at a prime cycle completion t = Tp, or
its r-th repeat

∆p,r =

∫
dM δ

(
M−MrTp(q, p,M)

)
e

r
2

∫
Tp

0
dτtrMτ (q,p,M)

. (37)

The integration of this part requires some skill and it is left for Appendix A. It
turns out that this last integral can also be expressed in terms of the eigenvalues
of the full phase space Jacobian matrix Λ1, Λ2, · · · , Λd+1=1/Λ1, · · · , Λ2d=1/Λd.
Putting all ingredients together we get the quasiclassical trace formula for the
quantization of a Hamiltonian dynamical system in (d+1) configuration dimen-
sions, i.e. restricted to the fixed energy shell in the 2(d+ 1) phase space:

trLt(E) =
∑

p

Tp

∞∑

r=1

d∏

i=1

δ(t− rTp) e
( i
h̄
(Sp−ETp)−iπmp/2)r

|Λp,i|r/2(1− 1/Λr
p,i)

2(1− 1/Λ2r
p,i)

. (38)

Here Tp(E) =
∮
dt is the p-cycle period, Sp(E) =

∮
pdq the cycle action evaluated

along the periodic orbit on the energy surface H = E, mp the Maslov index, and
Λp,1, Λp,2, · · · , Λp,d are the d expanding eigenvalues of the transverse Jacobian
matrix of the flow belonging to the p-cycle. The period is related to the action
through Tp(E) = ∂

∂ESp(E). The associated quasiclassical zeta function is given
by

Zqc(E) = exp

{
−
∑

p,r

1

r

d∏

i=1

|Λp,i|−r/2e
i
h̄
Sp(E)r−iπ

mp

2
r

(1 − 1/Λr
p,i)

2(1 − 1/Λ2r
p,i)

}
(39)

(see for ex. Cvitanović et al. (1996) for the trace↔ zeta functions relationship).
This quasiclassical zeta function is our main result. The zeros of Zqc(E) yield
the spectrum of the “quasiclassical” evolution operator.

4.1 The Semiclassical Zeta Function

The formulae derived above differ from those of the semiclassical periodic or-
bit theory for hyperbolic flows as originally developed by Gutzwiller (1971) in
terms of traces of the Van Vleck semiclassical Green’s functions. The semi-

classical Gutzwiller trace formula has topologically the same structure as the
quasiclassical trace formula (38):

trG(E) = g(E) +
1

ih̄

∑

p

Tp

∞∑

r=1

e
i
h̄
Sp(E)r−iπ

mp

2
r

|det
(
1− Jr

p

)
| 12

. (40)
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The Gutzwiller trace formula differs from the quasiclassical trace formula in
two aspects. One is the volume term g(E) in (40) which is a missing from our
version of the classical trace formula. While an overall pre-factor does not affect
the location of zeros of the determinants, it plays a role in relations such as
the zeta function functional equations of Berry and Keating (1990). The other
difference is that the quantum kernel leads to a square root of the cycle Jacobian
1/
√
det(1 − Jp), a reflection of the relation probability = (amplitude)2. This

difference does not effect the leading eigenvalues (which coincide for the semi-
and quasiclassical quantizations), but has a dramatic effect on the convergence
of respective zeta functions.

The precise relation between the semiclassical zeta functions and the quasi-
classical zeta functions is given in Appendix C.

In the remainder of the paper we shall investigate the relative merits of the
quasiclassical quantization compared to the Gutzwiller semiclassics and the exact
quantum mechanics.

5 Numerical Convergence of Cycle Expansions and

Extraneous Eigenvalues

A 3-disk repeller is one of the simplest classically completely chaotic scattering
systems and provides a convenient numerical laboratory for testing both the
ideas about chaotic dynamics and for computing exact quantum mechanical
spectra, see Eckhardt (1987), Gaspard and Rice (1989a)-(1989c), Cvitanović
and Eckhardt (1989). The 3-disk repeller consists of a free point particle moving
in the two-dimensional plane and scattering specularly off three identical disks
of radius a centered at the corners of an equilateral triangle of side length R.
The discrete C3v symmetry reduces the dynamics to motion in a fundamental
domain, and the spectroscopy to irreducible subspaces A1, A2 and E. All our
computations are performed for the fully symmetric subspace A1.

In this section we address the following question: which of the three approx-
imate quantization zeta functions is the best in predicting the exact quantum
mechanical scattering resonances

(a) the semiclassical zeta function of Gutzwiller (1988) and Voros (1988)

Zsc(z; k) = exp

{
−
∑

p

∞∑

r=1

1

r

zrnp trp
1− 1/Λr

p

}
=
∏

p

∞∏

j=0

(
1− znptp

Λj
p

)
(41)

(b) the dynamical zeta function of Ruelle (1987), the j = 0 part of the semi-
classical zeta function

ζ−1(z; k) = exp

{
−
∑

p

∞∑

r=1

1

r
zrnp trp

}
=
∏

p

(1− znptp) (42)
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(c) or the quasiclassical zeta function (39)

Zqc(z; k) = exp

{
−
∑

p

∞∑

r=1

1

r

zrnp trp(
1− 1/Λr

p

)2 (
1− 1/Λ2r

p

)

}

=
∏

p

∞∏

j=0

∞∏

l=0

(
1− znptp

Λj+2l
p

)j+1

? (43)

Here

tp = eikLp−impπ/2/|Λp|
1
2 (44)

is the weight of the p th prime cycle, np its topological length and z a book-
keeping variable for keeping track of the topological order in cycle expansions —
the above zeta functions are Taylor-expanded in z around z = 0 up to a given
cycle expansion order and only then z is set to z = 1 (see also (51) below).
Lp is the length of the p th cycle, mp its Maslov index together with the group
theoretical weight of the studied C3v representation, and Λp its stability (the
expanding eigenvalue of the p th Jacobian matrix).

The results of comparing finite cycle expansion truncations of the above zeta
functions with each other and with the exact quantum mechanical results com-
puted with the methods outlined in Sect. 6 are summarized in Figs. 3 and 4.
Resonances are plotted as the real part of the resonance wavenumber (resonance
“energy”) vs. the imaginary part of the wavenumber (resonance “width”). We
have computed several thousands of exact quantum mechanical as well as ap-
proximate A1 resonances for the 3-disk repeller with center-to-center separation
R = 6a. Further and considerably more detailed numerical results are available
from Wirzba and Henseler (1995).

Some of the features of the resonance spectra have immediate interpretation.
The mean spacing of the resonances is approximately 2π/L̄, where L̄ is the aver-
age of the lengths L0 and L1 of the two shortest cycles of topological length one.
The data also exhibit various beating patterns resulting from the interference of
cycles of nearly equal lengths; e.g. the leading beating pattern is of order 2π/∆L,
where ∆L is the difference of the lengths L1 and L0.

In Fig. 3 the cycle expansion includes cycles up to topological length four.
Already at this order the four leading resonance bands are well approximated by
the semiclassical zeta function (41) (in fact, for Re k <∼ 75/a already cycles up to
length two suffice to describe the first two leading resonance bands). Neither the
quasiclassical zeta function (43) nor the dynamical zeta function (42) perform
quite as well. The reason is that the quasiclassical as well as the dynamical
zeta function predict extra resonances which are absent in the exact quantum
mechanical calculation. The accessible resonances close to the real axis can in
this regime be parameterized by 16 measured numbers, i.e. 8 cycle lengths and
stabilities, together with the 8 Maslov indices. It turns out that the subleading
bands remain completely shielded all the way up to Re k ≈ 950/a where they
start mixing with the four leading ones.
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Fig. 3. The A1 resonances of the 3-disk repeller with R = 6a. The exact quantum
mechanical data are denoted by diamonds. The semiclassical ones are calculated up
to 4 th order in the cycle expansion and are denoted by crosses. (a) semiclassical zeta
function (41), (b) dynamical zeta function (42), (c) quasiclassical zeta function (43).
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In Figs. 4a-c the comparison is made up to eight, respectively twelfth cycle
expansion order. The border of convergence of the semiclassical zeta function has
now moved (in the plotted region) above the fifth and sixth band of the exact
quantum resonances. The dynamical zeta function exhibits a sharp accumulation
line of resonances, the border of convergence controlled by the location of the
nearest pole of the dynamical zeta function (Eckhardt and Russberg (1993), Cvi-
tanović et al. (1993)). With cycles up to length 12 the quasiclassical zeta function
resolves the exact quantum fifth and sixth bands of subleading resonances, but
at the cost of many extraneous resonances, see Fig. 4(c). At these high cycle
expansion orders the quasiclassical zeta function has convergence problems for
large negative imaginary k values (especially for low values for Re k), in agree-
ment with the expected large cancellations in the cycle expansion at high cycle
expansion orders, Wirzba and Henseler (1995). There is the further caveat that
the quasiclassical zeta function finds the lowest subleading resonances just barely
at the 12th order in the cycle expansion. Therefore cycles of larger topological
length would be needed to confirm this success.

The extraneous eigenvalues are not without a meaning; they belong to the
spectra of classical evolution operators, such as those that describe the escape
from a classical 3-disk repeller, plotted in Cvitanović et al. (1993). The problem
is that we now know, by comparing them to the exact quantum mechanical spec-
tra, that they have nothing to do with quantum mechanics. As far as quantum
mechanics is concerned, they are “extraneous”.

Another distinctive feature of the exact quantum mechanical spectra is the
diffractive band of resonances from k ≈ (0. − i0.5)/a to k ≈ (100. − i1.6)/a.
As shown by Vattay, Wirzba and Rosenqvist (1994) and Rosenqvist, Vattay
and Wirzba (1996), the diffractive band of resonances can be accounted for by
inclusion of creeping periodic orbits, omitted from the calculations undertaken
here.

Qualitatively, the results can be summed up as follows. The semiclassical
zeta function (41) does well above the line of convergence defined by the dyn-
amical zeta function (42), already at very low cycle expansion orders where
the other two zeta functions still have problems. Below this line of convergence
the semiclassical zeta function works only as an asymptotic expansion; when
it works, it works very well and very efficiently. The dynamical zeta function
does eventually as well for the leading resonances as the semiclassical one. As
experimentally these are the only resonances accessible, one can – for practical
purposes – limit the calculation just to this zeta function. The quasiclassical zeta
function finds all known subleading quantum resonances, but at a high expense:
the rate of convergence is poor compared to the semiclassical zeta function,
as most of the information provided by longer cycles is used to determine the
extraneous resonance bands, with no quantum counterpart. Without a quantum
calculation, one could not tell the extraneous from the real resonances.

As a by-product of this calculation we can state an empirical rule of thumb:
Each new cycle expansion or cumulant order is connected with a new line of
subleading resonances. This rule relates the cycle expansion truncations limit,
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Fig. 4. The A1 resonances of the 3-disk repeller with R = 6a. The exact quantum
mechanical data are denoted by diamonds, the semiclassical ones by crosses. (a) semi-
classical zeta function (41) up to 8 th order in the cycle expansion, (b) dynamical zeta
function (42) up to 8 th, (c) quasiclassical zeta function (43) up to 12 th order.



18 PredragCvitanović, GáborVattay and AndreasWirzba

n→ ∞ (where n is defined below in (51)), and the limit Im k → −∞. Numerics
supports the claim that the cycle expansion limit n → ∞ and the semiclassical
limit Re k → ∞ do not commute deep down in the lower complex k plane, a
point that we shall return to in Sect. 6.

5.1 Exact Versus Semiclassical Cluster Phase Shifts

In the above we compared the exact and semiclassical resonances of the 3-disk
repeller in the A1 representation. As the deviations are most pronounced for the
subleading resonances which are shielded by the leading ones, one could argue
that experimentally it does not matter which of the three zeta functions are
used to describe the measured data, as all three give the same predictions for
the leading resonances.

Nevertheless, as we shall now show, the three approximate quantizations can
be told apart (Wirzba (1995)), even experimentally.

The exact and semiclassical expressions for the determinant of the S-matrix
for the non-overlapping 3-disk repeller are given by

detS(3)(k) =
(
detS(1)(ka)

)3 detMA1(k
∗)

†

detMA1(k)

detMA2(k
∗)

†

detMA2(k)

(
detME(k

∗)
†
)2

(detME(k))
2

s.c.−→
(
e−iπN(k)

)6 (Z1-disk(l)(k
∗)

∗

Z1-disk(l)(k)

Z1-disk(r)(k
∗)

∗

Z1-disk(r)(k)

)3

×

×ZA1(k
∗)

∗

ZA1(k)

ZA2(k
∗)

∗

ZA2(k)

ZE(k
∗)

∗2

ZE(k)
2 . (45)

(See Wirzba and Henseler (1995) for details and notation.) For the A1 representa-
tion of the 3-disk repeller the quantum mechanical kernels and the semiclassical
zeta functions (41) are related by

detMA1(k
∗)

†

detMA1(k)

s.c.−→ ZA1(k
∗)

∗

ZA1(k)
(46)

Both sides of (45) and (46) respect unitarity, and if the wave number k is real,
both sides can be written as exp{i2η(k)} with a real phase shift η(k). We define
the total phase shift for the coherent part of the 3-disk scattering problem (here
always understood in the A1 representation) for the exact quantum mechanics
as well as for the three approximate quantizations by:

e2iηqm(k) :=
detM(k∗)

†

detM(k)
e2iηsc(k) :=

Zsc(k
∗)

∗

Zsc(k)

e2iηdyn(k) :=
ζ−1(k∗)

∗

ζ−1(k)
e2iηqc(k) :=

Zqc(k
∗)

∗

Zqc(k)
. (47)

This phase shift definition should be compared with the cluster phase shift given
in section 4 of Lloyd and Smith (1972). The important point here is that the
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coherent or cluster phase shift of detS(k) is in principle experimentally accessi-
ble: one just has to construct the elastic scattering amplitude from the measured
cross sections, and subtract the single disk contributions.

So, ηqm(k) is a “measurable” quantity, useful to us as a different method for
discriminating between the various zeta functions. An example is given in Fig. 5
where the zeta functions in the numerators as well as in the denominators in
(47) have been expanded up to cycles of topological length 12. The phase shifts
are compared in the window 104/a ≤ k ≤ 109/a, a typical window sufficiently
narrow to resolve the rapid oscillations, with k sufficiently big that the diffraction
effects are unimportant. The performance of the original semiclassical zeta func-
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Fig. 5. The coherent cluster phase shifts of the 3-disk scattering system in the A1

representation with R = 6a. The exact quantum mechanical data compared to the
predictions of the semiclassical zeta function (41), the dynamical zeta function (42) and
the quasiclassical zeta function (43) calculated up to 12 th order in the cycle expansion.
The semiclassical zeta function and the exact quantum mechanical data coincide within
the resolution of the plot.

tion is again the best. We stress that in contrast to the subleading resonances
studied in Sect. 5 (which are completely shielded from experimental detection
by the leading resonances), phase shifts are hard data, in principle extractable
from measured cross sections.

In conclusion: One can tell the three candidate zeta functions apart even
experimentally. We have again confirmed that the semiclassical zeta function is
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the best.

6 Semiclassics Versus Asymptotic h̄ Expansion

So far we have tested various approximate quantization proposals against each
other and against exact quantum mechanics. Now we turn to a deeper ques-
tion: how seriously should we take these cycle expansions in the first place? We
will show here, following Wirzba (1996), that the semiclassical zeta function is
approximating its quantum mechanical counterpart, the “characteristic KKR de-
terminant” (Kohn and Rostoker (1954), Lloyd and Smith (1972), Berry (1981))
as an asymptotic series and therefore makes sense only as a truncated series.

Let detM(k) = det(1 + A(k)) be the characteristic KKR determinant of
the 3-disk repeller in the A1 representation, where the pertinent kernel A(k)
expressed in the angular momentum basis relative to the half-disk in the funda-
mental domain reads (see Gaspard and Rice (1989c))

A(k)m,m′ = d(m)d(m′)
Jm(ka)

H
(1)
m′ (ka)

{
cos
(π
6
(5m−m′)

)
H

(1)
m−m′(kR)

+(−1)m
′

cos
(π
6
(5m+m′)

)
H

(1)
m+m′(kR)

}
(48)

with 0 ≤ m,m′ <∞ and

d(m) :=

{√
2 for m > 0
1 for m = 0 .

Let Qm(k) denote the m th cumulant of detM(k), i.e. the coefficient of zm in
the Taylor expansion of det(1 + zA(k)). Qm(k) satisfies the Plemelj-Smithies
recursion relation (Wirzba and Henseler (1995))

Qm(k) =
1

m

m∑

j=1

(−1)j+1Qm−j(k)Tr(A
j(k)) for m ≥ 1

Q0(k) ≡ 1 ,

where Tr(Aj(k)) is the trace of the j th power of the kernelA(k)m,m′ evaluated in
the angular momentum basis, {|m〉}, relative to the half-disk in the fundamental
domain.

The semiclassical analog of the characteristic determinant det(1+ zA(k)) is
the semiclassical zeta function (41). More precisely, the cycle expansion of the
semiclassical zeta function truncated at the topological order n is the semiclas-
sical analog of the quantum cumulant expansion of det(1 + zA(k)) truncated
at the same order. Thus cm(k), the corresponding semiclassical m th order cycle
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expansion term of Zsc(k), is constructed from the semiclassical equivalent of the
Plemelj-Smithies recursion relation:

cm(k) =
1

m

m∑

j=1

(−1)j+m+1cm−j(k)
∑

p,r

np

δnpr,jtp
r

1− 1/Λr
p

for m ≥ 1 (49)

c0(k) ≡ 1 ,

with tp defined in (43). The cycle expansion (Cvitanović (1988)) follows from
the semiclassical limit

Tr(Aj(k))
s.c.−→ (−1)j

∑

p,r

np

δnpr,jtp
r

1− 1/Λr
p

+ diffractive creeping orbits . (50)

In summary, the n th order truncated cumulant and cycle expansions are given
by

detM(k)|n =

n∑

m=0

Qm(k) , Zsc(k)|n =

n∑

m=0

cm(k) (51)

where the notation · · · |n indicates that the corresponding determinant or zeta
function has been truncated at cumulant/cycle expansion order n. The following
facts are known:

1. The cumulant sum

lim
n→∞

detM(k)|n = lim
n→∞

n∑

m=0

Qm(k) = detM(k)

is absolutely convergent,
∑

|Qm(k)| < ∞ , because of the trace class prop-
erty of A(k) ≡ M(k)− 1 for non-overlapping, non-touching n-disk repellers
(Wirzba and Henseler (1995)).

2. The semiclassical cycle expansion sum converges above an accumulation line
(which runs below and approximately parallel to the real wave number axis,
see Fig. 4(a)) given by the leading poles of the leading dynamical zeta func-
tion, ζ−1(k), or the leading zeros of the subleading zeta function, ζ−1

1 (k)
(Eckhardt and Russberg (1993), Cvitanović et al. (1993), Cvitanović and
Vattay (1993)).

3. The truncated semiclassical cycle expansion sum Zsc(k)|n can approximate
the quantum mechanical result as an asymptotic series even below the semi-
classical zeta function border of convergence, Wirzba and Henseler (1995).

We have checked numerically that the following formulae relate the m th cumu-
lants and cycle expansion terms on the real k-axis with the corresponding quanti-
ties inside the complex k plane — at least as long as the condition |Im k| ≪ |Re k|
is satisfied: for the quantum mechanical cumulants of order m we have the ap-
proximate leading order relation (under assumption that the diffraction effects
are negligible)

Qm(Re k + iIm k) ∼ Qm(Re k) e−mL̄Im k . (52)
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L̄ ≈ R−2a is the average length of the cycles of topological length one. We have
also checked numerically that the corresponding relation for the semiclassical
cycle expansion terms of order m is also approximately valid:

cm(Re k + iIm k) ∼ cm(Re k) e−mL̄Im k . (53)

Furthermore, on the basis of Fig. 6 we conjecture that for arbitrary values of the
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Fig. 6. Comparison of the absolute values of the first seven quantum mechanical cu-
mulant terms, |Qn(k)|

2, with the corresponding semiclassical cycle expansion terms,
|cn(k)|

2, of the semiclassical zeta function (41) evaluated on the real wave number axis
k. Note that the deviations between quantum mechanics and semiclassics decrease with
increasing Rek, but increase with increasing cycle expansion order n. The value of Re k
where the quantum mechanical and semiclassical curves join is approximately given by
Re ka ∼ 2n+1 where n is the order of the cumulant/cycle expansion term and a is the
radius of the disk. A1 3-disk repeller with center-to-center separation R = 6a.

center-to-center separation R of the non-overlapping 3-disk repeller (R > 2a)
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the following relations hold on the real wave number axis (k real):

cm(k) ≈ Qm(k) with 1 ≫ |cm(k)| if ka >∼ 2m−1 L̄

a
, (54)

1 ≫ |cm(k)| ≫ |Qm(k)| if ka <∼ 2m−1 L̄

a
. (55)

6.1 The Meaning of It All

Where is the boundary ka ≈ 2m−1L̄/a coming from?
This boundary follows from a combination of the uncertainty principle with

ray optics and the non-vanishing value for the topological entropy of the 3-disk
repeller. When the wave number k is fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topological order n given by (54).
The quantum wave packet which explores the repelling set has to disentangle 2n

different sections of size d ∼ a/2n on the “visible” part of the disk surface (which
is of order a) between any two successive disk collisions. Successive collisions are
separated spatially by the mean flight length L̄, and the flux spreads with a
factor L̄/a. In other words, the uncertainty principle bounds the maximal sen-
sible truncation in the cycle expansion order by the highest quantum resolution
attainable for a given wavenumber k.

The upper limit n for which cm(k) with m ≤ n approximates Qm(k) is
increasing with increasing Re k. For n > m(Re ka), defined in (55), the cycle
expansion terms and cumulant terms deviate so much from each other, that
beyond this order the contributions of longer cycle expansions have nothing to
do with quantum mechanics. The fact that Zsc(k)|n – even in its convergence
regime – is a good approximation to quantum mechanics only up to a finite n is
usually not noticed, as the terms in (55) are exponentially small on or close to the
real axis and sum therefore to a tiny quantity. In other words, for n > m(Re ka)
and close to the real k axis, the absolute error |cn(k)−Qn(k)| is still small, the
relative error |cn(k)/Qn(k)| on the other hand is tremendous. With increasing
negative Im k, however, using the scaling rules (52) and (53), the deviations (55)
are blown up, such that the relative errors |cn(k)/Qn(k)| eventually become
visible as absolute errors |cn(k) − Qn(k)| (see e.g. the resonance calculation of
Wirzba and Henseler (1995)). For Im k above the boundary of convergence these
errors still sum up to a finite quantity which might, however, not be negligible
any longer. Below the convergence line these errors sum up to infinity.

So, the value of Imk where — for a given n — the Zsc(k)|n sum deviates
from detM(k)|n is governed by the real part of k and the scaling rules (52) and
(53). It has nothing to do with the boundary of convergence of Zsc(k), as a good
approximation is given by the finite sum of terms satisfying (54). Therefore, the
truncated semiclassical expansion can describe the quantum mechanical reso-
nance data even below the line of convergence of the infinite cycle expansion
series, as we have already noted in Sect. 5.

On the other hand, the boundary line of the convergence regime of the semi-
classical expansion is governed by cm(k), m → ∞, terms which have nothing
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to do with the quantum analog Qm(k), i.e. solely by terms of type (55). The
reason is that the convergence property of an infinite sum is governed by the
infinite tail and not by the first few terms. Whether a semiclassical expansion
converges or not is a separate issue from the question whether the quantum
mechanical data are described well or not. The convergence property of a semi-
classical zeta functions on the one hand and the approximate description of

quantum mechanics by these zeta functions are therefore two different issues. It
could happen that a zeta function is convergent, but not equivalent to quantum
mechanics, as we have seen was the case with the extraneous resonances in the
quasiclassical calculation. Or that it is not convergent in general, but its finite
truncations nevertheless approximate well quantum mechanics, as is the case for
the Gutzwiller-Voros semiclassical zeta function(41).

We conclude that the exponential rise of the number of cycles with increasing
cycle expansion order n is the physical reason for the breakdown of the cycle ex-
pansion of the semiclassical zeta function(41) with respect to the exact quantum
mechanical cumulant expansion.

Summary and Conclusions

In conclusion, we have constructed a classical evolution operator for the qua-
siclassical wave function evolution, and derived the corresponding trace and
determinant formulae for periodic orbit quasiclassical quantization of chaotic
dynamical systems.

Improved analyticity has been very useful in sorting out the relative impor-
tance of the semiclassical, diffraction and quantum contributions. However, one
hope for consequence of the superexponential convergence of the cycle expansions
of the new Fredholm determinant was that they would converge faster with the
maximal cycle length truncation than the more familiar Gutzwiller-Voros and
Ruelle type zeta functions. As is shown here, this is not the case. Improved an-
alyticity comes at cost; extraneous eigenvalues are purely classical and do not
belong to the quantum spectrum, but their presence degrades significantly the
convergence of the cycle expansions.

The analysis sheds new light on the differences between the classical and
semiclassical spectra; in particular, we have made explicit for the case of n-
disk repellers the quantum limitations on the phase space resolution by classical
orbits, in the spirit of Bogomolny (1992) analysis of the finite resolution of phase
space for the bound systems.

In spite of its laggard performance as a putative competitor to the semiclas-
sical quantization, the mere fact that there exists an alternative “quasiclassi-
cal” quantization that follows directly from the Schrödinger equation without
recourse to path integrals and saddle points is of intellectual interest. It is still
possible that a more ingeniously constructed “classical” evolution operator would
also perform better than the semiclassical zeta function in practice.
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A Calculation of Trace M

In this appendix we calculate the trace (37). The equations of motion for a time
independent Hamiltonian (15) can be written as

ẋm = ωmn
∂H

∂xn
, ω =

[
0 I

−I 0

]
, m, n = 1, 2, . . . , 2d , (56)

where x = [q, p] is a phase space vector, I = [d × d] unit matrix, and ω the
[2d× 2d] symplectic form ωmn = −ωnm, ω2 = −1. The linearized motion in the
vicinity of a phase space trajectory x(t) = [q(t), p(t)] is given by the Jacobian
matrix

δx(t) = Jt(x) δx(0) , J t(ξ)ij =
∂xi(t)

∂ξj
, ξ = x(0) .

The equations of motion of J follow from (56)

d

dt
Jt(x) = L(x, t)Jt(x) , with L(x, t)mn = ωmkHkn(x)|x(t) . (57)

where Hkn = ∂k∂nH is the matrix of second derivatives of the Hamiltonian. L is
infinitesimal generator of symplectic (or canonical) transformations which leaves
ω invariant

LTω + ωL = 0 . (58)

J is a symplectic matrix, as it preserves the symplectic bilinear invariant ω:

JTωJ = ω . (59)

From this follows that det J = 1, and that the transpose JT and the inverse J−1

are also symplectic; J−1 = −ωJTω. Hence if Λ is an eigenvalue of J, so are 1/Λ,
Λ∗ and 1/Λ∗.

Let j be the configuration space Jacobian matrix

jtij(x) :=
dqi(t)

dqj(0)
, jt(x) := det jt(x) , (60)
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and j the configuration space Jacobian evaluated on the q-space projection of
the phase-space trajectory x(t) passing through the t = 0 initial point x = (q, p).
The curvature matrix (25) is related to the configuration space Jacobian matrix
(60) by

Mij(x, t) =
∂vi
∂qj

=
∂qk(0)

∂qj(t)

d

dt

∂qi(t)

∂qk(0)
=

(
1

jt

)

kj

(
d

dt
jt
)

ik

,

so the configuration space Jacobian matrix satisfies

d

dt
jt = Mjt (61)

and is given by the exponentiated time-ordered integral of the trace of M

det jt(x) = Te

∫
t

0
dτ trMτ

. (62)

The full phase space Jacobian matrix J is given by
[
δq′

δp′

]
= J

[
δq

δp

]
=

[
Jqq Jqp

Jpq Jpp

][
δq

δp

]
, (63)

where δq, δp are d-dimensional infinitesimal tangent space vectors, and Jqq, Jqp,
Jpq and Jpp are the [d × d] submatrices of the full [2d × 2d] Jacobian matrix.
(To save paper, we suppress the t, q, p dependence for the time being). Take a
derivative ∂/∂δqi of both sides of (63), keeping terms to linear order in δq. This
expresses the configuration Jacobian matrix j and the curvature matrix (25) M′

in terms of the J and the initial M
[

j

M′ j

]
= J

[
I

M

]
. (64)

Using (61) we see that J evolves the configuration Jacobian matrix and its time
derivative [

jt

d
dt j

t

]
= J

[
j0

d
dt j

0

]
,

where the initial condition for j0 = 1 for t = 0.
To spell it out: for a given initial set of δq’s and δp’s, the projection of the

phase space volume onto the configuration space is given by the configuration
space Jacobian matrix j

j = jt(q, p,M) := Jqq + JqpM , (65)

and the matrix of curvatures M′ is evolved recursively by

M′ = Mt(q0, p0,M0) := (Jpq + JppM)
1

Jqq + JqpM
, (66)
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where the q, p, t dependence is hidden in J. We also note that transposing (64),
multiplying from the right by ωJ, and using the symplectic invariance (59) yields
an alternative formula for the configuration space Jacobian matrix

(
1

j

)T

= Jpp −M′Jqp . (67)

Evaluation of the trace (37) requires a first variation in all of the dynamical
space coordinates X , including δM′. From (66) together with (67) we obtain

δM′ = Jpp δM
1

j
−M′ Jqp δM

1

j
=

(
1

j

)T

δM
1

j
, (68)

so the trace (37) is simply reinstated

∆p,r =
∑ (det jp)

r/2

∣∣det
(
1− ∂

∂MMTpr(M)
)∣∣ =

∑ (det jp)
r/2

∣∣det
(
1− j−r

p ⊗ j−r
p

)∣∣ . (69)

The sum is over all M that satisfy the fixed point condition

MTp(q, p,M) = M . (70)

Consider now j for a periodic orbit p; j is a [d× d] matrix with eigenvalues and
eigenvectors

j ei = Λiei , i = 1, 2, · · · , d .

Multiply (64) from the right by the 2d-dimensional vector [ei, ei]; we see that an
eigenvalue of j is also an eigenvalue of the [2d×2d] phase space Jacobian matrix:

Λi

[
ei

Mei

]
= J

[
ei

Mei

]
,

Furthermore, transposing this equation, multiplying it from right by Λ−1
i ωJ, and

using the symplectic condition (59) yields the associated left eigenvector with
eigenvalue 1/Λi,

[eTi , e
T
i M]ωΛ−1

i = [eTi , e
T
i M]ωJ .

In this way the (Λi, 1/Λi) pairs of eigenvalues of the [2d× 2d]-dimensional phase
space Jacobian matrix correspond the d eigenvalues of the d-dimensional j. As
the d eigenvalues of j generate the d pairs of eigenvalues of J, the sum (69)
gets 2d contributions Λ±1

1 Λ±1
2 · · ·Λ±1

d . Each of these is expanding on its own M
subspace, and the dominant one is the most expanding one, so we keep from
(69) only the modulus of the leading term (the phase will be treated in the next
section)

∣∣∣∆̃p,r

∣∣∣ =
d∏

i=1

|Λp,i|r/2
1− 1/Λ2r

p,i

. (71)

The dynamics in the tangent space can be restricted to a unit eigenvector neigh-
borhood corresponding to the largest eigenvalue of the Jacobian matrix. On this
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neighborhood the largest eigenvalue of the Jacobian matrix is the only fixed
point, and the quasiclassical zeta function obtained by keeping only the largest
term in the ∆p,r sum in (69) is also entire, Cvitanović and Vattay (1993).

So, (very pleasantly) as Λi are also eigenvalues of the configuration space
Jacobian matrix j, the extra trace over M is coming for free; we have already

computed the eigenvalue set {Λ1, 1/Λ1, · · · , Λd, 1/Λd} for every full (q, p) phase
space cycle p.

B Maslov Indices

The square root of the configuration space Jacobian (62) is also a time ordered
integral

(
det jt(x)

) 1
2 = Texp

{
1

2

∫ t

0

dτ tr (Mτ )

}
. (72)

M diverges at caustics; for example, for d = 1 Poincaré sections (such as for bil-
liards) M = ∂p/∂q diverges whenever a trajectory points in the p-axis direction.
Close to a singularity, where

M(t→ tc) = ∞ ,

we can neglect the non-leading terms from (27) and use the solution of

Ṁ = −M2 , (73)

after the symmetric matrix M had been transformed into a diagonal form. The
time ordered integral close to the singularity is dominated by

(
det

{
dqi(t

c
+)

dqj(tc−)

})1/2

= exp

(
1

2

∫ tc+

tc
−

R

τ + iǫ− tc
dτ

)
,

where tc± = tc ± η are infinitesimally close to tc and the integration variable τ is
shifted to τ + iǫ, because the corresponding wave packet should start out with
a positive phase before it encounters the first singularity. This integral can be
computed by taking the limit ǫ→ 0,

(
det

{
dqi(t

c
+)

dqj(tc−)

})1/2

= exp(−iπ(R/2))

∣∣∣∣det
{
dqi(t

c
+)

dqj(tc−)

}∣∣∣∣

1
2

. (74)

Note that the phase only results from the delta function part of the integrand,
whereas the principle value contributes just to the modulus which has been
already calculated in (71). Between two singular points the time ordered integral
is positive and gives the absolute value of the volume ratio. R counts the number
of rank reductions of the matrix M along the classical path, and it is a function
of the initial condition M0; for a periodic orbit it is an invariant property of the
cycle.
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C Gutzwiller Trace Formula vs. Quasiclassics

Consider a generalization of the quasiclassical zeta function (39), weighted by
extra powers of Λp,i:

Fn(k) = exp

(
−
∑

p

∞∑

r=1

1

r

d∏

i=1

|Λp,i|−r/2 e
i
h̄
Sp(k)r−iπ

mp

2
r

Λnr
p,i(1 − 1/Λr

p,i)
2(1 − 1/Λ2r

p,i)

)
. (75)

The weight 1/(1−x), x = 1/Λr
p,i of p-th term in the exponent of the semiclassical

zeta function (41) can be related to the quasiclassical zeta function cycle weight
1/(1− x)2(1 − x2) in (75) by multiplying it by

1 =
1

(1− x)(1 − x2)
− x

(1− x)(1 − x2)
− x2

(1 − x)(1 − x2)
+

x3

(1− x)(1 − x2)
.

From this it follows that the semiclassical zeta function function (41) for Axiom
A flows is meromorphic in the complex k plane, as it can be written as a ratio
of entire functions; for 2-dimensional Hamiltonian systems

Zsc(k) =
F0(k)F3(k)

F1(k)F2(k)
, (76)

where Fk(k) includes only (71), the first term in the ∆p,r sum (69). The zeros
of the semiclassical zeta function coincide with the ones obtained from F0(k) =
Zqc(k), and the leading poles should arise from F1(k). In two dimensions, i.e.
d = 1, (75) can be resummed as

Fn(k) =
∏

p

∞∏

j=0

∞∏

l=0

(
1− tp

Λn+j+2l
p

)j+1

, (77)

where tp is defined in (44).

D Selberg Zeta Function

The question that arises naturally in discussing semiclassical quantization is
following: if the usual semiclassical evolution is not multiplicative, why does it
anyway yield the exact quantization in the case of the Selberg trace formula? And
what does the quasiclassical quantization yield for flows on surfaces of constant
negative curvature?

The Selberg (1956) zeta function for geodesic flows on surfaces of constant
negative curvature is exceptional: in this very special case the multiplicativity is
guaranteed by the Bowen-Series (1979) map, which reduces the two-dimensional
flow to a direct product of 1-dimensional maps, and makes it possible to construct
the associated transfer operators in terms of one variable, Mayer (1990).
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The essence of the construction is the following: In the Poincaré halfplane
representation the dynamics is described by the free Hamiltonian

Ĥ =
1

2y2
(p2x + p2y) (78)

whose classical trajectories are circle segments. The centers of the circles always
lie on the y = 0 axis, and any free trajectory can be characterized by xf and
xb, the forward and backward intersection points of its circle with the y = 0
axis. The polygonal billiards in the x, y plane are defined in terms of walls which
themselves are geodesics, hence also characterized by their footpoints x1, x

′
1,

x2, x
′
2 ... (see Fig. 7). A reflection off a wall changes the direction of the particle,

y

x x x x x1 x’2 b 3 1 f 2x’ x’x 3

Fig. 7. A typical arrangement on the Poincaré halfplane. The half circles with foot-
points (xi, x

′

i), i = 1, 2, 3 are the billiard walls. The forward and backward footpoints
(xb, xf ) represent a trajectory.

with the new trajectory characterized by a new pair of footpoints x′f and x′b.
The new forward footpoint will be the image of the old footpoint with respect to
an inversion transformation on the circle of the wall. For example, a reflection
off the wall xn, x

′
n of radius Rn = |xn − x′n|/2 and center xcn = (xn + x′n)/2 is

described by

x′f = fn(xf ) = xcn +R2
n/(xf − xcn) .

The forward footpoint and the index of the wall determine uniquely the next
forward footpoint. The footpoint of a periodic orbit reflected off walls ǫ1ǫ2...ǫnp

respectively is determined by the equation

xp = Fǫ1ǫ2...ǫnp
(xp) = fǫnp

(fǫnp−1
(...fǫ1(xp)...)) . (79)
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The hyperbolic length of this periodic orbit is lǫ1ǫ2...ǫnp
= log |F ′

ǫ1ǫ2...ǫnp
(xp)|,

and its stability eigenvalue is also given by the derivative F ′
ǫ1ǫ2...ǫnp

(xp). The

stability is the product of derivatives evaluated along the orbit

F ′
ǫ1ǫ2...ǫnp

=

np∏

i=1

F ′
ǫi ,

and is multiplicative without any need for further manipulations. This property
makes the polygonal billiards on surfaces of constant negative curvature unique
and atypical.

The Fredholm determinant of the 1-dimensional Perron-Frobenius operator

L(y, x, k) = |f ′(x)|1/2+ikδ(y − f(x)) ,

where f is the appropriate footpoint mapping and k =
√
E − 1/4 is the wave

number, is precisely the Gutzwiller-Voros semiclassical zeta function for this
problem, Zsc(E) = det(1 − L0). Unlike the generic situation discussed in this
paper, the semiclassical zeta function is in this case an entire function. However,
the spectrum of the quasiclassical zeta function Zqc(E) defined in this paper
contains spurious zeroes in the complex plane in addition to the true zeroes on
the real k axis. These spurious zeroes are the eigenvalues of weighted operators
of type

Lm(y, x, k) = |f ′(x)|1/2+m+ikδ(y − f(x)) , (80)

where m is an integer number. Since the Fn(k)’s (see (77)) can be expressed in
terms of the Fredholm determinants of these operators as

Fn(k) =

∞∏

l=0

{
det (1− Ln+l) det (1− Ln+l+1)

}l+1

, (81)

Zsc(k) = det(1− L0) results under the relation (76), too.
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