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The WKB-approximation for the Bogoliubov-equations of
the quasi-particle excitations in Bose-gases with condensate
is worked out in the case of spherically symmetric trap po-
tentials on the basis of the resulting quantization rule. The
excitation spectrum is calculated numerically and also ana-
lytically in certain limiting cases. It is found that the energy
levels of a Bohr-Sommerfeld type quantization may be con-
siderably shifted when the classical turning point gets close
to the surface of the condensate.
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The experimental realization and study of Bose-
Einstein condensates in alkali atom gases confined by
magnetic traps [1–5] has induced a vivid activity in the
theoretical investigation of such systems (See [6] for a
recent review and for further references). From a the-
oretical point of view the existence of the external po-
tential requires new methods for calculating the physical
properties of the quantum gases with Bose-condensation.
Our aim is to solve the Bogoliubov-equations in WKB-
approximation and to determine the excitation spectrum
on the basis of the resulting quantization rule.
In the Bogoliubov-theory the field operator can be ex-

pressed as a linear combination of quasiparticle creation
and annihilation operators. The corresponding (nonuni-
form) expansion coefficients uj(r) and vj(r) obey the
coupled linear Bogoliubov eigenvalue equations [7]
(

ĤHF −K(r)

−K∗(r) ĤHF

)(

uj(r)
vj(r)

)

= Ej

(

uj(r)
−vj(r)

)

, (1)

where j denotes one of the quasiparticle states and Ej

is the corresponding quasiparticle energy. The Hartree-
Fock operator ĤHF takes the form

ĤHF = −
h̄2

2m
∆+ U(r) + 2|K(r)| − µ , (2)

where U(r) is the trap potential, µ is the chemical po-
tential,

K(r) =
4πh̄2a

m
ψ0(r)

2 (3)

denotes the potential-like contribution of the con-
densate, whose wave-function ψ0(r) is normalized as

∫

d3r|ψ0(r)|
2 = N0. N0 is the number of particles in

the condensate and a is the s-wave scattering length. In
the following we shall assume that a > 0. The quasiparti-
cle amplitudes uj(r) and vj(r) are normalized according
to [7]

∫

d3r
(

u∗j (r)uk(r)− v∗j (r)vk(r)
)

= δjk . (4)

For the sake of simplicity we choose the external potential
as spherically symmetric. Moreover we shall take ψ0(r)
and hence also K(r) as real and shall also make frequent
use of the Thomas-Fermi approximation [8], which leads
to

|ψ0(r)|
2 =

{ m
4πh̄2a

(µTF − U(r)) if r < rTF

0 otherwise
. (5)

Here, U(rTF ) = µTF and µTF is fixed by normalization.
One can introduce spherical coordinates r, θ, φ and

separate variables in the usual way:
(

uj(r)
vj(r)

)

=
1

r

(

unl(r)
vnl(r)

)

Ylm(θ, φ) , (6)

where j denotes the usual quantum numbers (n, l,m) for
isotropic problems and the Ylm are the spherical harmon-
ics.
To solve the coupled, radial equations obtained from

(1) it is advantageous to use the linear combinations [9]

G±
nl(r) = (unl(r)± vnl(r)) , (7)

which satisfy the uncoupled equations
(

Ĥ2
HF −K(r)2 − E2 ∓ [ĤHF ,K(r)]

)

G±(r) = 0 . (8)

Here [, ] denotes the commutator. (For brevity we have
omitted the indices n and l). Furthermore, it follows
from the original equations that

G± =
1

E

(

ĤHF ±K(r)
)

G∓ , (9)

which is compatible with equations (8).
Now the operator ĤHF has the form

ĤHF = −
h̄2

2m

d2

dr2
+ Ueff (r), (10)
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where

Ueff (r) =
h̄2l(l + 1)

2mr2
+ U(r) + 2K(r)− µ. (11)

In our WKB treatment we use Langer’s rule by replacing
l(l+1) by (l+1/2)2. In the following Ueff (r) is considered
as a classical potential.
We shall consider two types of solutions

G+(r) = e
i
h̄ (S0+

h̄
i
S1+...) , (12)

G+(r) = e−
1

h̄ (S̃0+h̄S̃1+...) , (13)

with real functions S0(r), S1(r), . . . and S̃0(r), S̃1(r), . . .
respectively. Gathering terms having different powers of
h̄ one gets first order ordinary differental eqations for the
unknown quantities occuring in (12) and (13).
First we consider solutions of the form (12). The O(h̄0)

equation is the classical Hamilton-Jacobi equation for the
radial action S0(r), from which one can express the clas-
sical radial momenta as

|pr| ≡

∣

∣

∣

∣

dS0

dr

∣

∣

∣

∣

=

√

2m
(

±
√

E2 +K2 − Ueff

)

(14)

We shall assume that Ueff > 0 in which case only
the plus sign is allowed to have pr real. This is the
case for instance in the Thomas-Fermi approximation
(5). We introduce the radial velocity in the usual way
vr = ∂H/∂pr by regarding E in (14) as the classical
Hamiltonian H(pr, r). The obtained expression [10]

vr =

√

E2 +K2(r)

E

pr
m
. (15)

reflects the peculiarity of the classical quasi particle dy-
namics in traps. The effective quasi-particle mass, which
can be read off from (14), is energy and space-dependent.
It approaches the particle mass at the boundary of the
condensate, but can become much smaller yet remains
non-zero even in the center of very large condensates in
traps. This is a fundamental difference to the untrapped
case, where the limit E → 0 can be taken, in which the
quasi-particle mass vanishes.
By solving (8) with the ansatz (12) up to S1, then

using (9) for G−(r), and finally transforming back from
G±(r) to unl(r) and vnl(r), particular solutions of the
radial Bogoliubov equations are obtained in the form
(

unl(r)

vnl(r)

)

≃ Const×

(

uB(r)

vB(r)

)

1
√

|vr|
e±

i
h̄

∫

r
pr(r) dr ,

(16)

where u2B =
(

√

1 + (K(r)/E)2 + 1
)

/2, u2B − v2B = 1 are

the generalizations of the usual Bogoliubov-coefficients
for the case without trapping potential. Note that the
classical probability distribution is inversely proportional
to |vr | as expected physically.

Solutions (16) are valid in the classically allowed re-
gion, i.e., between the classical turning points rt1 and
rt2 > rt1 defined by the condition pr(rti) = 0, i = 1, 2.
We shall assume that there are two turning points only.
There may be three cases. Case A: if rt1 < rTF < rt2, in
other words, the classical particle enters the condensate,
then leaves it, and returns back again etc.; Case B: if
rTF < rt1 < rt2, i.e., we have only a simple classical mo-
tion in the trapping potential; Case C: if rt1 < rt2 < rTF ,
in which case the classical motion is confined to the con-
densate.
Next we construct solutions of the form (13) proceed-

ing similarly as before. Using the ansatz (13) in Eq. (8).
there can exist two different solutions for S̃0,

∣

∣

∣
q(i)r

∣

∣

∣
≡

∣

∣

∣

∣

∣

dS̃
(i)
0

dr

∣

∣

∣

∣

∣

=

√

2m
(

Ueff + (−1)i
√

E2 +K2
)

,

i = 1, 2. (17)

Both signs are allowed for example in the Thomas-Fermi
approximation (5). The solution for i = 1 is defined only
outside the classically accessible region, while the other
one (i = 2) is permissible for all r-values, if Ueff > 0 (as
we suppose), and represents a solution which can only
occur in the two component quasi particle dynamics. Let

us define furthermore quantities w
(i)
r similar as in (15) by

the relations

w(i)
r =

√

E2 +K2(r)

E

q
(i)
r

m
. (18)

For a smooth potential Ueff (r) it can be shown that nor-

malizable eigenfunctions cannot contain S̃
(2)
0 in a WKB

solution. However for states whose radial wavelength
near the characteristic radius of the condensate is large
compared to the width of the boundary layer there, the
effective potential can no longer be treated as smooth.
Furthermore, such a type of contribution must always
be present in v(r) asymptotically, if the condensate is
restricted to a finite region.
Let us now consider the allowed solutions in case A.

Requiring normalizibily and performing turning point
matching at rtj one obtains
(

unl
vnl

)

≃
C1j

√

|w
(2)
r |

(

vB
−uB

)

exp

[

(−1)j

h̄

∫ rTF

r

q(2)r (r) dr

]

+
C2j

√

|Zr|

(

uB
vB

)

F (r), (19)

where j = 1 and j = 2 correspond to r < rTF and
r > rTF respectively. C1j and C2j are arbitrary constants
and

F (r) = exp

[

(−1)j

h̄

∫ rtj

r

q(1)r (r) dr

]

,

Zr = w(1)
r , for

{

0 < r < rt1 (j = 1),
rt2 < r (j = 2),

(20)
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and

F (r) = 2 sin

[

(−1)j

h̄

∫ rtj

r

pr(r) dr +
π

4

]

,

Zr = vr, for

{

rt1 < r < rTF (j = 1),
rTF < r < rt2 (j = 2).

(21)

Requiring that u(r), v(r) and their first derivatives
are continuous at rTF one gets four homogeneous lin-
ear equations for the four unknown constants. In order
to get non-trival solutions the determinant of the coeffi-
cient matrix should vanish. This leads to the semiclassi-
cal quantization rule

0 = −
pA
h̄

cos

(

IA + IB
h̄

)

+ sin

(

IA
h̄

+
π

4

)

sin

(

IB
h̄

+
π

4

)

×

[

mL

p2A
−

(

L

2E

)2
h̄p2B

2p3B + h̄mL

]

, (22)

where we have introduced the notations pA ≡ pr(rTF ),

pB ≡ q
(2)
r (rTF ), L = (∂K/∂r)rTF+0 − (∂K/∂r)rTF−0,

IA =
∫ rTF

rt1
pr dr, IB =

∫ rt2
rTF

pr dr.
Keeping only the first term on the right hand side of

(22) leads to the usual Bohr-Sommerfeld quantization
rule

(

n+
1

2

)

=
1

πh̄

∫ rt2

rt1

dr

√

2m
(

√

E2 +K2(r)− Ueff (r)
)

(23)

with the integer radial quantum number n ≥ 0 and in-
cluding the Maslov-indices due to the two turning points
in the radial motion. The case B can be treated in an
analogous way leading to the quantization rule (23) with
K(r) = 0 within the range of integration.
We discuss first the energy levels on the basis of (23)

and will turn back to the consequences of the general ex-
pression (22) afterwards. To evaluate (23) we choose a
harmonic potential U(r) = mω2

0r
2/2 often used in theo-

retical consideration [6,8,9,11]. To distinguish between
cases A and B let us use the dimensionless variables
J̃ = h̄ω0(l + 1/2)/(2µ), Ẽ = E/µ. For energies and
angular momenta in the region 1 < 2J̃ − 1 < Ẽ < J̃2

case B occurs and the energy spectrum is simply that of
a harmonic oscillator shifted by µ

E
(osc)
n,l = h̄ω0

(

2n+ l +
3

2

)

− µ. (24)

The self-consistency condition for case B is then l+1/2 >
2µ/h̄ω0+

√

4µ(2n+ 1)/h̄ω0 . One can check that case C,
i.e., the classical motion is entirely inside the condensate,
is not possible.
Considering the nontrivial case A in region 0 < J̃2 < Ẽ

the action integral in Eq. (23) can still be performed

analytically (For the details see Ref. [12]), but the re-
sult is rather cumbersome, and the energies Enl can-
not be expressed explicitely. However, due to (23) the
semiclassical energies fulfill the scaling relation En,l =
h̄ω0Gn,l(µ/h̄ω0). We discuss here some limiting cases.
One interesting limit is when one considers the high-lying
levels, i.e., when En,l ≫ µ is fulfilled. Then the main con-
tribution to the action integral in (23) comes from the
region outside of the condensate, leading to a spectrum
which is almost that of a harmonic oscillator. Expanding
the action integral to the next to leading correction in
µ/En,l one gets:

En,l = E
(osc)
n,l + h̄ω0δn,l

δn,l ≃
1

3π

[

4µ
h̄ω0

(

2n+ l + 3
2 − µ

h̄ω0

)

−
(

l + 1
2

)2
]3/2

[

2n+ l + 3
2 − µ

h̄ω0

]2 . (25)

This result and that of the perturbation theoretical cal-
culation [13] agree for large (2n+ l) values.
The other interesting limit is the region of excitation

energies small compared with the chemical potential. To
reach it formally, the angular momentum and the radial
quantum numbers l and n are kept fixed but µ/h̄ω0 tends
to infinity. The main contribution to the radial action
integral (23) comes from those r values, which are within
the condensate. To leading order:

En,l ≃ h̄ω0

[

2n2 + 2nl + 3n+ l + 1
]1/2

. (26)

Our result (26) almost coincides with that of Stringari’s
hydrodynamic calculation [11], except for the last con-
stant 1 within [...]1/2 in (26), which has an appreciable
effect only on the lowest levels. It is, of course, not unex-
pected that a WKB approach may fail there. For some-
what higher energies at fixed but large chemical poten-
tial there is a considerable region where the two spectra
calculated in WKB and in hydrodynamical approxima-
tions, respectively, overlap. For even higher energies the
applicability of the hydrodynamical approach looses its
validity. The task of solving (23) for E can be carried out
numerically in a straightforward manner for given scat-
tering length a, trapping potential (i.e. ω0) and number
N0 of atoms in the condensate, fixing the single param-
eter 2µ/h̄ω0 = (15N0a/

√

h̄/mω0)
2/5 on which the spec-

trum depends. An example of the results obtained is
depicted in Figure 1.
Let us turn now to the discussion of (22). By solv-

ing (22) numerically for the energies we have found that
the corrections ∆En,l to the levels defined by (23) are
small except when the classical inner turning point rt1
gets close to the surface of the condensate (the border
between regions A, B in the (n,l)-plane), in which case
the radial wavenumber pA goes to zero. ∆En,l then be-
comes large but decreases rapidly when going away from
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this situation. Note that in this case the classical or-
bits are just glancing at the surface of the condensate.
The solution of the Bogoliubov equations then contains
an anomalous contribution, namely, the first term on the
right hand side of (19), which is exponentially localized
at the surface. The effect remains even for high ener-
gies when the anomalous part of u and the usual part
of v become negligible. At such energies it is generally
assumed that the Bogoliubov equations go over to the
Hartree-Fock equations. Our results suggest that there
are exceptional states at the border of region A and B for
which this is not true due to the disturbance at the sur-
face. Physically,the effect is caused by the narrow bound-
ary layer of the condensate which looks effectivly sharp
for orbits glancing on the surface. Its qualitative aspects
can therefore be expected to be independent from the
WKB and Thomas-Fermi approximations. Experimen-
tally such anomalous states could be observed by their
excitation via modulations of the trapping potentials as
in [4], [5] or by light scattering.
In this paper we have restricted ourselves, for the sake

of simplicity, to the case of the spherically symmetric trap
potential. Calculations along these lines for anisotropic
harmonic oscillator trap potentials as they are used in the
experiments [4,5] will be published in a separate paper.
Here we only mention that the corresponding classical
Hamiltonian shows chaotic behavior [14], especially for
energies comparable to the chemical potential.
We are indebted for useful discussions to A. Voros and
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(unpublised).
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0r
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