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The phase diagram of the three-�avor QCD is mapped out in the low mass orner of the

(mπ − mK)�plane with help of the SUL(3) × SUR(3) linear sigma model (LσM). A novel

zero temperature parametrization is proposed for the mass dependene of the ouplings away from

the physial point based on the the three-�avor hiral perturbation theory (U(3) ChPT). One-loop

thermodynamis is onstruted by applying optimized perturbation theory. The unknown depen-

dene of the salar spetra on the pseudosalar masses limitates the auray of the preditions.

Results are ompared to lattie data and similar investigations with other variants of e�etive hiral

models. The ritial value of the pion mass is below 65 MeV for all mK values . 800 MeV. Along

the diagonal mπ = mK , we estimate m
rit

(diag) = 40± 20 MeV.

PACS numbers: 11.10.Wx, 11.30.Rd, 12.39.Fe

1. INTRODUCTION

The ambition of the exploration of the QCD phase struture orresponding to di�erent breaking patterns of

SUL(3) × SUR(3) hiral symmetry is the determination of the true ground state of the theory for an arbitrary

set of quark masses mu,md,ms in presene of a variety of intensive thermodynamial parameters, e.g. temperature

(T ), baryoni (µB), isospin (µI) and strangeness (µs) hemial potentials. The progress is ontinuous both in numer-

ial lattie simulations [1℄ and in the appliation of e�etive models [2�5℄ for extrating results of phenomenologial

interest. The baryoni density of the Early Universe was very small when the osmi expansion drove it through

the stages of hiral symmetry breaking (the ondensation of the di�erent quark �avors). Also for the extreme high

energies of heavy ion ollisions ahieved at RHIC the average baryoni density of the �nal state is very lose to zero.

This motivates the present investigation where we onentrate on the ase when all types of hemial potential vanish.

Universality arguments [6℄ predit �rst order transition for mu = md = ms = 0 and a seond order one for

mu = md = 0,ms = ∞. One expets the existene of a triple point for some ms = ms,c. The most systemati e�ort

seeking the expliit solution of the thermodynamis of the 3-�avor QCD is done with help of numerial simulations in

the bulk of the (mu = md,ms)-plane [7, 8℄. However, by the nature of the lattie regularization, one explored to date

mostly the region of rather massive u− d quarks, usually orresponding to pion masses of order 3-500 MeV (in these

simulations ms is mostly kept �xed at its physial value). Lattie version of hiral perturbation theory (ChPT) is

employed for extrapolating the results to the physial mass point. Also �nite lattie spaing e�ets turned out rather

important, therefore improved lattie ations gained signi�ane in reahing physial onlusions. Common wisdom

at present onludes that in the physial point temperature variations move the thermodynamial potential of the

system analytially between the hirally symmetri and the broken symmetry regimes.

At the same time onstant interest is manifested onerning the loation of the borderline of the region of �rst order

transitions. If the border passes nearby, one might expet it to in�uene in a substantial way the transformation of

the physial ground state [9, 10℄. Numerial investigations were done and systematially improved for the 3-�avor
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degenerate ase mu = md = ms 6= 0. The initial estimate of m
rit

(diag) ≈ 290 MeV [11℄ was seen to be redued to

60− 70 MeV [7℄ or may be to even further down [8℄ when �ner latties and improved lattie ations are used.

E�etive models (linear or nonlinear sigma models, Nambu�Jona-Lasinio model) represent another, in a sense

omplementary, approah to the study of the phase struture, whih one expets to work the better the lighter quark

masses are used [12, 13℄. It is surprising that only moderate e�ort was invested to date to improve the pioneering

studies of the SU(3) × SU(3) linear sigma model by Meyer-Ortmanns and Shaefer [12℄ who used a saddle point

approximation valid in the limit of in�nite number of �avors, and derived m
rit

(diag) . 51 MeV. An extension of

their work to unequal pion and kaon masses was ahieved by C. Shmidt [14℄. He found m
rit

(diag) = 47 MeV and a

phase boundary approahing the mK-axis rather sharply. The loation of the triritial point an be estimated from

extrapolating his urve to mK(tririt) ≈ 70MeV, although the expeted power-saling of the boundary urve with mπ

is di�ult to disentangle from a simple linear regime. The phase boundary was alulated also by Lenaghan [15℄ using

the Hartree-approximation to the e�etive potential derived in CJT-formalism [16℄. For the omplete determination

of the ouplings of the three-�avor hiral meson model he �xed the T = 0 mass of the σ partile in addition to the

phenomenology of the pseudosalar setor. The emerging phase boundary is rather sensitive to this mass. For instane

in the ase of UA(1) anomaly, the triritial kaon mass is mK(tririt) ≈ 161 MeV (ms = 16 MeV) for mσ = 800 MeV,

and the expeted mπ saling is not seen, while for mσ = 900 MeV, mK(tririt) ≈ 652 MeV (ms = 260 MeV). The

estimate for m
rit

(diag) whih one an extrat from Fig. 3 of [15℄ for mσ = 900 MeV is ompatible with [12, 14℄.

In our opinion the greatest problem in re�ning the linear sigma model into a ompetitive tool of investigation of the

hiral phase diagram is the di�ulty of the determination of the quark (pseudosalar meson) mass dependene of the

ouplings of the e�etive models. Almost all investigations tune exlusively the strength of expliit hiral symmetry

breaking to ope with the variation of the pion and kaon masses via the Gell-Mann�Oakes�Renner relation. All other

ouplings are usually kept at the values determined in the physial point. One might note, however, some attempts

to inlude also the variation of fπ as dedued from lattie studies [13℄.

The novel feature of our paper is the parametrization of the ouplings of the 3-�avor linear sigma model whih

ensures a full agreement with the results of ChPT for the variation of the tree�level pseudosalar mass spetra as

a funtion of the pion and kaon masses. In order to make the paper self-ontained, we review in Setion 2 the

parametrization of the linear sigma model, whih essentially follows Refs. [13, 17℄. In Setion 3 the relevant O(1/f2)
aurate results of ChPT [18�22℄ are summarized and used for the determination of the (mπ,mK)�dependene of

the LσM�ouplings. Full details of the parametrization an be reprodued with help of three Appendies. Next, we

derive in Setion 4 the equations of state for the nonstrange and strange ondensates together with the gap equation

for the ommon thermal mass whih haraterizes the �nite temperature behavior of the salar and pseudosalar

spetra. For this we use a variant of the Optimized Perturbation Theory [23℄. In this way we partially avoid the

imaginary mass problem of the standard loop expansions emphasized by [13℄. In setion 5 we argue that the phase

boundary separating the region of �rst order transitions from the rossover regime varies sensitively depending on

the assumption we make about the salar setor when speifying the ouplings of the model. Inspite of this variation

we are able to onlude that the ritial pion mass does not exeed 65 MeV in the region 0 < mK < 800 MeV. In

partiular the mπ = mK diagonal is rossed by the phase boundary in the region 20 MeV < m
rit

(diag) < 65 MeV.

2. TREE LEVEL PARAMETRIZATION OF THE COUPLINGS

The Lagrangian of the SUL(3) × SUR(3) symmetri linear sigma model with expliit symmetry breaking terms is

given by [24℄

L(M) =
1

2
Tr (∂µM

†∂µM + µ2
0M

†M)− f1
(

Tr (M †M)
)2 − f2Tr (M

†M)2 − g
(

det(M) + det(M †)
)

+ ǫ0σ0 + ǫ8σ8, (1)

where M is a omplex 3×3 matrix, de�ned by the σi salar and πi pseudosalar �elds M :=
1√
2

8
∑

i=0

(σi + iπi)λi, with

λi : i = 1 . . . 8 the Gell-Mann matries and λ0 :=
√

2
31. The last two terms of (1) break the symmetry expliitly, the

possible isospin breaking term ǫ3σ3 is not onsidered.

A detailed analysis of the symmetry breaking patterns whih might our in the system desribed by this Lagrangian

an be found in [13℄. The �elds σ0, σ8 both ontain strange and nonstrange omponents. For the purpose of the

exploration of the (mπ −mK)-dependene of the phase diagram we found more onvenient to deompose the vauum

ondensate into strange and nonstrange parts whih is realized by an orthogonal transformation in the algebra basis

and also de�ned the orresponding external �elds:

(

σx

σy

)

:= O

(

σ0

σ8

)

,

(

πx

πy

)

:= O

(

π0

π8

)

,

(

ǫx
ǫy

)

:= O

(

ǫ0
ǫ8

)

, (2)
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m2

π = −µ2

0 + 2(2f1 + f2)x
2 + 4f1y

2 + 2gy m2

a0
= −µ2

0 + 2(2f1 + 3f2)x
2 + 4f1y

2 − 2gy

m2

K = −µ2

0 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 −
√
2x(2f2y − g) m2

κ = −µ2

0 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 +
√
2x(2f2y − g)

m2

ηxx
= −µ2

0 + 2(2f1 + f2)x
2 + 4f1y

2 − 2gy m2

σxx
= −µ2

0 + 6(2f1 + f2)x
2 + 4f1y

2 + 2gy

m2

ηyy = −µ2

0 + 4f1x
2 + 4(f1 + f2)y

2 m2

σyy
= −µ2

0 + 4f1x
2 + 12(f1 + f2)y

2

m2

ηxy
= −2gx m2

σxy
= 8f1xy + 2gx

TABLE I: The squared masses of the pseudosalar nonet appear in the �rst olumn. The �rst two entries are the squared

masses of pions and kaons, the last three rows represent the mixing in the η− η′
setor. The seond olumn ontains the same

quantities for the salar parity partners. The phenomenologial assignments of the salar masses are disussed in the Partile

Data Group (PDG) review on salar mesons of Ref. [25℄.

where

O :=
1√
3

(√
2 1

1 −
√
2

)

. (3)

The �elds with indies x, y appear in the matrix M as follows

M =
1√
2

7
∑

i=1

(σi + iπi)λi +
1√
2
diag(σx + iπx, σx + iπx,

√
2(σy + iπy)). (4)

For the tree�level determination of the parameters of the system we have at our disposal the equations of state, the

mass spetra of the pseudosalar and salar nonets and the onsequenes of Partially Conserved Axial-Vetor Current

(PCAC) relations for the weak deay of π and K. After some algebra (f. [24℄) one obtains the zeroth order term

of the Lagrangian in the �utuations around the expetation values < σx >=: x ,< σy >=: y, whih is the lassial

potential

Ucl = −L
∣

∣

∣σx = x
σy = y

= −ǫxx− ǫyy −
µ2
0

2
(x2 + y2) + gx2y + 2f1x

2y2 + (f1 +
f2
2
)x4 + (f1 + f2)y

4. (5)

The terms linear in the �utuations must vanish, aordingly the two equations of state are

Ex :=
∂L

∂σx

∣

∣

∣

∣σx = x
σy = y

= ǫx + µ2
0x− 2gxy − 4f1xy

2 − 2(2f1 + f2)x
3 = 0, (6)

Ey :=
∂L

∂σy

∣

∣

∣

∣

σx = x
σy = y

= ǫy + µ2
0y − gx2 − 4f1x

2y − 4(f1 + f2)y
3 = 0 . (7)

The matrix of the squared masses an be read from the oe�ients of the quadrati terms, see Table 2. There is a

mixing in the x−y setor represented by entries of the last three rows. The mass matrix of η �elds is given also in the

η0 − η8 basis in Appendix A 1. The third and fourth order terms yield the three� and four�point interation verties.

Finally, PCAC relates the ondensates x and y to the pion (fπ) and kaon (fK) deay onstants:

2
√
2fK =

√
2x+ 2y, fπ = x. (8)

Equations (6), (7), (8) and those of Table 2 onnet at tree�level the eight parameters of the Lagrangian (x, y, µ0, f1,
f2, g, ǫx, ǫy) and the physial harateristis of the meson setor. x and y belong to the oupling parameters of the

shifted Lagrangian. The pseudosalar masses and deay onstants are better known than the orresponding quantities

of the salar setor, therefore the pseudosalar setor is preferred over the salars for �xing the parameters. The x, y
ondensates are simply obtained from (8). The ouplings f2, g and the ombination M2 := −µ2

0+4f1(x
2+ y2) an be

determined by the knowledge of three pseudosalar masses. The pion and kaon masses obviously should be seleted

sine our purpose is to study the e�et of their variation on the thermodynamis. For the third physial quantity, the

trae of the mass matrix in the η-setor is hosen, whih will be denoted below by M2
η .

This set of relations has the following expliit solution:

x = fπ , (9)

y = (2fK − fπ) /
√
2 , (10)

f2 =
(6fK − 3fπ)m

2
K − (2fK + fπ)m

2
π − 2(fK − fπ)M

2
η

4(fK − fπ)(8f2
K − 8fKfπ + 3f2

π)
, (11)

g =
2fKm2

K + 2(fK − fπ)m
2
π − (2fK − fπ)M

2
η√

2(8f2
K − 8fKfπ + 3f2

π)
, (12)
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M2 =
1

2
M2

η +
g√
2
(2fK − fπ)− 2f2(fπ(fπ − 2fK) + 2f2

K). (13)

The above relations ontain informations only from the pseudosalar setor and were previously used in Ref. [13℄.

ǫx and ǫy are determined when using the above expressions in (6) and (7). But it is simpler to ombine these

equations in the Gell-Mann�Oakes�Renner (GMOR) relations and use the following equations instead of the equations

of state:

ǫx = m2
πx, ǫy =

√
2

2
(m2

K −m2
π)x+m2

Ky. (14)

These tree�level Ward-identities guarantee the Goldstone theorem at zero temperature. When m2
π = 0, the external

�eld ǫx is zero and ǫy generates the nonzero value of mK . The approah of taking into aount the variation of the

pion and kaon mass only by hanging the external �elds (f. (14) ) was extensively followed in the reent literature,

see e.g. [3, 12, 13℄.

The ombination M2
of f1 and µ2

0 is split up only in the expression of the admixed salars, therefore the use of

one harateristis of the mixed salar spetra is unavoidable [17℄. Nothing is known about the dependene of the σ
mass on mπ and mK . We have applied the method desribed in detail in Setion 4 also to the ase when the mass

of the σ mass was �xed to a single value in the entire (mπ − mK)�plane. This sheme results in a phase diagram

whih is not ompatible with the universal arguments on the nature of the phase transition in the hiral limit, at

least for smaller sigma mass values, preferred nowadays [26℄. Therefore some more �exible relation should be tested

whih allows the variation of the σ mass with the pseudosalar masses. We explored the onsequenes of assuming

two di�erent relations for the mass matrix of the salars in the (mπ −mK)�plane:

A1. A �rst alternative is to assume that the mixing in the salar x− y setor is absent (m2
σxy

= 0), whih along the

mπ = mK line is the onsequene of the U(3)× U(3) Gell-Mann�Okubo (GMO) relation.

A2. The SU(3) × SU(3) GMO mass formula for the salars (A6) is ful�lled in the physial point with an auray

of about −1.7%, supposing mσ = 600 MeV. A seond alternative is to require it to be ful�lled with the same

auray for arbitrary mπ,mK .

Both assumptions involve a ertain arbitrariness. The phase diagram was mapped out using both alternatives, and

the resulting deviations give some feeling of the e�ets of our ignorane onerning the salar setor.

We give here the expression of f1 and µ2
0 for the alternative ,A1' applied to the salar setor:

f
(A1)
1 = − g

4y
, µ2

0
(A1)

= 4f
(A1)
1 (x2 + y2)−M2, (15)

where the supersript ,A1' refers to the nonmixing of the x − y salars. We an see in the equation above that in

alternative ,A1' the oupling f1 is diretly proportional to the strength of the UA(1) breaking determinant term in

the Lagrangian (1). The implementation of the assumption ,A2' is more ompliated, hene it is detailed in Appendix

A 2.

The logis of the proedure skethed above an be summarized as follows:

input: output: predition:

fπ

fK

}

=⇒ x

y

mπ

mK

M2
η











=⇒
g

f2

M2































=⇒

mη

mη′

θη

ma0

mκ

A1 & M2

A2 & M2

}

=⇒ µ2
0

f1

}

=⇒ mσ, mf0 , θσ

Ex = 0

Ey = 0

}

=⇒ ǫx

ǫy

where mσ, mf0 are the mass eigenvalues of the admixed salars and θσ is their mixing angle.

The dependene of the parameters onmπ andmK in (9) -(14) is not only expliit beause one learns from the Chiral

Perturbation Theory (ChPT) that all physial quantities (fπ, fK , M2
η ) featuring in this expressions also depend on

mπ,mK . Consequently, for the parametrization of the e�etive sigma model for arbitrary mπ, mK one should use

the orret fπ(mπ,mK), fK(mπ,mK), M2
η (mπ,mK) funtions. In the next setion we will onstrut these funtions

relying on results of the three-�avor ChPT.
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3. DEPENDENCE OF THE COUPLINGS ON mπ AND mK

The fundamental problem of e�etive models in exploring the phase diagram of QCD in the (mπ −mK)�plane is
the determination of the variation of the e�etive ouplings when moving in the plane. The values determined in the

physial point serve only as referene points, for a systemati exploration some reliable external referene is needed.

The situation is somewhat analogous (but reiproal!) to lattie QCD, where simulations are performed in a range

of quark masses leading to muh heavier pseudosalars than in nature and some guidane is needed to arrive to the

physial point. Chiral perturbation theory (ChPT) is used in this extrapolation [27℄. Very reently it was applied

in [28℄, for analyzing the pion mass dependene of the baryon masses of MILC ollaboration. This suggests to us

the idea to make use of ChPT results for deriving the parametrization of the linear sigma model away from the

physial point. The issue of the ompatibility of LσM and ChPT is not entirely settled. Reently the two models

were ompared in [29℄ in the light of the latest experimental data. The information available on the salar setor,

whih improved onsiderably in the past few years, was used to �x some of the low energy onstants of the ChPT

with a more satisfatory result than thought possible previously. In this paper we �x the low energy onstants within

the ChPT, and adjust its renormalization sale, in order to math the pseudosalar masses of the nonlinear sigma

model with the tree�level spetra of LσM over an extended range of the (mπ−mK)-plane. The alulated low energy

onstants of ChPT fall in the range ommonly used in the literature.

The essene of our approah an be understood by restriting our attention �rst to the funtions fπ(mπ ,mK) and
fK(mπ,mK) (the η−η′ mixing will be disussed afterwards). For this purpose, it is su�ient to hoose the framework

of SU(3) × SU(3) ChPT [18℄. There 8 parameters (f,A, q,M0, L4, L5, L6, L8) were introdued, whih determine

m2
π,m

2
K , fπ, fK with O(1/f2) auray:

m2
π = 2A

[

1 +
1

f2

(

µπ − 1

3
µη + 16A(2L8 − L5) + 16A(2 + q)(2L6 − L4)

)]

, (16)

m2
K = A(1 + q)

[

1 +
1

f2

(

2

3
µη + 8A(1 + q)(2L8 − L5) + 16A(2 + q)(2L6 − L4)

)]

, (17)

fπ = f

[

1 +
1

f2
(−2µπ − µK + 8AL5 + 8A(2 + q)L4)

]

, (18)

fK = f

[

1 +
1

f2

(

−3

4
(µπ + µη + 2µK) + 4A(1 + q)L5 + 8A(2 + q)L4

)]

, (19)

where µPS = m2
PS ln(m2

PS/M
2
0 )/(32π

2) are the so�alled hiral logarithms at sale M0, in whih m2
PS is substituted

by the leading order expression for the squared mass of the orresponding member of the pseudosalar otet. To this

order one has in agreement with the Gell-Mann�Okubo formula m2
η = 2A(1 + 2q)/3. It is worth to emphasize that

Li do not vary with the pseudosalar masses.

The parameters A and q are related diretly to the quark masses (f. [18℄) through A = B(mu + md)/2 and

q = 2ms/(mu+md) where B is determined by the ondensate 〈ūu〉 in the hiral limit. They an be expressed readily

through the pseudosalar masses and the hiral onstants Li by `inverting� Eqs. (16) and (17) to O(1/f2) auray:

A =
m2

π

2

[

1− 1

f2

(

µπ − 1

3
µη + 8m2

π(2L8 − L5) + 8(2m2
K +m2

π)(2L6 − L4)

)]

, (20)

1 + q =
2m2

K

m2
π

[

1− 1

f2

(

µη − µπ + 8(m2
π −m2

K)(2L8 − L5)
)

]

. (21)

It is su�ient to use the leading order relations of the two equations above to extrat from Eqs. (18) and (19) the

following mπ,mK-dependene for the pseudosalar deay onstants:

fπ = f

[

1− 1

f2
(2µπ + µK − 4m2

π(L4 + L5)− 8m2
KL4)

]

, (22)

fK = f

[

1− 1

f2

(

3

4
(µπ + µη + 2µK)− 4m2

πL4 − 4m2
K(L5 + 2L4)

)]

. (23)

Using as input fπ = 93 MeV, fK = 113 MeV, mπ = 138 MeV, mK = 495.6 MeV, and mη = 547.8 MeV, and hoosing

M0 = 4πfπ ≈ 1168 MeV, f = 88 MeV, (24)

one �nds in the physial point the following values for the relevant hiral onstants:

L4 = −0.7044× 10−3, L5 = 0.3708× 10−3, (25)

whih ompletes the ontinuation formulas for the deay onstants (22) and (23).
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These formulas enable us to predit the mass variation of the hiral ondensates with help of Eqs. (9) and (10),

and also the external �elds ǫx, ǫy from (14). The mK dependene of x, y, and ǫy is displayed for mπ = 0 in Fig. 1.

We remark that the only attempt, we are aware of, to take into aount the nontrivial mass dependene of fπ(mπ) in
a thermal analysis, was based on �tting and extrapolating the mass dependene measured on lattie [13℄.

 0
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FIG. 1: The tree�level kaon mass dependene of the T = 0 ondensates x and y and the external �eld ǫy for mπ = 0 (ǫx = 0).

The hiral onstants L6 and L8 are ontrolled by the values of A and q, respetively, taken in the physial point.

Espeially simple is the relation of L8 to the ratio q of the strange to average nonstrange quark mass. We take

the value q = 24.8, whih is lose to the lattie determination and ompatible with the range indiated by the

PDG listing [25℄: 20 . q . 34. For A we hoose its leading order ChPT value in the physial point: A = A(0)
. Then

using in the O(1/f2) aurate expressions of A and q the phenomenologial values of m2
π,m

2
K with the Gell-Mann�

Okubo formula for m2
η one obtains

L6 = −0.3915× 10−3, L8 = 0.511× 10−3. (26)

The values of the hiral onstants Li, together with M0 and f an be used further for the ontinuation of A and q
from the physial point to an arbitrary point of the (mπ −mK)�plane.

The omplete mπ,mK-dependene of the ouplings f2, g,M
2
given in Eqs. (11), (12), (13) requires also the knowl-

edge of M2
η (mπ,mK), that is the mass dependene in the (η0, η8)-setor, for whih the appliation of U(3) × U(3)

ChPT is needed. The steps are quite analogous to what was desribed above, but the mass mixing makes it somewhat

ompliated. Sine these formulae an be found dispersed in several papers we ollet here the relevant formulae in

more detail.

In this setor, the O(1/f2) ChPT results in a Lagrangian of the following form [19�22℄:

L08 =
1

2
Aij∂µηi∂

µηj −
1

2
Dijηiηj , i = 0, 8, (27)

where the elements of the real symmetri matries A and D

Aij = δij + aij , Dij = D
(0)
ij + dij . (28)

an be read o� the papers [21, 22℄ and are ompiled in Appendix B for the reader's onveniene. The matries aij , dij
represent O(1/f2) orretions to the zeroth order quantities.

This Lagrangian is diagonalized in two steps. First one rede�nes the two-omponent vetor ηi as η̃i := A
1/2
ij ηj whih

is followed by an appropriate rotation R(θη)η̃:

(

η

η′

)

= R(θη)

(

1 +
1

2
a

)

(

η8
η0

)

,

(

m2
η 0

0 m2
η′

)

= R(θη)

(

m2
η88

m2
η08

m2
η08

m2
η00

)

R−1(θη) = R(θη)

(

1− 1

2
a

)

D

(

1− 1

2
a

)

R−1(θη). (29)

Choosing θη = −20◦ and the experimental information on mη,mη′
one �nds in the physial point the values of

m2
η00

,m2
η08

,m2
η88

, whih represent three relations restriting four hiral onstants L7, v
(2)
0 , v

(2)
2 , v

(1)
3 appearing in the

respetive ChPT expressions for their masses. We hoose the large Nc relation v
(2)
0 = −29.3f2

[19℄ in order to have
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as many unknown hiral onstants as relations among them. This onstant represents the ontribution of the UA(1)
anomaly to the η mass, dominantly determined by the topologial features of the gluon on�gurations. It should be

rather insensitive to the variation of the quark masses. From the expressions of the mass matrix elements listed in

(B7)-(B9) one �nds for the hiral onstants:

L7 = −0.2272× 10−3, v
(1)
3 = 0.095, v

(2)
2 = −0.1382. (30)

In the parametrization of LσM the sum of equations (B10) and (B11) is used:

M2
η = 2m2

K − 3v
(2)
0 + 2(2m2

K +m2
π)(3v

(2)
2 − v

(1)
3 ) +

1

f2

[

8v
(2)
0 (2m2

K +m2
π)(L5 + 3L4) +m2

π(µη − 3µπ)− 4m2
Kµη

+
16

3
(6L8 − 3L5 + 8L7)(m

2
π −m2

K)2 +
32

3
L6(m

4
π − 2m4

K +m2
Km2

π) +
16

3
L7(m

2
π + 2m2

K)2
]

. (31)

It an be heked that our results (22), (23) and (31) are the same as in [19℄, when the µPS 's and L4, L6, L7, v
(2)
2 are

set equal to zero (orresponding to the large Nc limit). The hiral logarithm µη ontains the η mass at leading order:

(m
(0)
η )2 = (4m2

K − m2
π)/3, therefore the funtions M2

η (mπ ,mK) and fπ(mπ ,mK), fK(mπ,mK) are only appliable

when 4m2
K > m2

π. In addition we an rely on our �lassial� approximation if the masses are lower than the hiral

sale M0. Eq. (31) together with (22) and (23) allows the omputation of the ouplings f2, g,M
2
in the pseudosalar

mass�plane. Their variation is illustrated in Fig. 2 for mπ = 0. The theoretial quality of this parametrization is

illustrated here by omparing mη(mK ,mπ = 0) and mη′(mK ,mπ = 0) as omputed from the tree�level expressions

of the linear sigma model with the results for the same quantities diretly obtained from ChPT. Fig. 3 demonstrates

that up to mK = 800 MeV the agreement is almost perfet.

-30

-20

-10
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 40

 0  100  200  300  400  500  600  700  800
mK [MeV]

f2
10g [GeV]

M2[103 MeV2]

FIG. 2: The tree�level kaon mass dependene of the param-

eters of LσM determined solely from the pseudosalar setor:

f2, g, and M2
for mπ = 0.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  100  200  300  400  500  600  700  800  900

M
eV

mK [MeV]

mη (LσM)  
mη’(LσM)  
mη (ChPT)
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FIG. 3: The tree�level kaon mass dependene of mη and m
η
′

for mπ = 0. The labels refer to the results of ChPT and the

preditions of linear sigma model (LσM), respetively.

The splitting of M2
into f1 and µ2

0 is realized in the mixing salar setor, therefore it does not require any further

onsideration of ChPT. Their urves are shown for alternative ,A1' in Fig. 4, while the predited masses of a0 and

κ are given in Fig. 5. It turns out that the alternative parametrization ,A2' leads to divergenes in f1 and µ2
0 for

mK −mπ / 200 MeV. Therefore one annot use it for the exploration of the whole (mπ −mK)�plane.

A �nal remark onerns the sensitivity of the T = 0 mass spetra relative to the hiral onstants (Li, v
(j)
i ). The

values of the onstants hange onsiderably if, for instane, the large Nc limiting formulas of ChPT are used. This

hange results in a rather large variation in the numerial values of f2, g,M
2
. However, the predited masses of η, η′

and the salar setor remain almost unhanged.

With this novel mπ −mK-sensitive parametrization of the linear sigma model we are going to disuss the nature of

the temperature driven hiral symmetry restoration in the following setions.

4. QUASIPARTICLE THERMODYNAMICS OF THE SU(3) × SU(3) MODEL

The aim of this setion is to derive the equations of state (EoS) whih determine the variation of the order parameters

x and y with the temperature, inluding the existene of multiple solutions in ertain temperature ranges. Results
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FIG. 4: The tree�level kaon mass dependene of f1 and µ2

0

with alternative ,A1' for the salar setor, when mπ = 0.
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FIG. 5: The tree�level kaon mass dependene predited for

salar meson masses a0 and κ in the linear sigma model, when

mπ = 0.

of the numerial analysis of EoS determining the nature of the transition in funtion of the masses mπ,mK will be

mapped out in the next setion.

The renormalized EoS will be determined in the framework of Optimized Perturbation Theory of Chiku and Hatsuda

[23℄ whih starts by reshu�ing the mass term of the Lagrangian density by introduing a temperature dependent

e�etive mass parameter:

Lmass = −1

2
M2(T )TrM †M +

1

2
(µ2

0 +M2(T ))TrM †M. (32)

The �rst term on the right hand side is used in the thermal propagators of the di�erent mesons. The seond term

in (32) represents the e�etive mass ounterterm whih is taken into aount in higher orders of the perturbative

alulations.

The tree�level mass of π involves now the thermal mass parameter:

m2
π = M2(T ) + 2(2f1 + f2)x

2 + 4f1y
2 + 2gy, (33)

and all other meson masses to be used in the tadpole integrals below agree with the formulas appearing in Table 2

with the replaement −µ2
0 → M2(T ). If all quantum orretions are ondensed into M2(T ), then the tree�level masses

of other mesons are expressible through the mass of the pion. One might expet that the pion has the lowest mass

and therefore for M2(T ) > 0 these squared masses are all positive, whih is not the ase when −µ2
0 < 0 �gures in

the propagators. We de�ne a physial region of x and y where all tree�level mass squares are positive, and thus the

one-loop ontribution of the meson �utuations to EoS is real. This region is most severely restrited by the masses of

f0 and σ, whih strongly derease near the phase transition. We will look for the solution of the EoS's in the physial

region.

For the determination of the thermal mass we use the Shwinger-Dyson equation for the inverse pion propagator at

zero external momentum. At one-loop it reeives the ontribution Π(M(T ), p = 0), whih is the self-energy funtion

of the pion at zero external momentum, plus the ounterterm ontribution −µ2
0 −M2(T ). We apply the priniple of

minimal sensitivity (PMS) [23℄, that is we require that the pion mass be given by its tree�level expression:

Ππ(M(T ), p = 0)− µ2
0 −M2(T ) = 0. (34)

Π(M(T ), p) itself is a linear ombination of the tadpole and bubble diagrams (the latter not inluded in the treatment

of [13℄), with oe�ients derived with help of the 4-point and 3-point ouplings among mass eigenvalue �elds. This

step requires diagonalization in the (x, y) setor f. Appendix C. The bubble ontribution B(m1,m2, T, p = 0) at
zero external momentum p an be expressed through tadpole integrals I(mi, T ) as

B(m1,m2, T, p = 0) =
I(m1, T )− I(m2, T )

m2
1 −m2

2

, (35)

therefore the self-energy is easiest to represent in form of a linear ombination of tadpole integrals, whih gives when

substituted into Eq. (34):

0 = −M2(T )− µ2
0 +

α=σ, π
∑

i=π,K, η,η′

cπαi
I(mαi

(T ), T ) . (36)
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Here cπαi
are the weights of the tadpole ontributions evaluated with di�erent mass eigenstate mesons αi = σi, πi.

The integrals over the orresponding propagators are evaluated with e�etive tree�level masses where M2(T ) replaes
−µ2

0. In this way (36) is atually a gap equation whih determines the thermal mass parameter, M2(T ). With help

of Eq. (33) this equation an be also understood as a gap equation for the pion mass (the pion mass is present also

in the expressions of I(mαi
, T ) through mαi

!):

m2
π = −µ2

0 + 2(2f1 + f2)x
2 + 4f1y

2 + 2gy +

α=σ, π
∑

i=π,K, η,η′

cπαi
I(mαi

(T ), T ) . (37)

Sine this equation depends also on the order parameters x, y we have to solve in addition to the gap equation the

two equations of state:

−ǫx − µ2
0x+ 2gxy + 4f1xy

2 + 2(2f1 + f2)x
3 +

∑α=σ,π

i=π,K, η,η′ Jit
x
αi
I(mαi

(T ), T ) = 0 , (38)

−ǫy − µ2
0y + gx2 + 4f1x

2y + 4(f1 + f2)y
3 +

∑α=σ,π

i=π,K, η,η′ Jit
y
αi
I(mαi

(T ), T ) = 0 , (39)

with txαi
and tyαi

giving the orresponding weights, listed in Appendix C. Ji is the isospin multipliity fator: Jπ = 3,
JK = 4, and Jη,η′ = 1.
Equations (36), (38) and (39) represent a polynomial in x, y with divergent oe�ients due to the divergenes of the

tadpole integral I. When ompared to the expressions of the tree�level pion mass in Table 2 and the tree�level EoS (6),

(7) one an uniquely absorb divergenes into the ouplings −µ2
0, f1, f2, g. This step requires divergent ounterterms

as follows:

δµ2
0 =

(5f1 + 3f2)Λ
2

π2
− (5f1 + 3f2)M

2(T )− g2

π2
ln

Λ2

l2
,

δg =
3g(f1 − f2)

2π2
ln

Λ2

l2
,

δf1 =
13f2

1 + 12f1f2 + 3f2
2

2π2
ln

Λ2

l2
,

δf2 =
3f1f2 + 3f2

2

π2
ln

Λ2

l2
,

where Λ is the regularization ut-o� and l is the renormalization sale. At T = 0 with the replaementM2(T ) → − µ2
0

these expressions agree with the known oupling renormalizations [24℄. T -dependene appears only in the mass renor-

malization, through M(T ). Sine they are proportional to higher powers of the ouplings, this apparent environment

dependene of the ounterterm will be aneled by higher�loop ontributions (see for instane, [30℄). At the end

of the renormalization we arrive at the same equations, just one has to replae µ2
0, f1, f2, g, I by their renormalized

expressions (separate notation will be introdued below only for I → IR).
The oe�ients cπαi

look at �rst sight horribly ompliated sine not only spei� three-point ouplings (see Appendix

C) but also weighted fators proportional to (m2
σi

− m2
πj
)−1

do ontribute, f. Eq. (35). However, a wonderful

simpli�ation ours when working through this ompliated expression, one �nds cπαi
= Jit

x
αi
/x. Then omparing

the gap equation (37) to the EoS for the order parameter x, one reognizes the relation

ǫx = m2
π(T )x(T ), (40)

whih tells that the approximate solution onstruted by us obeys Goldstone's theorem for the pions. This feature

of the optimized perturbation theory was already emphasized in [23℄ in the ontext of the O(N) model. We mention,

however, that when the symmetry breaking is realized by the appearane of two independent order parameters, the

appliation of PMS in the form of Eq. (34) annot keep the mass of the other pseudo-Goldstone boson, the kaon, at

its tree�level expression. This means that the tree�level kaon mass does not satisfy the seond relation of Eq. (14) and

Goldstone's theorem. Had we hosen for the mass�resummation the self-onsistent treatment of the kaon self-energy

instead of pions, we would ensure that Goldstone's theorem is ful�lled for the kaons. Both relations in Eq. (14) an

be ful�lled simultaneously only by resumming also one of the higher-point funtions of the theory in addition to the

mass.

For the renormalization of I(mi, T ) we wish to use suh a presription, whih allows to use further the parametriza-

tion of the ouplings realized with help of tree�level mass spetra. For this reason we deided to omit all temperature

independent �nite ontributions from the tadpole and bubble integrals (the �nite part of the 1-loop T = 0 orretions
to the self-energy), retaining in IR only the ontributions from the part of the integrands proportional to nB(ω, T ),
whih is the Bose-Einstein distribution for a meson of energy ω. The expliit form of the integral IR(m,T ) with this

presription is the following:

IR(m,T ) =
1

2π2

∫ ∞

0

dp p nB(
√

p2 +m2/T ). (41)
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Now one an proeed to the solution of Eqs. (37), (38), (39) for given mπ,mK when T is varied. In the next setion

we desribe in detail how �rst order phase transitions were deteted and present the regions of the (mπ −mK)�plane
where hiral symmetry restoring transitions take plae with inreasing temperature.

5. THE PHASE DIAGRAM IN THE (mπ −mK)�PLANE

In this setion we present our results on the phase diagram in the (mπ −mK)-plane paying a speial attention to

the physial point, the diagonal mπ = mK and the mπ = 0 axis. Investigating the nature of the phase transition

along the diagonal is important beause the result an be ompared with lattie results [7, 11℄ and also with previous

results [12�15℄, obtained in LσM . Moreover due to the degeneray in the partile spetrum, the model is somewhat

simpler on the diagonal, providing a good testing ground for our approximation. The mπ = 0 axis is relevant beause

of the the presene of the triritial point whih separates the region of �rst order phase transitions ourring for low

values of mK from the line of seond order phase transitions.

Sine we have two order parameters: x (nonstrange) and y (strange), we have to monitor both of them in order

to deide the nature of the phase transition. An interesting question arises whether one an speak about two phase

transitions, one related to the melting of the nonstrange ondensate and the other to the melting of the strange

ondensate. The sign for a �rst order transition is the appearane of three solutions for the equation of state (38) and

(39) below a given temperature, orresponding to two minima and one maximum of the e�etive potential.
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FIG. 6: The temperature dependene in the physial point of: (a) the nonstrange (x) and strange (y) ondensates; (b) the

pseudosalar (θη) and salar (θσ) mixing angles (in the (0-8) basis); () the mass of the hiral partners (π, σ) and (a0, η); (d) the

mass o� f0, κ, η
′,K mesons.

In Fig. 6 we present our results on the physial point, using alternative ,A2' with mσ(T = 0) = 600 MeV. We

preferred this one beause alternative ,A1' gives mσ(T = 0) ≈ 900 MeV, whih is too high aording to reent

phenomenologial studies [31℄ and experiments [26℄. The evolution of both ondensates at the physial point indiates

a smooth rossover (see Fig. 6 (a)), with a peak in the suseptibility at around T = 210 MeV for the nonstrange and

T = 310 MeV for the strange ase. The evolution of the strange ondensate is muh slower. The restoration of the

SU(2) × SU(2) symmetry an be seen by observing the degeneray between the SU(2) hiral partners (π, σ) and
(a0, η), Fig. 6 (). We an observe the tendeny of all the masses to onverge at high temperature. Note, however, the

gap between the two sets of hiral partners. This is the onsequene of the UA(1) breaking determinant term whih

enters with opposite sign in the expression of, for example, π and a0 masses. This is insigni�ant only for very small

values of the strange ondensate. The fat that, up to the temperature shown in the �gure, the SU(3) hiral partners
(π, a0) and (η, σ) are not degenerate, indiates that the restoration of the hiral symmetry is not ompleted in the

strange setor. We an also see in Fig. 6 (d) that the variation of the strange ondensate is re�eted the strongest in

the mass of f0 meson.

The evolution of the ondensates and masses is niely re�eted also by the temperature evolution of the mixing

angles, Fig. 6 (b). The pseudosalar and salar mixing angles start at zero temperature at θη = −10.45◦ and θσ = 18.7◦

respetively, and they onverge at high temperature. Up to the temperature we studied, they do not reah the ideal

mixing angle arcsin(1/
√
3) ≃ 35.264◦, whih means that f0 and η are not purely strange mesons. In ontrast to what
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was obtained in [13, 32℄ the evolution of pseudosalar mixing angle is nonmonotoni, it bends down and then up as

the temperature inreases.

Next, we studied the phase boundary in the mπ −mK-plane. As a referene, we onsidered the ase when eah of

the zero temperature ouplings of LσM has the �xed value alulated at the physial point irrespetive of the value of

mπ and mK , exept for the external �elds ǫx, ǫy, whih follow the variation of the mπ and mK aording to Eq. (14).

For mσ = 900 MeV we obtained nearly the same phase boundary as in [15℄. For mσ = 600 MeV no phase boundary

was found in [15℄ for mπ > 0. With our method, the phase boundary is present, but it is not ompatible with the

universality requirement to have a �rst order transition in the neighborhood of the origin. In our view this represents

an important argument for allowing the variation of all ouplings with mπ and mK .
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urves were obtained for alternative ,A1' and the omplete

U(3) ChPT. Multivaluedness is observed in a given tempera-

ture range in both ondensates.

Fig. 7 presents the phase diagram obtained in the ase when all parameters are allowed to vary with mπ and mK .

Due to the unertainties in the salar setor and also due to di�erent approahes of the hiral perturbation theory

(three-�avor or large-Nc) we an give only a band indiative of the theoretial unertainties onerning the loation

of the real phase boundary of the model. Note, however, that all variants give a �rst order transition near the hiral

limit, that is for small values of both the pion and kaon masses. We see, that for any value of mK ≤ 800MeV ,
the ritial value of the pion mass does not exeed 65 MeV. Our estimate for the phase boundary on the diagonal

is m
rit

(diag) = 40 ± 20 MeV. In the �gure also the line is displayed below whih we annot trust the results of the

alternative ,A2', sine its parameters diverge along the diagonal mπ = mK .
First order transitions are signalled by multivaluedness in the temperature evolution of both the nonstrange and

strange ondensates, see Fig. 8. For large values of the kaon mass, we laim that the phase transition is driven by

the variation of the nonstrange ondensate, sine the apparently di�erent solutions of the strange ondensate are very

lose to eah other, and all stay at high values. Subsequent derease of the strange ondensate at higher temperature

displays only a rossover. Along the phase boundary the ritial temperature reahes Tc ≈ 170 MeV near the physial

kaon mass (in ase ,A1' and using large Nc ChPT), then drops to Tc = 140 MeV at both ends of the mK range shown

in the �gure, whih is due to the e�et of the hiral logarithms.

We ould not provide evidene for a triritial point on the mπ = 0 axis for any of the alternatives ,A1' and ,A2'.

Alternative ,A1' seems to predit it for suh a high value of the kaon mass, where one an not trust ChPT, while ,A2'

does not work for mπ = 0 beause the solution of EoSs leaves the physial region.

Finally, we disuss a feature of our approximate solution in the low mass region whih might be losely related to

the problem of negative squared masses. It shows up the learest along the diagonal, mπ = mK , where the most

plausible expetation would be to have a solution of EoS whih satis�es, irrespetive of the temperature, the ondition

σ8 = 0. For the alternative ,A1', (,A2' does not work on the diagonal), it an be proved, using exlusively the tree�

level stability riteria 3f1 + f2 > 0, that going towards the origin below a ertain value of the Goldstone mass there

is always a temperature range in whih one of the squared mass eigenstates in the mixing salar setor has negative

eigenvalue. In this range we �nd in the physial region only solutions with σ8 6= 0, that is the 'strange�nonstrange'

symmetry is apparently broken in an intermediate temperature range. It is not lear if this phase orresponds to

the absolute minimum of the free energy. This solution is haraterized by a large di�erene between the mass mK

alulated from the seond relation of Eq. (14) and the value of the pion mass, whih is the largest one. In the mass
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region where both solutions (with σ8 = 0 and σ8 6= 0) exist the orresponding values of σ0 are very lose to eah other.

Therefore, we expet that even in the ase where we annot �nd the (true ?) minimum orresponding to σ8 = 0, a
good estimate of the position of the phase boundary on the diagonal is provided by the σ8 6= 0 solution. The problem
of negative squared masses shows up also in the T = 0 �nite quantum orretion oming from the tadpole integrals,

whih were omitted in this work.

The above feature is a onsequene of using tree�level expressions for the propagator masses. We ertainly should

have to go to higher�loop order in the resummed perturbation theory, also to take into aount oupling resummations,

for a omplete resolution of the problem of negative mass squares inluding the assessment of the solution with σ8 6= 0.

6. CONCLUSIONS

In this paper, we studied the phase boundary in the (mπ−mK)-plane allowing for the variation of all the parameters

of the linear sigma model withmπ andmK . We used for this another low energy e�etive model, the hiral perturbation

theory, whih being a perturbative expansion in momenta and in quark masses about the hiral limit, provides, at

eah order of the momentum expansion, analytial relations displaying the dependene of the deay onstants (fπ, fK)

and masses of the η and η′ on the value of the pion and kaon masses. One ould expet that the linear sigma model

improved in this way will work reliably for small values of mπ and mK . Using aurate formulas to ontinue from the

physial point, this approah ould beome an alternative to the lattie whih has di�ulties in exploring this region

when information would be available on the variation of the mass of the σ or f0 salar mesons in the (mπ − mK)-
plane. The origin of the theoretial unertainty of our �ndings is the lak of information on the salar setor, whih

fores us to make assumptions. Lattie results about the mass dependene in the salar setor would allow to redue

onsiderably the unertainties of the parametrization of the model.

The model was solved using a mass ressumation in the framework of the optimized perturbation theory in order to

resolve the negative squared mass problem of the perturbation theory in the broken symmetry phase. Unfortunately,

resumming only one parameter, the mass, while respeting the Goldstone's theorem for pions, violates Goldstone's

theorem for kaons. It also does not solve fully satisfatorily the problem of negative mass squares in the whole

mass�plane, sine the absolute minimum might be loated in the x − y-plane slightly outside the physial domain.

Resummation of another oupling is needed to ful�ll all requirements imposed by Goldstone's theorem. A possibility

is to use the temperature variation of the oe�ient of the UA(1) violating term g. Motivated by lattie studies this

possibility was investigated in [32℄.

Taking into aount all theoretial unertainties, we ould estimate a band in the (mπ −mK)-plane for the phase
boundary. Our estimate for the boundary point on the diagonal is m

rit

(diag) = 40± 20 MeV, in nie agreement with

the latest e�etive model and lattie studies.

APPENDIX A: THE SUL(3) × SUR(3) LINEAR SIGMA MODEL AT TREE�LEVEL

1. Mass eigenvalues, and mass matries in the 0-8 basis.

Using the inverse of the transformation (3), the mass matrix of η-s an be written in the more onventional η0-η8
basis:

m2
η00

=
1

3
(2m2

ηxx
+m2

ηyy
+ 2

√
2m2

ηxy
), (A1)

m2
η88

=
1

3
(2m2

ηyy
+m2

ηxx
− 2

√
2m2

ηxy
), (A2)

m2
η08

=
1

3
(
√
2(m2

ηxx
−m2

ηyy
)−m2

ηxy
), (A3)

The mass eigenvalues and mixing angle θη are the following:

m2
η,η′ = 1

2 (m
2
η00

+m2
η88

∓
√

(m2
η00

−m2
η88

)2 + 4m4
η08

), (A4)

tan 2θη =
2m2

η08

m2
η00

−m2
η88

, (A5)

where the ,-' sign refers to η and ,+' refers to η
′

. These expressions hold also for the mixing in the salar setor,

where the lower mass eigenvalue is m2
σ and the higher is the squared mass of f0.
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2. The ,A2' alternative

For the salar otet, there is a GMO mass relation similar to the pseudosalar setor, whih to leading order reads:

4m2
κ = m2

a0
+ 3m2

σ88
. (A6)

We haraterize its auray by the following quantity:

r :=
4m2

κ −m2
a0

3m2
σ88

− 1 . (A7)

In the expression of r, the mass squares m2
a0

and m2
κ are determined by f2, g,M

2
, whih depend only on pseudosalar

mass squares: m2
π, m

2
K , and M2

η = m2
η + m2

η′ . In order to know mσ88
, we should have f1 and µ2

0 separately. For

this purpose, in the physial point, we hoose an mph

σ to get rph. We require that the auray of salar GMO to

be independent of mπ, mK , that is r(mπ ,mK ,mσ) = r(mph

σ ) =: rph. After this, we an already determine mσ88
for

arbitrary mK , mπ from (A7), and we an split M2
into f1 and µ2

0. Using Table 2 and Eqs. (9)�(13) :

f
(A2)
1 =

m2
K((−64f3

K + 104fπf
2
K − 58f2

πfK + 9f3
π)r − 12(2fK − fπ)(fK − fπ)

2)

32(3f2
π − 8fπfK + 8f2

K)(fK − fπ)3(r + 1)

+
m2

π(r(16f
3
π + 8f3

K + 24fπf
2
K − 39f2

πfK) + 4(fπ + 2fK)(fK − fπ)
2)

32(3f2
π − 8fπfK + 8f2

K)(fK − fπ)3(r + 1)

+
M2

η (fK − fπ)
2((2fK − fπ)r + fK − fπ)

4(3f2
π − 8fπfK + 8f2

K)(fK − fπ)3(r + 1)
, (A8)

µ2
0
(A2)

= f
(A2)
1 (6f2

π − 8fπfK + 8f2
K)−M2, (A9)

where rph ≈ −0.017, when mph

σ = 600 MeV.

APPENDIX B: THE U(3) ChPT

The elements of the mass matrix of η-s are de�ned in (29):

m2
η88

= D
(0)
88 + d88 − (a88D

(0)
88 + a08D

(0)
08 ) , (B1)

m2
η00

= D
(0)
00 + d00 − (a00D

(0)
00 + a08D

(0)
08 ) , (B2)

m2
η08

= D
(0)
08 + d08 −

1

2
(a08(D

(0)
00 +D

(0)
88 ) +D

(0)
08 (a00 + a88)) , (B3)

together with the mixing angle de�ned in Eq. (A5):

tan 2θη =
2D

(0)
08

D
(0)
00 −D

(0)
88

[

1− 2d08 − a08(D
(0)
00 +D

(0)
88 )−D

(0)
08 (a00 + a88)

2D
(0)
08

+
d00 − d88 − a00D

(0)
00 + a88D

(0)
88

D
(0)
00 −D

(0)
88

]

. (B4)

The relevant expressions of the A, D matries are given by [21℄, [22℄:

a00 =
1

f2

2

3
A(2 + q)(3L4 + L5),

a88 =
1

f2
(16A(2 + q)L4 +

16

3
A(1 + 2q)L5 − 2µK),

a08 = − 16

3
√
2

1

f2
A(q − 1)L5,

D
(0)
00 = −3v

(2)
0 +

2

3
A(2 + q),

D
(0)
88 =

2

3
A(1 + 2q),

D
(0)
08 =

−2
√
2

3
A(q − 1),

(B5)

d88 =
1

f2

2A

9

[

96A
(

(2 + q)2L6 + 2(q − 1)2L7 + (1 + 2q2)L8

)

− (1 + 8q)µη − 9µπ + 6µK

]

,

d00 = −4A(2 + q)(v
(1)
3 − 3v

(2)
2 )

+
1

f2

32A

9

[

A((2 + q)2(6L6 + 2L7) + 6(2 + q2)L8)−
1

8
(µπ + 6(1 + q)µK + (1 + 2q)µη)

]

,

d08 = A(q − 1)2
√
2v

(1)
3 − 1

f2

64
√
2

3
A2(q2 − 1)L8.

(B6)
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Therefore the elements of the mass matrix appearing in (B1)�(B3) are:

m2
η88

=
2

3
A(1 + 2q) +

A

f2

[

32

3
A(1 + 2q2)(2L8 − L5)−

32

3
A(1 + 2q)(2 + q)L4

+
128

3
A(1− q)2L7 +

64

3
A(2 + q)2L6 −

2

9
(1 + 8q)µη − 2µπ +

8

3
(1 + q)µK

]

(B7)

m2
η00

= −3v
(2)
0 +

2

3
A(2 + q)

[

1− 6v
(1)
3 + 18v

(2)
2 +

1

f2

(

24v
(2)
0 (3L4 + L5)

)

]

− A2

f2

[

16

3
(2 + q)2(3L4 + L5 − 6L6 − 6L7)

]

+
A

f2

[

64

9
A(3(2 + q2)L8 − (1− q)2L5)−

4

9
µπ + 6(q + 1)µK + (2q + 1)µη)

]

(B8)

m2
η08

=
−2

√
2

3
A(q − 1)

[

1− 3v
(1)
3 +

1

f2

(

12v
(2)
0 L5 + 16A(1 + q)(2L8 − L5)− 8A(2 + q)L4 + µK

)

]

. (B9)

Carefully substituting the O(1/f2) aurate expressions of A and q from (20), (21) into (B7)-(B9) we �nd for the

variation of m2
η00

,m2
η08

,m2
η88

in the (mπ −mK)�plane the following equations:

m2
η88

=
4m2

K −m2
π

3
+

1

f2

[

8

3
(µK − µη)m

2
K +

2

3
(µη − µπ)m

2
π +

32

3
(2L8 − L5 + 4L7)(m

2
π −m2

K)2

+
32

3
L6(m

4
π − 2m4

K +m2
Km2

π)

]

, (B10)

m2
η00

= −3v
(2)
0 +

2m2
K +m2

π

3

(

1− 6v
(1)
3 + 18v

(2)
2 +

1

f2
24v

(2)
0 (L5 + 3L4)

)

+
1

f2

[

4

3
(−2µK − µη)m

2
K

+
1

3
(µη − 7µπ)m

2
π +

16

3
(2L8 − L5)(m

2
π −m2

K)2 +
16

3
L7(m

2
π + 2m2

K)2
]

, (B11)

m2
η08

=
2
√
2

3

{

(m2
π −m2

K)

[

1− 3v
(1)
3 +

1

f2

(

12v
(2)
0 L5 − 8(2L8 − L5)(m

2
π −m2

K)
)

]

+
1

f2

[

4(L4 − 4L6)(m
4
π +m2

Km2
π − 2m4

K) + (
1

3
µη − µπ + µK)m2

π + (
2

3
µη − µK)m2

K

]}

. (B12)

APPENDIX C: THE TADPOLE COEFFICIENTS IN EOS

Below we list the nonzero three-point ouplings, needed for the evaluation of the tadpole ontributions to EoS (see

Eqs. (38), (39)) in the x− y basis (4)











































α txα tyα
π 2(2f1 + f2)x 4f1y + g

K 2(2f1 + f2)x− f2
√
2y + 1√

2
g −f2

√
2x+ 4(f1 + f2)y

πxπx 2(2f1 + f2)x 4f1y − g

πyπy 4f1x 4(f1 + f2)y

πxπy −2g 0

a0 2(2f1 + 3f2)x 4f1y − g

κ 2(2f1 + f2)x+ f2
√
2y − 1√

2
g f2

√
2x+ 4(f1 + f2)y

σxσx 6(2f1 + f2)x 4f1y + g

σyσy 4f1x 12(f1 + f2)y

σxσy 8f1y + 2g 8f1x











































. (C1)

The tadpole integrals are evaluated in the mass eigenbasis, therefore in the pseudosalar x − y setor additional

similarity transformations are needed in order to arrive at the oe�ients of the η, η′ tadpole integrals. The elements
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of the 2 × 2 minor of tx,y, whih originally appears in the EoS, an be easily written in the mass eigenbasis. As an

illustration we take the pseudosalar (η, η′) setor:

txxGxx + tyyGyy + txyGxy = Tr

[(

txx
txy

2
txy

2 tyy

)(

Gxx Gxy

Gxy Gyy

)]

= Tr

[

R(θ)

(

txx
txy

2
txy

2 tyy

)

RT (θ)

(

G(mη′ ) 0

0 G(mη)

)]

,

where Gxx is the xx element of the 2 × 2 propagator matrix, R(θ) is an orthogonal transformation de�ned by

tan 2θ = 2m2
ηxy/(m

2
ηxx −m2

ηyy) whih relates the x, y and η′, η basis.

The diagonal (η, η), (η′, η′) elements of the transformed matrix are the oe�ients of the orresponding physial

propagators and an be expressed as:

tη′,η =
1

2
(txx + tyy)±

(m2
ηxx −m2

ηyy)(txx − tyy) + 2m2
ηxytxy

2
√

(

m2
ηxx −m2

ηyy

)2
+ 4m4

ηxy

. (C2)
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