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In high energy heavy ion collisions of RHIC and LHC, a strongly interacting
quark gluon plasma (sQGP) is created. This medium undergoes a hydrody-
namic evolution, before it freezes out to form a hadronic matter. The initial
state of the sQGP is determined by the initial distribution of the participat-
ing nucleons and their interactions. Due to the finite number of nucleons, the
initial distribution fluctuates on an event-by-event basis. The transverse plane
anisotropy of the initial state can be translated into a series of anisotropy
coefficients or eccentricities: second, third, fourth-order anisotropy etc. These
anisotropies then evolve in time, and result in measurable momentum-space
anisotropies, to be measured with respect to their respective symmetry planes.
In this paper we investigate the time evolution of the anisotropies. With a nu-
merical hydrodynamic code, we analyze how the speed of sound and viscosity
influence this evolution.

1. Hydrodynamics in ultra-relativistic heavy ion collisions

The medium created in ultra-relativistic heavy ion collisions is success-
fully modeled by perfect fluid hydrodynamics, i.e. the observables of soft
hadrons, photons and leptons can described by hydro models. Exact solu-
tions are particularly interesting, since one gains an analytic insight on the
connection between the initial and final state of the hydro evolution.

These solutions fulfill a simple set of laws, governing many systems on
many scales. Hydrodynamics only assumes the local conservation of energy
and momentum, and, depending on the circumstances, of entropy or some
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conserved charges. The equations of non-relativistic hydrodynamics are:
∂ρ

∂t
+ ∇ρv = 0 (1)

ρ

(
∂v

∂t
+ (v∇)v

)
= −∇p+ µ∆v +

(
ζ +

µ

3

)
∇(∇v) (2)

∂ε

∂t
+ ∇εv = −p∇v + ∇(σv) (3)

where ρ is matter density, v is the velocity field, ε is the (internal) energy
density, p is pressure, σ is the viscous stress tensor of the homogeneous
and isotropic medium, µ is the dynamic viscosity coefficient, λ the bulk
viscosity coefficient, while t represents time and ∇ = (∂x, ∂y, ∂z) the spa-
tial derivative vector. If we however would like to utilize hydrodynamics
in a relativistically expanding medium, we have to use the equations of
relativistic hydrodynamics. In case of perfect hydro, these take the form of

Tµν =
(
ε+ p

)uµuν
c2
− pgµν , ∂µT

µν = 0. (4)

To close this set of equations, we need to specify a relation between energy
density ε and pressure p. This we obtain using the below Equation of State:

ε = κ(T )p, (5)

where κ = c−2s is the inverse square of speed of sound. It’s temperature
dependence can be taken from lattice QCD calculations, but often κ is
simply kept constant.

2. Initial conditions and anisotropies

There are many solutions that fulfill the above equations, we however need
to start from an initial state that corresponds to the energy distribution
deposited by the nucleons participating in the collision. In nucleus-nucleus
collisions the initially formed medium can be spatially approximated by an
ellipsoid, which can be described by the contour levels of a scale variable s

s =
x2

X2
+
y2

Y 2
+
z2

Z2
(6)

where X,Y, Z are the axes of the ellipsoid described by the equation s =

1. Multiple exact solutions of hydrodynamics were found1,2 that resemble
this symmetry, i.e. where the thermodynamical quantities are constant on
s =const. curves. It is important to see however, that nuclei contain a finite
number of nucleons, and thus the participants of a nucleus-nucleus collision
form an event-by-event fluctuating shape (see Fig. 1).
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Figure 1. Simulated participant nucleon distribution (figure from Ref.3)

Thus a simple ellipsoidal symmetry is not sufficient to describe the hy-
drodynamically expanding medium, not to mention that it does not de-
scribe higher order flow coefficients either. To overcome this difficulty, one
can assume higher order anisotropies in the scaling variable, by redefining
it as

s =
r2

R2
(1 + ε2 cos(2φ)) +

z2

Z2
(7)

with r and φ being the polar coordinates in the transverse plane, while R
and ε2 are in a direct relation to X and Y . This can then be generalized to

s =
r2

R2

(
1 +

∑
n=2,3,...

εn cosnϕ

)
+
z2

Z2
(8)

in the cosnϕ expression a Ψn n-th order event plane can also be introduced.
Example distributions generated with this scaling variable are shown in
Fig. 2. Solutions utilizing scaling variables like the above s were presented
in Ref.4 However, these solutions, as well as the ones in Ref.1 are valid
only in case of a 3D Hubble-flow, which corresponds to the lack of pressure
gradients. This also means that the anisotropies will remain constant in
time, which may not be the case throughout the whole evolution. In our
analysis, we thus apply numerical calculations to include pressure gradients
in the initial conditions, and analyze the time evolution of the anisotropies.

Thus we will start the hydrodynamic evolution from the above described
set of initial conditions. We would like to extract the anisotropy coefficients
at later stages of the evolution, for which we need a definition. We in-
troduced the anisotropies of density, energy density and velocity fields as
follows:

εn = 〈cos(nϕ)〉ρ/ε/w, (9)



October 11, 2018 13:27 WSPC - Proceedings Trim Size: 9in x 6in bagolycsanad_numhidro

4

Figure 2. Initial distribution with the outlined s scaling variable, for different εn values.

where w = exp (−v2x − v2y) is defined to calculate the asymmetry of velocity
field. To understand the relation of the asymmetry parameters introduced
by 9 to the scale variable anisotripy coefficients, εn’s, we checked their
relation. As a first order approximation (in εn), we obtained

εn = −εn/2 (10)

however, in a more accurate approximation the result is:

ε1 ≈
(ε2 + ε4)ε3
2 +

∑
n ε

2
n

=
ε3(ε2 + ε4)

2
+O(ε4n) (11)

ε2 ≈
−ε2 + ε2ε4
2 +

∑
n ε

2
n

= −ε2
2

+
ε2ε4

2
+

1

4
ε2
∑
n

ε2n +O(ε4n) (12)

ε3 ≈
−ε3

2 +
∑
n ε

2
n

= −ε3
2

+
1

4
ε3
∑
n

ε2n +O(ε4n) (13)

ε4 ≈
−ε4 + 1

2ε
2
2

2 +
∑
n ε

2
n

= −ε4
2

+
ε22
4
− 1

4
ε4
∑
n

ε2n +O(ε4n) (14)

this means that even if there is no ε1 coefficient, we will still get an ε1.
It is also important to note that ε2 6= 0 and εn 6=2 = 0 will result in a
nonzero ε4 = ε22/4. See an example with multiple nonzero εn coefficients in
table 1, where we give an example how a set of εn values result in a different
set of εn values. The actual results can be accurately approximated with
eqs. (12)-(14).

3. Numerical method

Let us now discuss how we evolve the previously defined initial conditions
in time. In order to do that, we first transform the equations of (1+2 di-
mensional) hydrodynamics to a convective form as usual:

∂tQ + ∂xF(Q) + ∂yG(Q) = 0 (15)
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Table 1. Example for the εn − εn relation.

n εn
εn

direct calculation approximation first order estimate

1 0 0.00278 0.00298 0
2 0.1 -0.04927 -0.04869 -0.05
3 0.05 -0.02533 -0.02484 -0.025
4 0.02 -0.00769 -0.00745 -0.01

where Q is calculated from the hydrodynamical fields, while F and G are
functions of these, transformed from the original hydro equations. The finite
volume method discussed below and introduced in Ref.5 works for many
different systems of partial differential equations (PDE’s), one just needs
to determine the given functions to transform the PDE’s to the above form.
This can be done in a straightforward manner, see for example Refs.5–8

The basis of finite volume methods is to discretize the Q vector, by
defining it on a space-time grid, and obtaining the discrete values by av-
eraging in each cell. Then, we have to evaluate fluxes F and G between
grid points (these are then called intercell fluxes). This is difficult, since the
fluxes depend on the values of Q, but these are defined on the grid points.
Our method, outlined in Ref.5 and used for exampe in Ref,7 is based on an
accurate multi-stage (MUSTA) predictor-corrector estimation of the inter-
cell fluxes. We discuss this method briefly in 1+1 dimensions (and with a
single-component Q only) – it is straightforward to generalize it to multiple
spatial dimensions via operator splitting (we used the Lie type of splitting
method here). In case of viscous hydrodynamics, we also used operator
splitting to separate ideal and viscous fluxes.

To estimate the intercell fluxes between cells i and i+ 1, we start from
the Qni and Qni+1 values, where n represents the current time-step. Let us
call these values Q(0)

i,i+1, indicating that these represent a “zeroth order”
estimate of the intercell values. We will then make a series of estimates in
the given cell, the lth estimate being indicated with Q(l)

i,i+1. The flux in the

cell centers is then F (l)
i,i+1 ≡ F

(
Q

(l)
i,i+1

)
. We define an intermediate Q value

and flux F as follows:

Q
(l)

i+ 1
2

=
1

2

[
Q

(l)
i +Q

(l)
i+1

]
− 1

2

∆t

∆x

[
F

(l)
i+1 − F

(l)
i

]
, F

(l)
M ≡ F

(
Q

(l)

i+ 1
2

)
(16)

Then our intercell flux estimate is

F
(l)

i+ 1
2

=
1

4

[
F

(l)
i+1 + 2F

(l)
M + F

(l)
i −

∆x

∆t

(
Q

(l)
i+1 −Q

(l)
i

)]
(17)
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This is the so called FORCE flux approximation. The essence of our the
applied MUSTA algorithm is that now we make a new prediction, Q(l+1)

i

and with that we repeat the steps and we get a better flux approximation,
and with that we can make better prediction, and again better flux approx-
imation. To make a new prediction simply we use the equations we want
to solve:

Q
(l+1)
i = Q

(l)
i −

∆t

∆x

[
F

(l)

i+ 1
2

− F (l)
i

]
(18)

Q
(l+1)
i+1 = Q

(l)
i+1 −

∆t

∆x

[
F

(l)
i+1 − F

(l)

i+ 1
2

]
(19)

We may then stop at a given l value, by setting Fn
i+ 1

2

= F
(l)

i+ 1
2

. With this,
we simply calculate the next time-step as

Qn+1
i = Qni −

∆x

∆t

(
Fni+ 1

2
− Fni− 1

2

)
. (20)

where Fn
i− 1

2

can also be calculated by the procedure outlined above, if we
start from cells i− 1 and i.

In order to complete the method, let us mention that we used the initial
conditions as described above, we used non-reflective boundary conditions,
and the timestep was determined adaptively via the Courant-Friedrichs-
Lewy condition. We tested our method with the usual Sod shock tube and
known hydrodynamic solutions as well.

4. Results

With the above outlined method, we solved the equations of nonrelativis-
tic hydrodynamics with viscosity, as well as the equations of relativistic
perfect hydrodynamics. Our goal was to investigate how various speed of
sound values and various viscosity values affect the time evolution of the
asymmetries.

Let us first discuss the effects of viscosity (in nonrelativistic hydro). As
shown in Fig. 3 viscosity makes the disappearance of pressure anisotropies
slower, and the same is in the number density. In other words, in case
of nonzero viscosity the pressure asymmetries remain in the system for a
longer time. This may be due to the fact that viscosity makes the flow
slower, as illustrated in the first two plots of Fig. 4. As shown in the bot-
tom plot of Fig. 3 and the third and fourth plots in Fig. 4, the effect of
viscosity on the flow field is however the opposite: viscosity makes the flow
anisotropies disappear faster. The reason of this may be that the viscous
force contains the second spatial derivatives, thus the fluid elements with
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larger asymmetries feel a stronger viscous force, which means that viscosity
“washes out” the anisotropies.

We also investigated the effects of a change in the speed of sound. As
shown in Fig. 5, the reduction of speed of sound makes the anisotropies
disappear slower. The reason for this is that pressure waves travel with the
speed of sound, so the equalization of pressure is slower in case of smaller
speed of sound values. This is confirmed by relativistic calculations as well.
As shown in the top panels of Fig. 6, in case of a larger κ (i.e. a smaller
c2s value) the anisotropies disappear slower, and also the cooling is slower.
This also means that of course the system will freeze out later. The time
evolution of the flow field is shown in the bottom panels of Fig. 6.

Figure 3. Time evolution of pressure anisotropies is shown in the left panel, while
anisotropies in the flow field are shown in the right panel.

5. Summary

In this paper we analyzed the time evolution of the asymmetries of the
QCD matter created in high energy heavy ion collisions. We utilized nu-
merical hydrodynamics instead of exact solutions to investigate situations
not describable by the presently known hydrodynamic solutions. We how-
ever did not start from the most realistic initial conditions, but started
instead from an initial condition that is very similar to one described by
known analytic solutions – except in pressure, where we used a pressure
profile similar to the density profile given in these models. We analyzed
both non-relativistic and relativistic hydrodynamics, and arrived at similar
conclusions. It turns out that a stiffer equation of state, i.e. a larger speed of
sound makes the pressure anisotropies disappear faster. The appearance of
viscosity also makes the flow anisotropies disappear faster, however, pres-
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Figure 4. Time evolution of the energy density (first two rows) and of the flow field
(last two rows). The first and third rows show the viscosity free case, the second and
fourth rows show the viscous case with µ = 10MeV · fm.

sure anisotropies remain in the system longer, due to the slower flow of the
viscous system.
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Figure 5. Time evolution of pressure anisotropies is shown in the left panel, while
anisotropies in the flow field are shown in the right panel.
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Figure 6. The time evolution of velocity field. The top row shows κ = 2 case, the
bottom row the κ = 4 case. Time evolution of pressure anisotropies is shown in the left
panel, while anisotropies in the flow field are shown in the right panel.


