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Abstract

Twitter is a popular public conversation platform with world-wide au-

dience and diverse forms of connections between users. In this paper we

introduce the concept of aggregated regional Twitter networks in order

to characterize communication between geopolitical regions. We present

the study of a follower and a mention graph created from an extensive

data set collected during the second half of the year of 2012. With a

k-shell decomposition the global core-periphery structure is revealed and

by means of a modified Regional-SIR model we also consider basic infor-

mation spreading properties.

1 Introduction

Twitter is a public conversation site where millions of micro-bloggers post their
short messages regularly. As part of the Twitter ecosystem many independent
software applications are developed to serve the needs of its diverse user base.
This accelerated its growth and allowed the service to establish a world-wide,
and ever growing active user-base. On the other hand, the infrastructure built
for the easily automated access to the stream of messages combined with addi-
tional public user information, has attracted a scientific audience as well [1, 2].
Although many interesting questions can be answered based on the messages
and the registered relations of users, it is important to note that the complete
data set of public sites is not freely available. In this paper we aim to overcome
the sparsity of the accessible data stream by means of different aggregation
techniques: over time and within geographic boundaries. As a result, instead
of inspecting user-level interactions, we aim to analyze the rather robust com-
munication network of the geopolitical units of the world. Such country-level
connections can reveal structural properties and a hierarchy of the regions. By
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adapting a simple information propagation model we can further differentiate
the most efficient information sources of the world - as reflected in high volume
of individual conversations.

2 Methods

2.1 Twitter data

We used a data set collected from the freely available Twitter stream during
the second half of the year of 2012 [3]. We refer to Twitter users in this data
set allowing public access to their geographical location information as the geo-
users, and each one is located to a single fixed position [3]. Those that fell
into unmapped territories (e.g., oceans) were discarded from further analysis.
By means of aggregation of their different forms of connections we create two
different communication networks between geopolitical regions: the mention
(M) and the follower (F) networks.

For creating the user-level follower graph we used 177, 176, 790 links between
3, 312, 961 geo-users identified as the most active ones. Given their list, the ad-
ditional follower relations were collected separately [3]. The source of a following
link is the followed user while its target is the follower. A network built using
the inverse follower relation is also be meaningful, and can be used for show-
ing the direction of interest. To create the user-level mention graph we used
132, 436, 279 mention messages between 5, 381, 565 geo-users. The source of a
mention link is the sender while its target is the mentioned user.

2.2 Regional Twitter networks

The aggregation of a user-level network to obtain a regional one is based on a
division of the world into distinct geopolitical units, called regions. We opted
to use countries, but in the case of the largest ones (i.e. Australia, Canada,
USA, Brazil, China, Russia and India) their smaller administrative units are
used in order to have a more balanced geographic division. After aggregation
the regions become the new nodes of the graph with aggregated user counts,
and the new edges are defined directed and weighted based on the respective
sums of user level links between regions. For each network regions without any
links were discarded from further analysis.

In this paper we aim to characterize the region-level communication. For
this purpose both F and M are considered as static 1. For creating M the
geographic aggregation is preceded by an aggregation over time. This gives ro-
bustness against possible sampling fluctuations coming from the freely available
Twitter stream.

2.3 Graph properties

Both F and M are represented by weighted and directed graphs. Their adja-
cency matrices F and M have non-negative entries and they are not symmetric.

1This is justified by their slow evolution compared to the timescale of the relevant processes,

and allows for an effective use of the minimal set of freely available Twitter data.

2



The largest entries in a row of F or M are usually localized in the diagonal, so a
careful treatment of the regional and inter-regional communication is necessary.

To describe inter-regional communication, we introduce the following char-
acteristics. For the region, labeled by i, the Total Volume of Incoming Followers
(Mentions) is the sum of the off-diagonal entries in the ith column of the Follower
(Mention) matrix and is denoted by TVIF (i) (TVIM (i)). The Total Volume of
Outgoing Followers (Mentions) is the sum of the off-diagonal entries in the ith
row of the Follower (Mention) matrix and is denoted by TVOF (i) (TVOM (i)).
TVIF and TVOF of a region describe the total amount of channels of passive
information flow originated in the communication environment of the region or
in the region itself, respectively. TVIM and TVOM of a region are related to the
activity of the region in conversation based active information flow - incoming
and outgoing mentions describe how many conversation has been initiated in the
communication environment of the region and in the region itself, respectively.

For a given region, TVIF and TVOF are not necessarily the same. If such
an asymmetry occurs, the region becomes mainly information receiver or trans-
mitter. The same is possible for the mention measures. Here, the asymmetry
between the values of TVIM and TVOM , describes different attitudes of a re-
gion with respect to starting conversations on Twitter. To measure asymmetry
in the Follower and Mention matrices, we define type I and type II asymmetry
parameters. Type I asymmetry parameter is defined for regions with TVOF

(TVOM ) greater than zero and it is the fraction TVIF /TVOF (TVIM/TVOM ).
Type II asymmetry parameter is defined for regions with TVIF (TVIM ) greater
than zero and it is the fraction TVOF /TVIF (TVOM/TVIM ).

For further analysis of inter-regional communication, we define F̂ and M̂ , the
symmetric, unweighted Follower and Mention matrices by setting all diagonal
entries of F (M) to zero and setting an off-diagonal entry to one if and only
if at least one following (mention) between the corresponding regions has been
recorded by our data mining methods. The matrices F̂ and M̂ can be recognized
as adjacency matrices of unweighted graphs. We used k-shell decomposition of
these graphs to determine their centrality properties.

k-shell decomposition is a standard tool in graph theory to detect the core-
periphery structure of a graph [4],[5],[6]. A set of nodes Ck is called k-core of the
graph G if the degree of nodes in Ck, with respect to the subgraph of G induced
by Ck, is at least k and Ck is the largest set of nodes of G with this property.
The k-shell Sk of the graph is defined by Sk = Vk \Vk+1. Throughout the paper
we will say that the nodes of the shell with the highest k belong to the core and
all other nodes belong to the periphery.

To relate the regional and the inter-regional communication to each other, we
introduce the Normalized Interest Measure (NIM) and the Normalized Activity
Measure (NAM) for the ith region as

NIMX(i) :=

∑
j 6=i Xji

Xii

∑
j X̂ji

NAMX(i) :=

∑
j 6=i Xij

Xii

∑
j X̂ij

if the fractions are meaningful. Here, X is the Following or the Mention matrix.
Intuitively, NIMX(i) and NAMX(i) is the empirical probability to find a fol-
lowing or a mention between region i and one of its randomly chosen neighbors
in the data set, if a following or a mention is found between two users, both of
them localized in region i, in the same data set.
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2.4 Regional-SIR dynamics on aggregated networks

To compare world-wide information spreading potential of regions we adapt one
of the simplest propagation models, the SIR model [7],[8],[9], and modify it to
be used on aggregated regional networks. The regional-SIR (R-SIR) model also
assumes that at any given time t an agent can be in one of the following states:
susceptible, infected or recovered. The dynamics of single agents is governed by
the rate of contact between agents, infection of a contacted susceptible agent
and recovery of an infected one. After aggregation of single contact links the
new weights are proportional to contact frequencies between pairs of regions on
average. By fixing their absolute value a timescale can be defined.

Let X denote either M or F - fixing the total number of regional nodes (N)
and the regional population counts (Nk) accordingly. The state of the kth node
is characterized by the number of its agents being in each of the three different
states: Nk = Sk + Ik + Rk. Yk is used as a compact notation for any of the
three variables. We define the normalized edge weights to obtain region-level
contact rates per source and per target agent: xkj := (Nk ·Nj)

−1 ·Xkj .
A few intuitive rules can be translated into a set of deterministic equations

governing the time evolution of the regions. We assume that the position of each
agent and their total number per region are constant and contact is only possible
between two agents in regions connected by an aggregated edge of non-zero
weight. The number of contacts per unit time between two regions is assumed to
be proportional to the Xkj weight of the connecting edge

2 and susceptible agents
can only receive information when contacted by infected agents. The number of
infected agents decreases from recoveries at a given rate. After division by Nk

the relative regional state variables: yk(t) := N−1

k · Yk(t) and the new weight
matrix: wkj := xkj ·Nj will appear in the corresponding equations:

dsk
dt

= −αk ·
∑

j

(wkj · ij) · sk

dik
dt

= +αk ·
∑

j

(wkj · ij) · sk − βk · ik

drk
dt

= +βk · ik.

(1)

αk and βk scale the regional characteristic time of infection and recovery respec-
tively. These parameters can further account for cultural and/or topic-related
local differences, but in this paper we assume homogeneous distribution across
the regions: βk = β and α = 1, ∀k. We define the regional total infection at
time t as the sum of infections up until t regardless of possible recoveries . For
describing the global state we use average variables calculated from the global
sums 〈y〉gl(t) := N−1

∑
k yk(t). The global infection time of the kth region

(GITk) is the time needed for 〈itot〉gl(t) to reach 99% with β = 0 and only the
kth i0,k = 1 set to non-zero initial value3.

2Direction of links and regional self-loops are taken into account.
3Values are rounded to the resolution of the simulations.
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3 Results

3.1 Properties of Twitter graphs

The Follower matrix has been built with the usage of approximately 1.77 · 108

followings between 473 regions. 57.17% of the followers addressed a Twitter
user from his or her own region. The sparsity of F is approximately 0.49. The
Mention matrix contained approximately 1.32 · 108 mentions from 476 regions.
82.72% of these mentions addressed a Twitter user from his or her own region.
The sparsity of M was 0.29.

Both TVIF and TVIM reached their maximal value at California. The region
with the maximal volume of TVOF and TVOM was United Kingdom. It seems
that California is the most active information source - 9.35% of the total number
of followings addressed a user located in California and 5.53% of the mentions
were used to try to initiate a conversation with a Californian user. On the
contrary, United Kingdom is the most effective information gatherer - 6.27% of
the followings have the island country as origin and 5.25% of the mentions have
been made by a user from United Kingdom.

It is interesting to ask the properties of the empirical distribution of the non-
zero off-diagonal entries of F and M . We found that these distributions closely
follow an ∼ x−α type power law. Cutting away the entries with extremely
small and extremely large magnitude, the best fit to the remaining data gave
αF = 1.44± 0.02 in the case of the Follower and αM = 1.38± 0.03 in the case
of the Mention matrix (see Fig. 1).
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Figure 1: Histograms of the empirical distribution of the off-diagonal entries of
the Follower (top) and Mention (bottom) matrix.

As it is expected, higher value of self-followers of a region results in higher
values of TVOF and TVIF of the same region. The same is true in the relation-
ship of the self-mentions and TVOM and TVIM . Surprisingly, the dependencies
also follow power laws (see Fig. 2 in the case of TVOF and TVIF). The expo-
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nent in the power law of the best fit to the data using the regions with at least
one hundred and at most one million incoming or outgoing followers (mentions)
in total is shown in Table 1. This power law dependence could be the result of
observations described in [10], but further studies would be needed to decide in
reason of the aggregated nature of our data sets.

Table 1: The exponents of the power law dependence of TVOX and TVIX as
the function of self-communication.

Type F M

TVI 0.710± 0.004 0.721± 0.003

TVO 0.702± 0.004 0.830± 0.002

We calculated the asymmetry measures for all regions, where they could be
defined. We found that most of the regions have type I and type II asymmetry
parameters close to one, but there were serious deviations - 14.6% and 18.4% of
the regions had type I and type II follower asymmetry parameter greater than
one. The same ratios are 19.1% and 20.0% in the case of type I and type II
mention asymmetry parameters. The median of type I and type II asymmetry
parameter is 0.86 and 1.03 in the case of the Follower matrix and 0.96 1.03 in
the case of the Mention matrix (see Fig. 3 and Fig. 4). The most frequent type
I and type II asymmetry parameters were located around 0.81 and 1.22 in the
case of the Follower matrix and 0.86 and 1.08 in the case of the Mention matrix.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
V

O
F

Self-followings

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
V

I M

Self-mentions

Figure 2: Values of TVIF and TVOM as a function of the number of self-
followings and self-mentions.

The k-shell decomposition of F̂ and M̂ resulted in a massive core and a
heavily articulated periphery (see Fig. 5). In the case of F̂ , the core contains
240 regions, each of them have at least 199 neighbors. In the case of M̂ , the
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Figure 3: Histograms of the empirical distributions of asymmetry parameters in
the case of Follower matrix. The x = 1 curve is marked by a red straight line.

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7

F
re

q
u
en

cy

Type I Asymmetry Parameter

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7

F
re

q
u
en

cy

Type II Asymmetry Parameter

Figure 4: Histograms of the empirical distributions of asymmetry parameters in
the case of Mention matrix. The x = 1 curve is marked by a red straight line.

core contains 173 regions, each of them have at least 135 neighbors. There is
a strong difference between the structure of the periphery of F̂ and M̂ . The
periphery of F̂ contains 233 regions and 104 shells, and the average number of
the regions in each periphery shell is low. On the contrary, the periphery of
M̂ has one large shell and several small shells with only a few regions. The
large shell in the periphery contains 45 regions, each of which have at least 112
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neighbors in the graph of M̂ (see Fig. 6).

Figure 5: k-shells of the symmetric, unweighted Follower matrix on the world
map. Deepest blue marks the k = 1 shell, deepest red is the core.

Figure 6: The core (red) and the largest shell in the periphery (blue) of the
graph defined by the symmetric, unweighted Mention matrix.

We end our discussions about the structural properties of the Follower and
the Mention graph by the examination of the NIM and NAM parameters. Intu-
itively, if a region is massively represented on Twitter, its inter-regional activity
is high. Our aim with the introduction of NIM and NAM was to compare
the trend of the alteration of the intensity of inter-regional communication,
if we compare it to the activity of the regional communication. In order to
achieve this, we studied NIM and NAM as the function of self-mentions and
self-followers. We found that NIM and NAM decays along increasing regional
communication. This is a rather surprising result, which means that the growth
of the activity in the inter-regional communication with a randomly chosen
neighbor of the communication environment of the region increases slower com-
pared to the growth in the number of self followers and self mentions. We found
that the rate of the decay is different along the periphery and the core. It seems
that both of them follows a near power law, but with our current data, we can-
not say surely that the data set comes from the sampling of two different power
law or from one convex function which differs from power law (see Fig. 7).
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Figure 7: Values of NIM in the Following (top) and in the Mention matrix
(bottom), as a function of self-followings. Regions of the core and the periphery
is marked by red and blue dots.

3.2 Regional SIR dynamics on the Twitter networks

We performed simple R-SIR simulations with the primary goal of comparing
the global spreading potential of regions. Thus the initial conditions of a single
run were set to a single source region being fully infected while the rest of the
world was set to susceptible populations. In each case we performed pairs of
simulations (differing only in their time interval) using F and M for creating
the respective w weight matrices of Eq. 1.

3.2.1 Dependence on the recovery rate

As an example, Fig. 8 shows how 〈s〉gl (t) and 〈itot〉gl (t) depend on the choice of
the homogeneous β parameter. This global recovery rate is competing with the
heterogeneous infection strengths as defined by the elements of w. Increasing
its value between the minimal and the maximal matrix element decreases the
efficiency of the infection.

3.2.2 Dependence on the initial conditions

With the β parameter being fixed, setting different regions as the source of
infection for a single run simulation can lead to different results. The global
infection potential of the region depends on its communication environment and
its overall influence. As an example, Fig. 9 shows the difference between the
global infection curves of two single runs using different sources but otherwise
identical settings.

We ran two series of single run simulations on the F and the M networks
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Figure 9: Effect of different source regions in single run simulations on 〈itot〉gl (t).
β = 0 and F were used with initial fully infected region of California (red) and
of Monaco (dashed, blue). Both regions belong to the core of F .

respectively with each of their regions set as the source.4 The resulting GITk

values were then assigned to the regions. Figure 10 shows the distributions of
the normalized values obtained after division by the respective maximal GIT
values. The median of the distribution of NGIT using F is 0.72 and using M is
0.84.

We find that the NGIT value of a region shows a clear negative correlation
with its level in the hierarchy determined by the k-shell decomposition. This is
illustrated by the Fig. 11 for M and F cases.

This leads to our last definition. We call the Effective Core (EC) of a regional
network the ensemble of regions belonging to the Core and having NGIT smaller
than any of the periphery values. This limit is 0.68 for ECF and results in a
total number of 159 member regions, while for ECM the limit is 0.81 and there
are 72 regions in it.As shown on Fig. 12, we found that the ECM is entirely
included in the ECF .

4 Conclusion and Future work

In this paper we analyzed an extensive collection of Twitter conversations be-
tween geo-users of the online platform. We defined two aggregated regional
communication networks: the Follower and the Mention networks. We analyzed

4The region of Andaman and Nicobar was excluded from M as outlier with low degrees.
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Figure 10: Histograms of the Normalized GIT of single source regions for F
(top) and M (bottom). The median values are marked with straight red lines.

asymmetry and size dependence of the weighted and directed graph represen-
tations, and revealed properties of the regional communication heterogeneity.
The collapsed graph representations were used to determine the Core-Periphery
structure by means of k-shell decomposition. A modified Regional−SIRmodel
was defined and used to further differentiate the regions hierarchy and create the
Effective Core of the regions with the greatest global information propagation
potentials.

In the future this novel aggregation method can be ameliorated by better
data sets. The Core-Periphery division could be determined by a modified
decomposition using the original graphs instead of their collapsed counterparts.
The R-SIR model could be modified to incorporate external influence, that
could lead to simulations for heterogeneous parameter fitting to measured real-
world processes. This would also require creation measured time series of real
infection processes.
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