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2 Direct photon observables from hydrodynamics and
implications on the initial temperature and EoS
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The expansion of the strongly interacting quark gluon plasma (sQGP) created in Au+Au colli-

sions at RHIC can be described by hydrodynamical models. Hadrons are created after a freeze-

out, thus their distribution describes the final state of theevolution. The earlier stages can be

analyzed via penetrating probes like photon observables. These were measured in 2010 and 2011

by the PHENIX experiment. Here we analyze an analytic, 1+3 dimensional perfect relativistic

hydrodynamic solution and calculate hadron and photon observables, such as transverse momen-

tum spectra, elliptic flow and correlation (HBT) radii. We find that our model is not incompatible

with the data, not even with the direct photon elliptic flow. From fitting the data, we find that early

temperatures of the sQGP were well above the quark-hadron transition temperature, in the hottest

point, the center of the fireball the temperature may have reached 507±12 MeV. The equation

of state of this quark matter can be described by an average sound speed of 0.36±0.02. We also

predict a photon source that is significantly larger in theout direction than in thesidedirection.
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1. A hydrodynamic model

It is a well established picture [1] that a strongly interacting quark gluon plasma is created
in relativistic Au+Au collisions of the Relativistic HeavyIon Collider, and the evolution of this
medium can be described by perfect hydrodynamics. The equations of hydrodynamics can be
solved numerically, which has the advantage of having arbitrary initial conditions. It is also possible
to find analytic solutions with realistic properties. However, very few truly 1+3 dimensional (and
not spherically symmetric), relativistic models were compared to data yet. In this paper we analyze
the relativistic, ellipsoidally symmetric model of Ref. [2]. Hadronic observables were calculated in
Ref. [3], while photonic observables in Ref. [4].

The picture used in hydro models is that the pre freeze-out (FO) medium is described by hydro-
dynamics, and the post freeze-out medium is that of observedhadrons. The hadronic observables
can be extracted from the solution via the phase-space distribution at the FO. This will correspond
to the hadronic final state or source distributionS(x, p). See details about this topic in Ref. [3].
It is important to see that the same final state can be achievedwith different equations of state or
initial conditions [5]. However, as discussed below, the source function of photons is sensitive to
the whole time evolution, thus both to initial conditions and equation of state as well.

For the direct photon calculations [4], the key assumption is, that even though direct photons
may not be thermalized in the strongly interacting plasma (as their mean free path may be on the
order of the size of the fireball), but the radiation itself isthermal. Thus the phase-space distribution
of the photons is characterized by the temperature of the medium (at a given space-time cell), while
the expansion of the fireball also effects the observed spectrum. This is a macroscopic model, and
in the following we will calculate photon observables from it and compare to RHIC data. The most
important assumption is, that the spectrum of direct photons is thermal because macroscopically,
the photon radiation is thermal.

The analyzed solution [2] assumes self-similarity and ellipsoidal symmetry, as described also
in Refs. [3, 4]. The ellipsoidal symmetry means that at a given proper time the thermodynamical
quantities are constant on the surface of expanding ellipsoids. The ellipsoids are given by constant
values of the scale variables, defined as

s=
r2
x

Ẋ2t2
+

r2
y

Ẏ2t2
+

r2
z

Ż2t2
, (1.1)

where the constantṡX, Ẏ, and Ż describe the expansion rate of the fireball in the three spatial
directions. Spatial coordinates arerx, ry, andrz. The velocity-field is described by an izotropic
Hubble-type expansion:

uµ(x) =
xµ

τ
(1.2)

wherex means the four-vector(t, rx, ry, rz) andτ =
√

x2 is the proper-time coordinate.

The temperature distributionT(x) is given as

T(x) = T0

(τ0

τ

)3/κ
exp

(
bs
2

)
, (1.3)
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whereτ is the proper time,s is the above scaling variable, whileT0 = T|s=0,τ=τ0, andτ0 is an
arbitrary proper time, but practically we choose it to be thetime of the freeze-out, thusT0 is the
central freeze-out temperature. Parameterb is proportional to the temperature gradient, i.e. if the
fireball is the hottest in the center, thenb < 0. If there is a conserved charge in the system e.g.
the baryon number density, then charge number densityn(x) can be utilized in the solution. As
described in Refs. [2, 3], such a number density can be introduced as

n(x) = n0

(τ0

τ

)3
exp

(
−bs

2

)
. (1.4)

For the momentum distribution of direct photons, this will not be needed, as the only the tem-
perature of the medium (the strongly interacting plasma) governs the creation of photons, not the
density (which however plays an important role also in the case of hadron creation). The equation
of state (EoS) we use here isε = κ p, with ε being the energy density andp the pressure. Here
κ = c−2

s (one over speed of sound squared) is the main parameter describing the EoS.
From the above hydrodynamic quantities, source functions can be created. For bosonic hadrons,

it takes the following form [3]:

S(x, p)d4x= N
pµ d3Σµ(x)H(τ)dτ

n(x)exp
(
pµuµ(x)/T(x)

)
−1

, (1.5)

whereN = g/(2π)3 (with g being the degeneracy factor),H(τ) is the proper-time probability
distribution of the FO. It is assumed to be aδ function or a narrow Gaussian centered at the freeze-
out proper-timeτ0. Furthermore,µ(x)/T(x) = lnn(x) is the fugacity factor andd3Σµ(x)pµ is the
Cooper-Frye factor [6] describing the flux of the particles,andd3Σµ(x) is the vector-measure of
the FO hyper-surface. Here the source distribution is normalized such as

∫
S(x, p)d4xd3p/E = N,

i.e. one gets the total number of particlesN (usingc=1, h̄=1 units).
For the source function of photon creation we have [4]:

S(x, p)d4x= N
′ pµ d3Σµ(x)dt

exp
(
pµuµ(x)/T(x)

)
−1

= N
′ pµuµ

exp
(
pµuµ(x)/T(x)

)
−1

d4x (1.6)

where pµd3Σµ is again the Cooper-Frye factor of the emmission hypersurfaces. Similarly to
Ref. [3] we assume that the hyper-surfaces are parallel touµ , thusd3Σµ(x) = uµd3x. This yields
then pµuµ which is the energy of the photon in the co-moving system. Thephoton creation is the
assumed to happen from an initial timeti until a point sufficiently near the freeze-out.

Experimental observables can then be calculated from the source function, using a second
order saddlepoint approximation. In this approximation the point of maximal emissivity is

r0,i = ρit
pi

E
, for i = x,y,z (1.7)

while the widths of the particle emitting source are

R2
i = ρiτ2

0
T0

E

(
t
τ0

)−3/κ+2

, for i = x,y,z (1.8)

where we introduced the auxiliary quantities

ρi =
κ

κ −3−κb/Ṙ2
i

(1.9)

where againκ = c−2
s is describing the EoS, anḋRi = Ẋ,Ẏ, Ż for i = x,y,z, respectively.
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2. Calculated observables

The invariant one-particle momentum distribution is defined asN1(p) =
∫

S(x, p)d4x. It de-
pends on the three-momentump= (px, py, pz). We will introduce the(pt ,ϕ , pz) cylindrical coor-
dinates (z being the beam direction) and use the longitudinal rapidityy (for which E dy= dpz is
true). As usual, we will restrict our calculations toy= 0 (note that in this caseE = pt is true for
photons). Our calculated quantities will then be the elliptic flow v2, and the transverse momentum
distributionN1(pt). These can be calculated fromN1(p) as

N1(pt) =

∫ 2π

0
N1(p)|y=0 dϕ (2.1)

v2(pt) =
1

2π
∫ 2π

0 N1(p)|y=0cos(2ϕ)dϕ
N1(pt)

(2.2)

We also calculated Bose-Einstein correlation radii from our model. As usual, the two-particle
correlation function for identical particles can be calculated from the single particle source function
S(x, p) as

C2(q) = 1+λ

∣∣∣∣∣
S̃(q)

S̃(0)

∣∣∣∣∣

2

. (2.3)

whereq is the momentum difference of the two particles andS̃(q) is the Fourier-transformed of
the sourceS(x, p) in the variablex, and the dependence on the momentump is not noted in the
formulas. This correlation function has, as usual, a shape with a peak, the width of which is
characterized by the HBT radiiRout, Rside andRout. We calculated these radii for different average
momentap.

Here we do not detail the analytic result of these calculation, but will show a comparision of the
model to the data in the next section. The detailed results are given in Refs. [3, 4]. It is important to
note however, that in the final formulas, we use transverse expansion (ut ) and eccentricit (ε) instead
of x andy direction expansion rateṡX andẎ:

1

u2
t
=

1
2

(
1

Ẋ2
+

1

Ẏ2

)
,ε =

Ẋ2−Ẏ2

Ẋ2+Ẏ2
. (2.4)

3. Comparison to the measured direct photon spectrum

The freeze-out parameters were determined from hadronic fits in Ref. [3]. These properties
include the expansion rates, the freeze-out proper-time and freeze-out temperature (in the center of
the fireball), as shown in Table 1. When describing direct photon data, we used the parameters of
the hadronic fit and left only the remaining as free parameters [4]. The free parameters will beκ
(the equation of state parameter) andti, the initial time of the evolution.

We compared the above results to PHENIX hadron and photon data of 200 GeV Au+Au col-
lisions. We fitted our above formulas to PHENIX invariant transverse momentum distributions of
Ref. [7], HBT radii of Ref. [8] and elliptic flow data of Ref. [9]. We used direct photon data also
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Dataset N1 and HBT elliptic flow N1

0-30% cent. 0-30% cent. 0-92% cent.
hadrons hadrons photons

Central FO temperatureT0 [MeV] 199±3 204±7 204 MeV (fixed)
Eccentricity ε 0.80±0.02 0.34±0.03 0.34 (fixed)
Transverse expansion u2

t /b -0.84±0.08 -0.34±0.01 −0.34 (fixed)
FO proper-time τ0 [fm/c] 7.7±0.1 - 7.7 (fixed)

Longitudinal expansion Ż2
0/b -1.6±0.3 - −1.6 (fixed)

Equation of State κ - - 7.9±0.7
Initial time ti [fm/c] - - 0−0.7 fm/c

Fit quality

Degrees of freedom NDF 41 34 3
Chisquare χ2 24 66 7
Confidence level 98% 0.1% 7.2%

Table 1: Parameters of the solution, describing the expanding sQGP.The first five were determined from
hadronic fits [3], the remaining from direct photon data [4].See details in the text and in these references.
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Figure 1: Fits to invariant momentum distribution of pions [7] (top left), HBT radii [9] (top right) and
elliptic flow [8] (bottom). See the obtained parameters in Table 1. In the middle plot the lower curve is the
fit to Rout andRside.
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Figure 2: Fit to direct photon invariant transverse momentum data [10] (top left), comparision to elliptic
flow data [11] (top right) and direct photon HBT predictions (bottom). See the model parameters in Table 1.

from PHENIX [10, 11]. Results are shown in Figs. 1 and 2, whilethe model parameters are detailed
in Table. 1.

Let us discuss the results of the photon fits! The equation of state result isκ = 7.9±0.7, or
alternatively, usingκ = 1/c2

s:

cs = 0.36±0.02stat±0.04syst (3.1)

which is in nice agreement with both lattice QCD calculations [12] and experimental results from
hadronic data [13, 14]. This represents an average EoS as it may vary with temperature. There may
be solutions with aκ(T) function [15], but for the sake of simplicity we assumed herean average,
fixed κ . As detailed in Ref. [4], we determined an “interval of acceptability” for ti . The maximum
value forti within 95% probability is 0.7 fm/c. This can then be used to determine a lower bound
for the initial temperature, using the eq. 1.3. Thus the initial temperature of the fireball (in its
center) is:

Ti > 507±12stat±90systMeV (3.2)

at 0.7 fm/c. This is in accordance with other hydro models as those values are in the 300−600 MeV
interval [10]. Note that a systematic uncertainty was determined by using a prefactor of(T/T0)

N,
with N = 0,1,2,3. This factor arises if the photon creation can be describedby a microscopic
process, as detailed in Ref. [4]. This causes only a minor change in the resulting spectrum, as it
is dominated by the exponential factors in it. However, the equation of state parameterκ changes
from 7.9 to 6.5 as we increase the exponent in the prefactor. This gives a systematic uncertainty to
our parameters.
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A measurement of direct photon elliptic flow was also performed recently at PHENIX [11].
Using the previously determined fit parameters we can calculate the elliptic flow of direct photons
in Au+Au collisions at RHIC. Due to the low number of points inthe desired range, a fit could not
be performed here, but we used the average valueε in case of the two fits of Ref. [3]. The resulting
curve, where the valueε = 0.59 was used, is shown on Fig. 2.

In case of hadronic HBT, correlation radii in the side and outdirections are almost equal, as for
the hadronic transition is of cross-over type (i.e. the transition time is short), see details in Ref. [3].
However, in case of photons, the creation spans the whole evolution of the fireball, thusRout will
be significantly larger thanRside. Indeed this was observed in our model, as shown on Fig. 2.

To summarize, we find that thermal radiation is consistent with direct photon data, and our
result on the equation of state iscs = 0.36±0.02stat±0.04syst. We set a lower bound on the initial
temperature of the sQGP to 507± 12stat± 90syst MeV at 0.7 fm/c. We also find that the thermal
photon elliptic flow from this mode is not incompatible with measurements. We also predicted
photon HBT radii from the model, and discovered a significantly largerRout thanRside.
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