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Abstract
A new class of analytic, exact, rotating, self-similar and surprisingly simple solutions of non-

relativistic hydrodynamics are presented for a three-dimensionally expanding, spheroidally sym-

metric fireball. These results generalize earlier, non-rotating solutions for ellipsoidally symmetric

fireballs with directional, three-dimensional Hubble flows. The solutions are presented for a gen-

eral class of equations of state that includes the lattice QCD equations of state and may feature

inhomogeneous temperature and corresponding density profiles.
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I. INTRODUCTION

Heavy ion collisions with finite impact parameters create systems where the net angular
momentum is not zero in the initial state, and so (due to angular momentum conservation)
this creates a rotating and expanding fireball. Recently, rotating numerical solutions of
hydrodynamics became a subject of intensive theoretical interest and new observables are
designed [1–3] to search for the effects of rotation in the experimental data.

Our goal is to generalize earlier exact analytic solutions of fireball hydrodynamics to
rotating flows. There are many already known, important, analytic and self-similar exact
solutions of fireball hydrodynamics. The first solutions in this class, the Zimányi-Bondorf-
Garpman (ZBG) solution [4] inspired the Csörgő-Csizmadia-Lukács (CsCsL) solution for a
3d expanding Gaussian fireball with Hubble flow and with a spatially homogeneous tempera-
ture profile [5] which was the first solution of fireball hydrodynamics with a Gaussian density
profile and simple scaling expressions for the mass dependence of the radial flow and the
HBT radii. This solution has later been generalized to inhomogeneous temperature profiles
with spherical symmetry in ref. [6], subsequently the spherical symmetry was generalized
to a three-dimensional, ellipsoidally symmetric expansion in refs. [7, 8], and to expansions
with rather arbitrary equations of state (corresponding to temperature dependent speed of
sound) in ref. [9].

As is well known, the first exact solutions of relativistic hydrodynamics were described by
Landau and collaborators, who improved on Fermi’s statistical model, observing that if ther-
modynamical laws determine the production cross-sections of strongly interacting particles
in high energy (cosmic ray induced) reactions, then the momentum distributions of these
particles needs to be calculated from the theory of locally thermalized and relativistically
expanding fluids [10, 11]. Unfortunately, the Landau solutions were given in a complicated,
implicit form. In the ultra-relativistic, infinite bombarding energy limit, a self-similar and ex-
plicit scaling solution was found by R. C. Hwa [12] and later, independently by Bjorken [13],
who, with the help of this solution, figured out how to estimate the initial energy density
of high energy proton-proton or heavy ion reactions from experimental data. His paper on
relativistic hydrodynamics became a fundamental contribution the field of relativistic heavy
ion collisions, although the resulting boost-invariant rapidity distribution is not seen even
at the present,

√
s = 7 TeV LHC energies.

The CsCsL solution has also been extended to the domain of relativistic kinematics: first
a one-dimensional, longitudinally expanding explicit relativistic solution has been found in
ref. [14], then this class was generalized to relativistic expansions with three dimensional,
axially/cylindrically symmetric expansions in refs. [15, 16] and soon also to the case of three
dimensional, relativistic expansions with a realistic, ellipsoidal symmetry of the temperature
and the density profile [17]. Although these relativistic solutions match the non-relativistic
solutions in the limit of non-relativistic velocities, they all had shortcomings: the lack of the
relativistic acceleration, and the presence of the spherically symmetric, direction independent
Hubble flow profile in each of them.

The search started for accelerating and relativistic solutions of hydrodynamics, that may
lead to finite rapidity distributions. This resulted in the discovery of several non-Hubble
type simple and explicit, exact solutions of relativistic hydrodynamics, as reported first in
refs. [18, 19] and described in full detail in ref. [20], these are the so-called NCC solutions.

The CsCsL solution of ref. [5] was special in another, rather unusual manner too, be-
ing, quite unexpectedly, a simultaneous solution of two, generally quite different dynamical
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equations: the collisionless Boltzmann equation as well as the system of equations of hydro-
dynamics, for both in the non-relativistic kinematic region. Some of the new, accelerating
relativistic hydrodynamical solutions of refs. [18–20] were also solutions of the collisionless
Boltzmann equations. The systematic search for such simultaneous, so called “collisionless”
solutions started and one of the important and interesting outcome of these studies were
reported in refs. [21, 22]: not only that another rich class of accelerating relativistic hy-
drodynamics was found but also the first exact, explicit and rotating solution of relativistic
hydrodynamics was described.

The effort to solve the relativistic hydrodynamical equations for cases relevant to heavy-
ion physics phenomenology is an ongoing research theme, that undergoes an interesting
revival and resulted very recently in decent, new exact solutions. The Landau hydrodynamics
has also been revisited and the evaluation of the rapidity distribution and particle spectra has
been improved in ref. [23]. It also served as a basis for more general (albeit approximate)
hydrodynamical solutions that enabled the authors to study transverse dynamics in the
framework of the Landau model [24–26]. A unified description of the famous Hwa-Bjorken
and the Landau-Khalatnikov solutions was reported in ref. [27] that has been extended to
a general treatment of 1+1 dimensional relativistic flows in ref. [28, 29]. Recently, multi-
dimensional solutions of relativistic hydrodynamics were reported, that include transverse
dynamics in an advanced manner [30–32].

In this manuscript, we describe rotating solutions of non-relativistic hydrodynamics that
feature spheroidal (ie. rotationally symmetric ellipsoidal) density profiles [33]. (A very spe-
cial case of these solutions was briefly considered in ref. [22].) For spatially homogeneous tem-
perature profiles, we obtain solutions that can incorporate fairly general equations of state,
based on a non-relativistic analogy of the relativistic, irrotational and non-acccelerating so-
lutions that were given for a broad class of equations of state, including the lattice QCD
equations of state [34]. In the limiting case of no rotation, the rotating solutions reported
here reproduce already known, irrotational solutions of non-relativistic fireball hydrodynam-
ics.

II. NOTATION AND BASIC EQUATIONS

We consider a non-relativistic fluid, a fireball with an adiabatic expansion, assuming that
the bulk and shear viscosity as well as the heat conductivity is negligible and the expanding
fluid is locally thermalized. Time is denoted by t, the spatial coordinate by r = (rx, ry, rz),
the mass of the particles is m and the hydrodynamical fields such as the number density n,
the pressure p, the energy density ε and the temperature T generally depend on both time
and space: n ≡ n(t, r), p ≡ p(t, r), ε ≡ ε(t, r) and T ≡ T (t, r). In the non-relativistic case,
the dynamical equations that govern the expansion of such fireballs are the continuity, Euler
and energy equations, corresponding to the conservation of matter (charge), momentum and
energy. These equations read as follows:

∂tn+∇(nv) = 0, (1)

(∂t + v∇)v = −∇p

mn
, (2)

∂tε+∇(εv) + p∇v = 0, (3)

and they are closed by the so-called equations of state, that characterize the local thermo-
dynamical properties of the flowing matter. Following ref. [9], we assume that the ratio of
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energy density to the pressure is an arbitrary, temperature dependent function:

p = nT, (4)

ε = κ(T )p. (5)

Fundamental thermodynamical relations, irrespectively of the equations of state, read as

ε+ p = µn+ Tσ, (6)

dε = µdn+ Tdσ, (7)

dp = ndµ+ σdT, (8)

where µ stands for the chemical potential and σ denotes the entropy density. These fun-
damental relations, together with the local conservation of energy as expressed by eq. (3),
imply the local conservation of the entropy density, that corresponds to the adiabatic nature
of non-dissipative flows:

∂tσ +∇(σv) = 0. (9)

We consider another scenario as well, when there is no conserved charge or particle
number density n present. This scenario was recently considered in detail in the relativistic
kinematic domain in ref. [34]. In this scenario, the equation of state is as follows:

ε+ p = Tσ, (10)

ε = κ(T )p. (11)

Note that the energy equation, eq. (3) can be utilized with this equation of state without
any conceptual difficulty, however, the Euler equation needs to be modified in the n → 0
limit. This can be done by starting with the relativistic form of the Euler equation, and then
considering the v ≪ c limit. Thus in the considered, n → 0 scenario, the Euler equation
becomes modified as follows:

(ε+ p)(∂t + v∇)v = −∇p, (12)

which is an interesting form of the non-relativistic Euler equation for a fluid where there is
no conserved charge. In this case, a lattice QCD equation of state can be used to follow a
non-relativistic fireball explosion, similarly to the recently found relativistic hydrodynamical
solutions described in ref. [34].

We emphasize that in fact we find two different families of solutions of non-relativistic
hydrodynamics. The first family, Case 1 corresponds to the solution of the conventional form
of the equations of non-relativistic hydrodynamics, as specified by eqs. (1,2,3) together with
the equations of state as given by eqs. (4,5). The second family, Case 2 corresponds to the
solutions of the energy equation, eq. (3) (or, alternatively, eq. (9), the entropy conservation
equation) and the Euler equation as given by (12), with the equation of state given by
eqs. (10,11). Both in Case 1 and Case 2 one can use general κ ≡ κ(T ) functions in the
equation of state. In Case 2, this allows one to include the lattice QCD equations of state,
which is characterized by lack of conserved charge in the baryon-free, µ = 0 region.

A simplification of the equations is achieved if one rewrites the equations for the temper-
ature T . One can verify that in Case 1, by substituting the equation of state into the Euler,
energy, and continuity equations, we obtain 5 partial differential equations for 5 unknown
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fields (temperature T , conserved number density n, and the three components of the velocity
field v), as follows:

∂tn+∇(nv) = 0, (13)
[

d

dT
(κT )

]

(∂t + v∇) T + T∇v = 0, (14)

nm(∂t + v∇)v = −∇p, (15)

p = nT. (16)

In this case, the entropy density σ is not an unavoidable unknown field, but can readily
be calculated if necessary from the fundamental thermodynamical relations and from the
equation of state.

For Case 2, a similar system of equations is obtained for the 5 unknown fields (entropy
density σ, temperature T , and v). These equations read as follows:

∂tσ +∇σv = 0, (17)

1 + κ

T

[

d

dT

κT

1 + κ

]

(∂t + v∇)T +∇v = 0, (18)

Tσ(∂t + v∇)v = −∇p, (19)

(κ+ 1)p = Tσ. (20)

These systems of partial differential equations, together with the formal similarity be-
tween the continuity equation, eq. (1) and the entropy equation, eq. (9) indicate that Cases
1 and 2 can be solved similarly, but the time evolution of the temperature will be different
in both cases, and there will be other interesting differences.

We search for parametric solutions of these partial differential equations, using in both
cases the same ansatz for the velocity field v and the same set of scaling variables, that
depend parametrically on time. Thus our goal is to reduce the system of partial differential
equations to a set of ordinary differential equations that describe the time evolution of the
scale parameters. With this step, the hydrodynamical equations are considered to be solved
as the solution of ordinary differential equations is a built-in routine to several mathematical
software packages. In addition, we also relate these ordinary differential equations to a
motion of a mass-point in a classical potential and provide some first integrals of this motion.

III. ANSATZ OF A ROTATING FLOW

We assume that the expanding fireball will rotate and expand simultaneously. The men-
tioned exact non-relativistic solutions of refs. [6, 8, 9], where ellipsoidally symmetric, direc-
tional Hubble flows were found, suggest that such Hubble flows are a key component of the
velocity field. We assume that the rotation is characterized by a time-dependent angular
velocity, so our ansatz is the following:

v = vH + vR, (21)

vH = (
Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz), (22)

vR = ω × r = (−ωry, ωrx, 0), (23)
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so we assume that the principal axes of an expanding ellipsoid are given by the time depen-
dent functions (X, Y, Z) ≡ (X(t), Y (t), Z(t)) and the rotation is around the rz axis with a
time dependent angular velocity ω ≡ ω(t).

The angular velocity shows up also as the so called vorticity of the flow: the vorticity
field is defined by ω(r, t) = ∇×v. It is straigthforward to see that for this ansatz (and thus
for all of the solutions described in this manuscript) the vorticity vector is parallel to the rz
axis, the axis of rotation, and its value depends only on time: ω(r, t) = (0, 0, 2ω(t)).

In this manuscript, we describe spheroidally symmetric solutions of fireball hydrody-
namics, that are characterized by the equality of the principal axes in the plane transverse
to the axis of rotation, so it is natural to introduce the transverse radius parameter as
R ≡ R(t) = X(t) = Y (t). To describe the new exact solutions, the concept of comoving
derivative D and the corresponding scaling variables sR and sZ will be utilized:

D ≡ ∂t + (v∇), (24)

sR =
r2x + r2y
R2

, (25)

sZ =
r2z
Z2

. (26)

It is easy to verify that for spheroidally symmetric flows with X = Y = R, and for the
velocity field given above, both sR and sZ are good scaling variables, that is, their comoving
derivative vanishes independently of the actual time dependence of the scale parameters
(X, Y, Z) and ω:

DsR = DsZ = 0. (27)

We assume that the thermodynamical fields like the temperature T , the pressure p, the
entropy density σ and/or the number density n depend on the coordinates only through
some so-called scaling functions, that is, functions of the scaling variables sR and sZ .

Before going on to the discussion of the new solutions, it is interesting to note another
appearance of these scaling variables. For our ansatz for the velocity field, the trajectories
of the fluid elements can easily be determined as follows: denoting the coordinate vector of
a fluid element by r(t), its equation of motion can be written as

ṙ(t) = v(r(t), t). (28)

Using eqs.(21), (22), and (23), the solution to this equation is most easily written in cylin-
drical coordinates, where these coordinates of the r(t) trajectories are denoted by ρ(t), ϕ(t),
z(t):

ρ(t) = ρ0
R(t)

R(t0)
, (29)

ϕ(t) = ϕ0 +
∫

dt ω(t), (30)

z(t) = z0
Z(t)

Z(t0)
. (31)

These equations show that the trajectories rotate and expand together with the fluid: they
follow the time evolution of the sR and sZ scaling variables in the radial and axial directions,
while the angular velocity of the trajectory is that of the fluid, respectively.
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IV. NEW EXACT, ROTATING SOLUTIONS

The form of the solutions for both Case 1 and Case 2 depends substantially on the form
of the equations of state. If the ratio of the energy density to the pressure is independent
of the temperature, or κ(T ) = const, a new family of solutions is obtained in both cases,
called Case 1A and Case 2A, where the scaling function for the temperature profile can be
chosen as an arbitrary positive definite function, while the number density or the entropy
density scaling functions are determined by the scaling function for the temperature. Given
this functional degree of freedom, the number of new solutions is infinite in both Case
1A and Case 2A. However, if the ratio κ(T ) = ε/p becomes a truly temperature dependent
function, we obtain significantly stronger constraints on the possible form of the temperature
profile, and solutions are obtained only in case of spatially homogeneous but time dependent
temperature profiles. These cases will be called Case 1B and Case 2B1.

As mentioned before, the solutions detailed below correspond to spheroidally symmetric
expansions, that is, X(t) = Y (t) ≡ R(t), but Z(t) 6= R(t) in general. In all the cases
described below, the scaling variable has the same form,

s = sR + sZ , (32)

and the time dependence of the angular velocity is also of the same form in terms of the
transverse radius R. The velocity field follows our ansatz detailed above, but in each cases
a different system of ordinary differential equations govern the time evolution of the scale
parameters R and Z. The common features of the all the solutions given in this paper are
summarized as follows:

v = vH + vR, (33)

vH = (
Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz), (34)

vR = ω × r = (−ωry, ωrx, 0), (35)

ω = ω0
R2

0

R2
, (36)

R = X = Y 6= Z, (37)

s = sR + sZ =
r2x + r2y
R2

+
r2Z
Z2

, (38)

V = XY Z = R2Z. (39)

Case 1A: Solutions for the case of a conserved charge and a constant, temperature inde-
pendent κ are given as follows:

n = n0
V0

V
ν(s), (40)

1 In both cases, there is a 3rd possibility: for special forms of the κ(T ) function, solutions with arbitrary

temperature profiles can be obtained. However, considering possible applications of our solutions in heavy

ion physics, these special forms of the κ(T ) functions are not feasible hence not detailed. These classes 1C

and 2C can be obtained from the criteria of the separability of the coordinate and the time dependence in

the temperature equation, which gives a (solvable) differential equation for the form of the κ(T ) function.
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T = T0

(

V0

V

)1/κ

T (s), (41)

ν(s) =
1

T (s)
exp

(

−1

2

∫ s

0

du

T (u)

)

, (42)

RR̈− R2ω2 = ZZ̈ =
T0

m

(

V0

V

)1/κ

, (43)

where the following constants are introduced: n0, the value of the conserved charge density
at the origin at initial time t0, while the initial values of the scale parameters are given
by (X0, Y0, Z0). (Note that we also introduced already at this step a suitable re-scaling,
which corresponds to re-defining the lenght-scales and the temperature scales in terms of
the constants of the integrations so that the solutions have the most transparent forms.) The
initial proper volume is V0 = X0Y0Z0 = R2

0Z0, and the scaling function for the temperature
and the density profile are normalized so that ν(0) = T (0) = 1. In this class of solutions, the
shape of the temperature profile function, T (s) is an arbitrary properly normalized positive
function, so this corresponds to an uncountably infinite number of solutions, that follows
the lines of refs. [6, 8]. The time evolution of the scale parameters is given by their initial
values, X0 = Y0 = R0 and Z0, and initial expansion rates Ẋ0 = Ẏ0 = Ṙ0 and Ż0, together
with the dynamical equations of eq. (43). It is beautiful to observe that for the case of
vanishing initial angular momentum, ω0 = 0, we recover the spheroidal (X = Y = R) limit
of the general class of ellipsoidally symmetric solutions that were described in ref. [8].

Case 1B: These solutions are valid for the case of conserved charge and a non-constant,
temperature dependent κ(T ) function. These solutions are written as:

n = n0
V0

V
exp(−s/2), (44)

T ≡ T (t), (45)

RR̈ −R2ω2 = ZZ̈ =
T

m
, (46)

d(κT )

dT

Ṫ

T
+

V̇

V
= 0. (47)

where the temperature T is now spatially homogeneous but depends on time, and the density
profile corresponds to an expanding spheroidal Gaussian profile. The equation for the time
evolution of the temperature is exactly the same as eq. (9) of ref. [9], indicating that
the rotation of the fluid enters the system of the hydrodynamical equations in a rather
straightforward manner. The equation of the time evolution of the temperature can be
solved as follows: we introduce the f1B(T ) function as

f1B(T ) ≡ exp

{

∫ T

T0

dy

y

(

d

dy
[κ(y)y]

)}

, (48)

and with this we can rewrite eq. (47) as follows:

ḟ1B(T )

f1B(T )
+

V̇

V
= 0 ⇔ d

dt
(V f1B(T )) = 0. (49)
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If the above f1B function is injective (ie. it has an inverse), then we can readily express the
time dependence of the temperature as

T (t) = f−1
1B

(

V0

V (t)

)

. (50)

The condition that the f1B function has an inverse is equivalent to requiring d
dT
(κT ) > 0 for

all T . There can be special cases of κ(T ) functions where this condition is not met: in this
cases the temperature is not uniquely determined by the volume. (For an example, we refer
to the discussion in Ref. [34]). Nevertheless, eq. (49) is always a valid equation for the time
dependence of the temperature in this case.

It is interesting to see that the solution corresponding to the case of a temperature
independent κ and a spatially homogeneous temperature profile emerges as a common special
case of both the 1A and 1B cases. One can verify that for temperature independent κ(T ) =
κ = const, eq. (50) indeed yields the time evolution of the temperature as given in eq. (41).
It is also beautiful to observe that for the case of vanishing initial angular momentum,
ω0 = 0, we recover the spheroidal (X = Y = R) limit of the ellipsoidally symmetric exact
Gaussian solutions of non-relativistic hydrodynamics, that were described for the same,
rather general class of temperature dependent κ ≡ κ(T ) equations of state in ref. [9]. Thus
we have successfully generalized another class of exact solutions to the case of rotating
and expanding, spheroidal fireballs. It is also worthwhile to mention, that the evolution
equation for the temperature profile, that was found first in ref. [9], is form invariant even
if the kinematics is generalized to the relativistic region following the exact relativistic
hydro solutions described in ref. [34]: equation (9) of ref. [9] and equation (16) of ref. [34]
are equivalent, if the relativistic co-moving derivative in ref. [34] is evaluated in the non-
relativistic limit, where it corresponds to the time derivative.

Case 2A: This case corresponds to local conservation of entropy, with a temperature
independent κ. The solutions are similar also to the solutions in Case 1A, but now the
entropy density takes the role of the density of conserved charge: it has also an arbitrary
scaling function S(s), but the relation between the scaling functions of the temperature and
the entropy density becomes modified as compared to the relations in Case 1A. The solution
is written as follows:

σ = σ0
V0

V
S(s), (51)

T = T0

(

V0

V

)1/κ

T (s), (52)

S(s) =
1

T (s)
exp (−s/2) , (53)

RR̈−R2ω2 = ZZ̈ =
1

1 + κ
. (54)

It is important to note, that this case also corresponds to finite, expanding fireball, given
that the pressure p = σT/(1+κ) decreases as a Gaussian in coordinate space for any choice
of the scaling function for the temperature. Note also that in Case 2A the explosion of
the fireball is significantly faster, than in case of Case 1A: in Case 1A the acceleration is
driven by of p/(nm) = nT/(nm) = T/m that tends to vanishing values at late times, given
that the fireball expands hence the temperature decreases. In contrast, in the current case
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of Case 2A where only entropy is conserved locally, but there is no conserved charge, the
acceleration in the Euler equation is driven by p/(ε + p) = 1/(1 + κ) which is a constant.
If such a system approaches a soft point, where κ → ∞, the accelerations due to pressure
gradients tend to vanishing values. Nevertheless, acceleration due to non-vanishing initial
angular velocity will still be present in the plane perpendicular to the axis of rotation.

Case 2B solutions correspond also to the case when there is no conserved charge but
the expansion is adiabatic and the thermodynamical relations are characterized by a non-
constant, temperature dependent κ ≡ κ(T ) function. These solutions can be written as
follows:

σ = σ0
V0

V
exp(−s/2), (55)

T ≡ T (t), (56)

RR̈− R2ω2 = ZZ̈ =
1

1 + κ(T )
, (57)

[

T

1 + κ

dκ

dT
+ κ

]

Ṫ

T
+

V̇

V
= 0. (58)

where the temperature T is spatially homogeneous but depends on time, similarly to the
Case 1B solutions, but with a modified evolution equation, and the entropy density profile
corresponds to an expanding Gaussian spheroid. It is interesting to see that the equation
for the time evolution of the temperature is exactly the same as eq. (17) of the relativistic
hydro solution of ref. [34]. The equation for the time evolution of the temperature can be
solved in a manner similar to that of Case 1B above: we introduce the f2B(T ) function as

f2B(T ) ≡ exp







∫ T

T0

dy





κ(y)

y
+

dκ(y)
dy

κ(y) + 1











, (59)

so that we can rewrite eq. (58) as follows:

ḟ2B(T )

f2B(T )
+

V̇

V
= 0 ⇔ d

dt
(V f2B(T )) = 0, (60)

which again can be solved if the f2B function has an inverse. The condition on the equation
of state which states that f2B should have an inverse is in this case (as can easily be shown)

equivalent to d
dT

Tκ(T )
1+κ(T )

> 0, which is again equivalent to d
dT

ε
σ
> 0. To our best knowledge,

this condition is met for any reasonable, thermodynamically consistent equation of state.
If the f2B function has an inverse, then we can express the time dependence of the

temperature as

T (t) = f−1
2B

(

V0

V (t)

)

. (61)

Again, if κ(T ) = κ = const, we recover the time evolution of the temperature as in Case
2A, which is given by eq. (52).

We think that Case 2B is an important one, given that the equations of state under
consideration include, as a particular realization, the lattice QCD equations of state, as was
demonstrated in ref. [34] and references therein. This result improves in two ways on two
shortcomings of ref. [34]: First, the acceleration of the fluid, that was assumed to be, in the
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relativistic sense, a non-accelerating Hubble flow, can now be considered explicitly, but at
present only in the non-relativistic kinematic domain. Second, the initial conditions in high
energy heavy ion physics create fireballs with non-vanishing total angular momentum. Now,
the effects of the initial angular momentum can be evaluated explicitly, using ω0 6= 0 initial
conditions. However, the detailed evaluation of the observables from these class of solutions
goes beyond the scope of the current manuscript.

Note that the equations for the temperature can be integrated both in the Case 1B and
Case 2B solutions, similarly to the results of refs. [9, 34], respectively.

It took 35 years [22, 33] after the publication of the first exact hydrodynamical solutions
in a similar class [4], to find and write up the rotating non-relativistic solutions of perfect
fluid hydrodynamics. However, once they are given, it is straightforward to check their
validity.

V. FIRST INTEGRALS OF THE CLASSICAL MOTION

The total angular momentum M of the fluid is constant. This quantity is defined as

M =
∫

drxdrydrz mnr × v

in the case when there is a conserved particle number present (Cases 1A and 1B). For
the solutions discussed in this manuscript here one immediately obtains that only the z
component of M (denoted by Mz) is non-vanishing (which is clear also from the shape of
the velocity field). One can use eq. (40) for the expression of n in Case 1A, and also for Case
1B (which from this point of view is a special case of Case 1A, with ν(s) = e−s/2). With a
re-scaling of the integration variables and transforming the integral to a r, ϕ, z cylindrical
coordinate system (ie. rx → Ar cosϕ, ry → Br sinϕ, rz → Bz), one gets the following
expression in Cases 1A and 1B:

Mz = C ·mωR2, (62)

where the constant C is introduced as

C ≡ 2πn0V0

∫

drdz r2ν
(

r2 + z2
)

. (63)

One readily identifies CmR2 as the moment of inertia of the fluid Θ, where the constant
C encodes the shape of the mass (or entropy) distribution of the fluid. Thus we have

Mz ≡ Θω ∝ mR2ω0
R2

0

R2
= mω0R

2
0. (64)

So eq. (36), ie. the relation ωR2 = ω0R
2
0, which is true for all the solutions discussed in this

paper, is established as a consequence of the conservation of the total angular momentum
of the fluid.

In the other case when there is no conserved n (Cases 2A and 2B), the definition of M
is not so straightforward. If eg. one applies Landau’s argument to say that in the final
state the number of particles produced is proportional to the entropy density σ, one can
tentatively define M as M ∝ ∫

drxdrydrz σr × v. With this definition, an analogue of the
calculation above leads again to the result that the relation ωR2 = ω0R

2
0 is a consequence

of angular momentum conservation. However, the discussion whether this definition of the
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angular momentum indeed should be applied to all cases with no conserved particle number
goes beyond the scope of this manuscript.

Investigating the equations of motion for the scale parameters leads to other interesting
observations regarding conserved quantities. One can show that the equations of motion for
the scale parameters in the discussed solutions are equivalent to the Lagrangian equations
of motion of a point mass moving in a non-central potential U . The presence of non-
vanishing angular momentum yields an extra term in the potential as compared to the same
Hamiltonian motion, introduced and discussed in ref. [8]: the coordinates are (X, Y, Z), the
momentum components are (Px, Py, Pz) = m(Ẋ, Ẏ , Ż). The initial conditions reflect the
fact that our solutions are spheroidally symmetric:

X0 = Y0 = R0, (65)

Ẋ0 = Ẏ0 = Ṙ0. (66)

The Hamiltonian of the motion for the Case 1A solutions is

H1A =
P 2
x + P 2

y + P 2
z

2m
+ U1A, (67)

U1A = κT0

(

X0Y0Z0

XY Z

)1/κ

+
2mω2

0R
4
0

X2 + Y 2
, (68)

Using similar notation, the equation of motion for the solutions in Case 2A can also be
derived from a classial Hamiltonian, with a modified, logarithmic potential:

H2A =
P 2
x + P 2

y + P 2
z

2m
+ U2A, (69)

U2A = − m

1 + κ
ln
(

XY Z

X0Y0Z0

)

+
2mω2

0R
4
0

X2 + Y 2
. (70)

More generally, using the solutions for the time dependence of the temperature in Cases
1B and 2B, (eqs. (48)–(50) for Case 1B and eqs. (59)–(61) for Case 2B), the equations of
motion for the Case 1B and Case 2B solutions can also be cast in a Hamiltonian form. For
this purpose, we introduce the following functions of the volume V ≡ XY Z:

χ1B(V ) ≡ ∫ V
V0

dV ′

V ′
T, T ≡ T (V ′) (1B), (71)

χ2B(V ) ≡ m
∫ V
V0

dV ′/V ′

1+κ(T )
, T ≡ T (V ′) (2B), (72)

where we indicated that the temperature is expressed as a function of the volume V ′, using
eq. (50) or eq. (61) for Cases 1B and 2B, respectively. With these definitions, one can verify
that the equations of motion for Case 1B stem from the following Hamiltonian:

H1B =
P 2
x + P 2

y + P 2
z

2m
+ U1B , (73)

U1B = −χ1B(XY Z) +
2mω2

0R
4
0

X2 + Y 2
, (74)

and for Case 2B we have

H2B =
P 2
x + P 2

y + P 2
z

2m
+ U2B , (75)

U2B = −χ2B(XY Z) +
2mω2

0R
4
0

X2 + Y 2
. (76)
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From the clear Hamiltonian structure of the motion of the mass-point, first integrals of the
motion can be found easily by requiring that the total energy of the mass point during its
classical, conservative motion is conserved. These first integrals can also be parameterized,
similarly to the case discussed in ref. [7], by the asymptotic values of the expansion velocities
of the scales (Ẋa, Ẏa, Ża), since for late times the acceleration vanishes in all the considered
classes of exact solutions. These first integrals are thus given as

H1A = E1A = const =
1

2
m(Ẋ2

a + Ẏ 2
a + Ż2

a), (77)

H2A = E2A = const =
1

2
m(Ẋ2

a + Ẏ 2
a + Ż2

a). (78)

Formally similar equations hold for Cases 1B and 2B.
It is also interesting to remark that for a spheroid that rotates along its Z axis with

radius in the plane of rotation denoted by R the moment of inertia Θ is proportional to R2

and the kinetic energy of the rotation ER is

ER ∝ Θω2 ∝ R2ω2. (79)

Given that in our case the time evolution of the angular velocity ω is expressed as ω0R
2
0 =

ωR2, one can also easily identify the last term of the Hamiltonians given above as the kinetic
energy of the rotation,

ER =
2mω2

0R
4
0

X2 + Y 2
= mR2ω2. (80)

This term is obviously the same for all the discussed cases, 1A, 1B, 2A, 2B. Given that for
late times X = Y = R tends to infinity, one can also see that although the the total energy
is conserved, the kinetic energy carried by the rotation tends to vanishing values for late
times. This is also a rather natural consequence of the expansion and the related increase
of the moment of inertia, which thus stops the rotation of the fluid at asymptotically late
times.

Using the solution of these classical Hamiltonian problems, the time evolution of the
fluid trajectories is given by the solution of the trajectory equation ṙ(t) = v(r(t), t), which
was given by eqs. (29,30,31) in cylindrical coordinates, but for clarity let us rewrite them
in Cartesian coordinates of the trajectories r(t) = (x(t), y(t), z(t)) in the following compact
form:

x(t) = r0
ω0

ω
cos

[

φ0 +
∫ t

t0
dtω(t)

]

, (81)

y(t) = r0
ω0

ω
sin

[

φ0 +
∫ t

t0
dtω(t)

]

, (82)

z(t) = z0
Z

Z0
, (83)

where r0 = (x0, y0, z0) = (r0 cos(φ0), r0 sin(φ0), z0) denote the initial conditions for a given
fluid-trajectory.

VI. SUMMARY AND OUTLOOK

We described and analyzed a class of exact solutions for rotating, exploding fireball
hydrodynamics in four different cases of the equation of state. We have generalized the
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equations of non-relativistic hydrodynamics to the case of vanishing conserved charge, a
scenario relevant for the lattice QCD equation of state in the vanishing net baryon density
or µB = 0 limit. We have found that in this case (discussed in the manuscript as Cases 2A
and 2B) the expansion is more explosive than in Cases 1A and 1B, when the equation of state
corresponds to locally conserved number of particles. This feature follows not only from the
analytic form of the dynamical equations, but also can readily be seen from the explicitly
given forms of the solutions of the equations for the fluid trajectories. One can see that
a fluid without a conserved charge and a temperature dependent speed of sound expands
faster radially hence slows down its rotation faster than a similar fluid with a conserved
charge, whose pressure decreases relatively faster.

In the limit of vanishing angular momentum, our solutions simplify to earlier, irrotational
exact solutions of non-relativistic fireball hydrodynamics. Our results show similarity to the
first exact solution of rotating and expanding, relativistic fireballs [21, 22], and also to recent
numerical solutions of hydrodynamics for rotating and exploding fireballs [1–3].

The equations of motion of the scale variables can be cast in a form that corresponds to
a classical motion of a massive particle in a conservative potential, described by appropri-
ate Hamiltonians. From the analysis of this Hamiltonian motion, we have found two first
integrals of the hydrodynamical problem, that correspond to the conservation of the total
energy E and the total angular momentum Mz. We have expressed the total energy in
terms of the asymptotic expansion rates of the fluid in the principal directions and the total
angular momentum in terms of the initial transverse size and the initial angular velocity of
the rotating fluid.

Further work, in particular the evaluation of the effects of rotation on the observable
quantities is necessary to make a comparison with existing data or observables obtained from
numerical hydrodynamical solutions, and to suggest new, experimentally well measurable
observables that characterize the rotation. These questions go beyond the scope of the
present manuscript, except the obvious comment that the total angular momentum of the
fireballs created in high energy heavy ion collisions should be measured experimentally as it
is directly related to the initial transverse radius and the initial angular velocity of the fluid.
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[14] T. Csörgő, F. Grassi, Y. Hama and T. Kodama, Heavy Ion Phys. A 21, 53 (2004) [Acta Phys.

Hung. A 21, 53 (2004)] [hep-ph/0203204].
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[16] T. Csörgő, F. Grassi, Y. Hama and T. Kodama, Phys. Lett. B 565, 107 (2003) [nucl-

th/0305059].
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