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Resummed one�loop determination of the phase boundary of the SU(3)R × SU(3)L linear

sigma model in the (mπ − mK)�plane
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Complete one-loop parametrization of the linear sigma model is performed and the phase boundary

between �rst order and rossover transition regions of the mπ −mK�plane is determined using the

optimized perturbation theory as a resummation tool of perturbative series. Away from the physial

point the parameters of the model were determined by making use of hiral perturbation theory.

Along the diagonal mπ = mK of the mass�plane we estimate mc
π = 110 ± 20 MeV. The loation of

the triritial point on the mπ = 0 axis is estimated in the interval mTCP
K ∈ (1700, 1850) MeV.

PACS numbers: 11.10.Wx, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

In an attempt to understand the restoration of hiral and axial U(1) symmetries, hiral e�etive models are atively

investigated (see e.g. [1, 2, 3℄ for some reent works). E�etive models indiate a very rih struture for the strongly

interating matter as funtion of quark masses and various hemial potentials [4, 5℄. The e�etive treatment represents

a omplementary approah to the lattie QCD �eld theory whih, however based on �rst priniples, has di�ulties

mainly related to the omputational power, in going towards the hiral limitmu = md = ms = 0. These e�etive models

are onstruted to share the same global symmetries as the massless QCD. It is expeted that the lower mu,md,ms

quark masses are (or alternatively mπ and mK) the better they work. Universal arguments [6℄ predit a �rst order

phase transition for the hiral limit. Lattie simulations with staggered quarks with a pion to rho mass ratio tuned to

its physial value demonstrate a rossover type transition [7℄.

In QCD the ritial line separating �rst order transitions from the rossover region in the mu,d − ms�plane is not

preisely mapped, beause of the di�ulties of simulating dynamial fermions. There are several lattie studies with

degenerate quarks mu = md = ms, whih show that the value of the pion mass on the boundary between the rossover

and �rst order phase transitions drops substantially when �ner latties and improved ations are used, from the initial

estimates of mc
π ≈ 290 MeV [8℄ or mc

π ≈ 270 MeV [9℄ to mc
π = 67(18) MeV [10℄. In view of suh low values one hopes

that the boundary of the phase transition an be investigated reliably using e�etive hiral models.

Although in priniple it is simpler to solve an e�etive model than QCD, an exat solution annot be given. Finding a

good parametrization and an adequate method of approximation are the key issues when dealing with them. Attempts

to parametrize physially the linear sigma model (LσM) date bak to the early 70's when in a series of papers Haymaker

and ollaborators have performed it at tree-level and started to alulate one-loop orretions at zero temperature (see

[11℄ and referenes therein). Reently other parametrizations were proposed in the literature [12, 13℄ (see also [14℄).

It turned out that at tree-level it is not possible to �x the parametrization of the model using only the well-known

pseudosalar masses, information is also needed from the less known salar setor. Moreover, the onsequene of

performing a tree-level parametrization is that one omits the e�et of zero temperature vauum �utuations, whih

logarithmially depend on the renormalization sale. At �nite temperature in the broken symmetry phase, the omitted

terms have an additional impliit dependene on the temperature through the masses whih depends on the order

parameter. If the e�etive model is solved in an approximation whih is not renormalization sale invariant, then

the renormalization sale appears as any other parameter of the theory, and it has to be inluded in the proess

of parametrization in whih some quantities alulated at quantum level are mathed against their experimentally

measured physial values. The e�et of the renormalization sale turns out to be both quantitatively and qualitatively

important. It an have an e�et on the pole struture of the salar Green's funtion in the omplex plane, as it

happened in Ref. [15℄. It in�uenes the temperature dependene of the vauum expetation value, and it an happen

that above some temperature there is no solution to the equation of state (see e. g. [16℄). The renormalization sale

an even hange the order of the phase transition. All this re�ets the approximate nature of the solution. A good idea

is to hoose a range of the renormalization sale where its variation a�ets the other parameters of the theory and the

physial quantities less (e.g. trying to ahieve approximate renormalization sale independene).

Due to the e�ets of the renormalization sale mentioned above, it seems ustomary in the literature not to use the

zero temperature quantum �utuations of the �eld theory, and forgetting the renormalization issue just solve the model
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in a statistial mehanis inspired �nite temperature quasi-partile approximation. Attempts to renormalize the model

in the Hartree approximation of the CJT-formalism [17℄ were reported in [18℄, but the result was not satisfatory.

Reently muh e�ort has been put in the renormalization of self-onsistent resummation shemes of �nite temperature

QFT [19, 20, 21, 22℄. In view of these results, solving the model in a properly renormalized approximation is nowadays

a ompelling requirement. In the present paper we want to go beyond the tree-level treatment of the model and its

quasi-partile thermodynamis as it was treated in [14℄, and investigate the hallenges of solving the renormalized

version of the model by taking into aount the logarithmi orretions. In partiular, we want to investigate the extent

they in�uene the loation of the phase boundary in the pion�kaon mass�plane.

In setion II we present the one-loop parametrization of the model in the mπ −mK�plane. It turns out to be rather

hard to �nd a unique parametrization whih works in the relevant region. The thermodynamis and the in�uene of

the logarithmi terms are disussed at the physial point in setion III. In setion IV we desribe our results on the

phase boundary, and we onlude in setion V.

II. PARAMETRIZATION OF THE MODEL AT ONE-LOOP LEVEL

The Lagrangian of the SUL(3) × SUR(3) symmetri linear sigma model with expliit symmetry breaking terms is

given by

L(M) =
1

2
Tr (∂µM

†∂µM + µ2M †M)− f1
(

Tr (M †M)
)2 − f2Tr (M

†M)2 − g
(

det(M) + det(M †)
)

+ ǫxσx + ǫyσy, (1)

where the mixing setor is written in the non-strange (x)- strange (y) basis instead of the original 0 � 8 basis, by

performing an orthogonal transformation on the �elds as in [14℄ (see Appendix A). The omplex 3×3 matrix M de�ned

by the salar (σ) and pseudosalar (π) �elds an be written as

M =
1√
2

7
∑

i=1

(σi + iπi)λi +
1√
2
diag(σx + iπx, σx + iπx,

√
2(σy + iπy)), (2)

where λi : i = 1 . . . 7 are the Gell-Mann matries. Isospin breaking is not onsidered, therefore in the broken phase

only the salar �elds σx and σy have non-zero expetation values: x := 〈σx〉, y := 〈σy〉. After shifting the �elds in the

Lagrangian by their expetation values with a little bit of algebra one an perform the traes. Details an be found in

[11, 13℄. Requiring that the sum of terms linear in the �utuations vanishes we obtain two equations of state. They

are given expliitly in setion III. The oe�ients of the quadrati terms are the tree-level masses (see Tab. I), while

the third and fourth order terms give the three- and four-point interation verties.

In what follows, a set of non-linear one-loop equations will be given whih determines at T = 0 the 8 parameters of

the Lagrangian: the ouplings µ, f1, f2, g, the ondensates x, y and the external �elds ǫx, ǫy. Many ways of seleting

these equations an be envisaged, see [11℄ for alternatives. We have hosen to use as input the low lying pseudosalar

mass spetrum, namely the pion, kaon and eta meson masses and the deay onstants of the pion and kaon, beause

they are the best known theoretially.

In the broken phase a resummation is need/home/szepzs/fermion/renorm/kor3/proof/DS9047-1.psed, in order to

avoid the appearane of negative mass squares in the �nite temperature alulations of one-loop quantities. This an

be done for instane using the Optimized Perturbation Theory (OPT) of Chiku and Hatsuda [16℄. In the OPT the

mass parameter −µ2
of the Lagrangian, whih in the broken phase ould be negative, is replaed with an e�etive

(temperature-dependent) mass parameter m2
whih is determined using the riterion of fastest apparent onvergene

(FAC). The mass term of the Lagrangian reads:

Lmass =
1

2
m2

TrM †M − 1

2
(µ2 +m2)TrM †M ≡ 1

2
m2

TrM †M − 1

2
∆m2

TrM †M, (3)

where the �nite ounterterm ∆m2
is taken into aount �rst at one-loop level.

This resummation method replaes −µ2
by the e�etive mass square m2

in the tree-level masses (see Tab. I), and

preserves all the perturbative relations upon whih Goldstone's theorem relies [16℄. The renormalization is ahieved

m2

π = m2 + 2(2f1 + f2)x
2 + 4f1y

2 + 2gy m2

a0
= m2 + 2(2f1 + 3f2)x

2 + 4f1y
2 − 2gy

m2

K = m2 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 −
√
2x(2f2y − g) m2

κ = m2 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 +
√
2x(2f2y − g)

m2

ηxx
= m2 + 2(2f1 + f2)x

2 + 4f1y
2 − 2gy m2

σxx
= m2 + 6(2f1 + f2)x

2 + 4f1y
2 + 2gy

m2

ηyy = m2 + 4f1x
2 + 4(f1 + f2)y

2 m2

σyy
= m2 + 4f1x

2 + 12(f1 + f2)y
2

m2

ηxy
= −2gx m2

σxy
= 8f1xy + 2gx

TABLE I: The squared masses of the (pseudo)salar nonet appear in the (�rst) seond olumn. The last three rows represent

the mixing setors. They an be written in the onventional basis using the formulas of Appendix A.
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both in the symmetri and the broken phase by the following ounterterms

δµ2 =
(5f1 + 3f2)Λ

2

π2
− (5f1 + 3f2)m

2 − g2

π2
ln

Λ2

l2
, (4)

δg =
3g(f1 − f2)

2π2
ln

Λ2

l2
, (5)

δf1 =
13f2

1 + 12f1f2 + 3f2
2

2π2
ln

Λ2

l2
, (6)

δf2 =
3f1f2 + 3f2

2

π2
ln

Λ2

l2
, (7)

where Λ is the 3d regularization uto�, and l is the renormalization sale. Note that only the mass ounterterm di�ers

from its standard expression [11℄. In the present form this ounterterm is temperature-dependent through the e�etive

mass, but this temperature dependene is aneled by higher-loop terms [16, 23℄. In what follows, all quantities and

equations are renormalized without any hange in the notations.

The above mentioned FAC riterion, whih determines the e�etive mass square m2
, is realized in the present ase

by the requirement that the pole and the residue of the one-loop pion propagator

Dπ(p) =
iZ−1

π

p2 −m2
π − Σπ(p2,mi, l)

, (8)

stay equal to their tree-level values. Here we antiipated that we also need a �nite wave funtion renormalization in

order to make the residuum equal to 1, and resaled the pion �elds as π → Z
− 1

2

π π.
Aording to this FAC riterion the inverse of the �nite wave funtion renormalization onstant is

Z−1

π := 1− ∂Σπ(p
2,mi, l)

∂p2

∣

∣

∣

∣

p2=M2
π

. (9)

The one-loop pion pole mass

M2

π = −µ2 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy + Re

{

Σπ(p
2 = M2

π ,mi, l)
}

(10)

has to be equal to its tree-level value (Mπ
!
= mπ). Therefore, using the expression of the tree-level pion mass of Tab. I,

the following �gap� equation an be obtained for the e�etive mass:

m2 = −µ2 + Re

{

Σπ(p
2 = m2

π,mi(m
2), l)

}

, (11)

where the m2
-dependene of the self-energy (through the tree-level masses) is expliitly shown. The di�erent ontribu-

tions to the self-energy are depited in Fig. 1.

The e�etive mass an be replaed by the pion mass by expressing it from its tree-level formula. Then (11) an be

interpreted as a zero temperature gap-equation for the pion mass:

m2

π = −µ2 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy + Re

{

Σπ(p
2 = m2

π,mi(mπ), l)
}

, (12)

where the tree masses of all mesons are expressed through the pion mass. A similar gap-equation will be used in the

thermodynamial alulations for the temperature dependene of the pion mass. At T = 0, the task is �reversed�: the

pion mass is known and (12) belongs to the set of equations, whih determines the parameters. We have hosen to

express the e�etive mass m2
from the tree-level mass formula of the pion beause the pion has the smallest mass,

and positive solutions of (12) ensure the positiveness of all the other masses. We use the kaon and eta masses, the

relations of the Partially Conserved Axial-Vetor Current (PCAC) for the pion and kaon at one-loop order, and the

two equations of state to �x the remaining parameters.

The one-loop kaon propagator is the following:

DK(p) =
iZ−1

K

p2 −m2

K − ΣK(p2,mi, l)
. (13)

Z−1

K and the one-loop pole mass of the kaon MK an be alulated similarly as in the ase of the pion:

Z−1

K := 1− ∂ΣK(p2,mi, l)

∂p2

∣

∣

∣

∣

p2=M2

K

, (14)

and

M2

K = −µ2 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 −
√
2x(2f2y − g) + Re

{

ΣK(p2 = M2

K ,mi, l)
}

. (15)
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Σπ =
∑

i=π,K, η, η′

� +
∑

i=a0, κ, σ, f0

� +
∑

i=a0, σ, f0
�

+
∑

i=η, η′

�

+

�

+�

ΣK =
∑

i=π,K, η, η′

� +
∑

i=a0, κ, σ, f0

� +
∑

i=a0, σ, f0
	

+
∑

i=π, η, η′




+�

Σ ηkl
=
∑

i=K, η, η′

� + +

j=η, η′

∑

i=σ, f0
Æ

+

�

+

�

+ δkl

[

� +
∑

i=a0, σ, f0

� +�

]

FIG. 1: The physial ontent of the one-loop pseudosalar self-energies.

The desription of the η and η′ mesons is slightly more ompliated beause of the mixing in the x− y setor ( 0− 8
in the onventional basis). The propagator is a 2×2 matrix, and pole masses are de�ned as the real part of the solutions

of the following equations

Det

(

p2 −m2
ηxx

− Σηxx
(p2,mi, l) −m2

ηxy
− Σηxy

(p2,mi, l)

−m2
ηxy

− Σηxy
(p2,mi, l) p2 −m2

ηyy
− Σηyy

(p2,mi, l)

)∣

∣

∣

∣

∣

p2=M2
η ,Mη′

= 0. (16)

This yields two equations for the mass eigenvalues Mη, Mη′
:

M2

η =
1

2
Re

{

m2

ηxx
+Σηxx

(p2 = M2

η ,mi, l) +m2

ηyy
+ Σηyy

(p2 = M2

η ,mi, l)

−
√

(m2
ηxx

+Σηxx
(p2 = M2

η ,mi, l)−m2
ηyy

− Σηyy
(p2 = M2

η ,mi, l))2 + 4(m2
ηxy

+Σηxy
(p2 = M2

η ,mi, l))2
}

,(17)

M2

η′ =
1

2
Re

{

m2

ηxx
+Σηxx

(p2 = M2

η′ ,mi, l) +m2

ηyy
+Σηyy

(p2 = M2

η′ ,mi, l)

+
√

(m2
ηxx

+Σηxx
(p2 = M2

η′ ,mi, l)−m2
ηyy

− Σηyy
(p2 = M2

η′ ,mi, l))2 + 4(m2
ηxy

+Σηxy
(p2 = M2

η′ ,mi, l))2
}

.(18)

The de�nitions (10), (15), (17) and (18) of the pole masses give the orret one-loop masses only when the self-energy

is not omplex. We note that if the tree-level masses are lose to their experimental values, then by looking at the

self-energy ontributions of pion and kaon in Fig. 1, one an reognize that they have no imaginary part for p2 = m2

π

and p2 = m2

K , respetively. This is also true in the ase of the η self-energy. It turns out that the η′ self-energy has

an imaginary part at the pole-mass determined as the zero of the real part of the self-energy exept the narrow range

of 1820 MeV < l < 1880 MeV. For this reason we deided not to inlude the one-loop equation for Mη′
into the set

of equations used for the parametrization. We make up for the missing equation by extending FAC riterion to the

one-loop kaon mass too. This ondition reads:

M2

K
!
= m2

K = m2

π − 2gy + 4f2y
2 −

√
2x(2f2y − g). (19)

Two more equations are provided by the one-loop PCAC relations whih aording to [11℄ reads as

fπ = Z
− 1

2

π
−iD−1

π (p = 0)

M2
π

x, (20)

fK = Z
− 1

2

K

−iD−1

K (p = 0)

M2

K

x+
√
2y

2
. (21)

As shown in Appendix C, these equations an be rewritten in an expliitly renormalization sale-independent form.
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FIG. 2: The renormalization sale dependene of various quantities at the physial point: the parameters (a), the non-strange

(x) and strange (y) vauum expetation values and the �nite wave funtion renormalization onstants Zπ and ZK (b), the

pseudosalar masses (), and the salar masses (d).

Finally, the last two parameters, the two symmetry breaking external �elds ǫx and ǫy are determined by the one-loop

equations of state, with the help of zero temperature hiral Ward identities (Appendix B):

ǫx = Z−1

π

(

−iD−1

π (p = 0)
)

x, (22)

ǫy = Z−1

K

(

−iD−1

K (p = 0)
)

(

x√
2
+ y

)

− Z−1

π

(

−iD−1

π (p = 0)
) x√

2
. (23)

One an notie that, sine OPT preserves Ward identities at tree and at one-loop level as well, the above parametriza-

tion, in whih the tree-level masses of pion and kaon equal the one-loop masses, ensures at zero temperature the validity

of Goldstone's theorem for both pion and kaon.

A. Parametrization at the physial point

The parameters were determined as follows. From (10) and (19) one an express µ2
and g, respetively. Next, from

the system of 4 non-linear equation (15), (17), (20), (21) one an numerially determine f1, f2, x, and y as funtions

of the renormalization sale l. Going bak to (10) and (19) one an ompute µ2
and g, respetively. Substituting these

parameters into (22) and (23) one an determine ǫx and ǫy. Unlike the tree-level parametrization ase [14℄, now all

salar masses are predited.

The numerial solution for di�erent renormalization sales l is presented in Fig. 2 (a) for the physial point, where

mπ = 138 MeV, mK = 495.6 MeV, mη = 547.8 MeV, fπ = 93 MeV, and fK = 113 MeV. In �gure Fig. 2 (b) one an

see the renormalization sale (l) dependene of the non-strange (x) and strange (y) vauum expetation values and

of the �nite wave funtion renormalization onstants Zπ and ZK . They have a plateau for l < 1400 MeV, and the

tree-level mη′
(see Fig. 2 ()) is the losest to its physial value in the region l ∈ (1000, 1400) MeV, where the variation

of the tree-level salar masses (see Fig. 2 (d)) is the mildest too. We have deided to use in our thermodynamial

investigation this range of the renormalization sale in whih the tree-level masses entering into the propagators of

Fig. 1 are reasonably lose to their experimentally measured values. In Fig. 2 (, d) we present an estimation of the

predited one-loop pole-masses based on the real parts of the orresponding self-energies. This is a good approximation

in the ase of η′, a0 and f0 sine the zeros of the inverse propagators orrelate well with the loation of the well-de�ned

peak in the orresponding spetral funtions. The one-loop mass Mf0 , whih is not shown in the �gure, has a rather

large value in the present range of the renormalization sale (dereasing from Mf0 = 2000 MeV for l = 1000 MeV to

Mf0 = 1400 MeV for l = 1400 MeV). The shapes of the spetral funtions of κ and σ (see Fig. 2 for ρσ) are more

ompliated, they have a threshold dominated peak with large width, and are very sensitive to the renormalization

sale. In this ase, it would be more appropriate to de�ne the mass and width of a deaying partile as the real and

imaginary part of a omplex pole. In the O(N) model in the large N approximation [24℄, this ontinuation into the

seond Riemann sheet was performed in the sigma hannel and the poles of the propagators were determined. In this

model the ontinuation of the propagators into the omplex plane would be more di�ult due to the appearane of

many deay thresholds and is beyond the sope of the present investigation.
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FIG. 3: The kaon mass dependene of mη as given by ChPT and the Veneziano formula for mπ = 10 MeV.

B. Parametrization in the mπ −mK�plane

Sine we are interested in the phase boundary on the mπ − mK-plane, we have to take into aount the variation

of the parameters with mπ and mK . A method for the parametrization away from the physial point was proposed

in [14℄, whih relies on the formulas provided by the Chiral Perturbation Theory (ChPT) [25℄. Beause our present

parametrization does not use the η′ meson, we make use of the SU(3) ChPT desribing the hiral dynamis of the

pseudosalar otet. In the large Nc limit, the formulas for the pion, kaon mass dependene of the deay onstants and

of the η mass up to O(1/f2) read as [26℄:

fπ = f

(

1 + 4L5

m2

π

f2

)

, (24)

fK = f

(

1 + 4L5

m2

K

f2

)

, (25)

m2

η =
4m2

K −m2

π

3
+

32

3
(2L8 − L5)

(

m2

K −m2

π

)2

f2
, (26)

where L5 and L8 are low energy onstants and f is the deay onstant in the hiral limit. All the parameters of the

large Nc limit of the SU(3) ChPT an be determined at the physial point from the equations above. Their values,

L5 = 2.0152 · 10−3
, L8 = 8.472 · 10−4

and f = 91.32 MeV, are �xed for all values of mπ and mK .

For low values of mπ and mK the sensitivity to the renormalization sale of the LσM is bigger than the unertainties

oming from the omission of the hiral logarithms. As an e�et of these hiral logarithms, for large values of mK , the

formula of the SU(3) ChPT yields a dereasing value for mη for inreasing mK , see Fig. 3. If we use (26), the same

behavior ours at a larger value, whih is around mK ≈ 1300 MeV. This is non-physial as both the kaon and the eta

partiles have to deouple in order to arrive at the O(4) model for mK → ∞. This shows the failure of the ChPT at

high values of the kaon mass.

In view of the bad behavior of mη determined using large Nc ChPT, we have used, as an alternative, the following

mass-formula by Veneziano [27℄ :

m2

η = m2

K +
1

2
∆m2

η0 −
1

2

√

(

2m2

K − 2m2
π − 1

3
∆m2

η0

)2

+
8

9
∆m4

η0. (27)

∆m2
η0 is the non-perturbative gluoni mass ontribution in the singlet hannel of the mixing η − η′ setor, related to

the axial U(1) dynamis. Using the values of the masses at the physial point in (27) one an �x the value of the extra

mass ontribution: ∆m2

η0 = 2.3 GeV

2
. One an see in Fig. 3 that this parametrization gives for mη values whih are

almost idential to the values oming from the formula of ChPT in the large Nc limit, up to values of mK for whih

ChPT breaks down.

We note, that in the original paper ∆m2

η0 was determined using the trae of the 2 × 2 matrix of the mixing η − η′

setor. We indulged in modifying the proedure in order to make ontat with the ChPT in the large Nc limit, as mη

obtained form (27) with the original parametrization is always smaller than the value given by the large Nc ChPT.

The ontinuation onto the mπ −mK�plane of fπ, fK , and mη, based on the formulas of this subsetion, allow us to

determine the parameters as desribed in IIA in a wide region of the mass-plane, exept for high values of mK , near

the mπ = 0 axis.
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III. COMPLETE 1�LOOP THERMODYNAMICS OF THE LσM

With the intention of determining the order of the phase transition in the pion�kaon mass�plane we have to monitor

the order parameters as funtions of temperature. They are obtained from a set of three equations: two equations of

state for x and y and a gap-equation for the pion mass. The temperature dependene of the order parameters at �nite

T an be obtained from the equations of state:

− ǫx +m2x+ 2gxy + 4f1xy
2 + (4f1 + 2f2)x

3 +
∑

i

Jit
x
i I(l,mi(T ), T ) + ∆m2x = 0 , (28)

−ǫy +m2y + gx2 + 4f1x
2y + 4(f1 + f2)y

3 +
∑

i

Jit
y
i I(l,mi(T ), T ) + ∆m2y = 0 , (29)

where in the tadpole integral I(l,mi(T ), T ) we have expliitly displayed the impliit temperature dependene of the

tree-level masses, expressed with the pion mass determined by the gap-equation

m2

π = −µ2 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy + Σπ(p
2 = m2

π,mi(mπ), l) + ΣT
π (ω = 0,mi(mπ)). (30)

The sum goes over all mass eigenstate meson �elds with isospin multipliity fator Ji: Jπ,a0
= 3, JK,κ = 4, and

Jη,η′,σ,f0 = 1. The oe�ients txi and tyi appearing in (28) and (29) are listed in Appendix C of [14℄. The standard

one-loop integrals appearing in the formulas above an be found for instane in [16℄. In the present study we use the

one-loop bubble integrals appearing in (30) for |p| = 0, orresponding to partiles at rest. As in zero temperature

ase, at �nite temperature OPT guarantees through the gap-equation the validity of Goldstone's theorem for the pion.

Following Ref. [16℄, ΣT
π , the �nite-temperature part of the self-energy, is taken not on the mass-shell, but instead at

ω = 0. This is done beause above a given temperature Σπ(T )(ω = mπ(T ),0) beomes omplex, and the real solution

of the gap equation eases to exist. At the physial mass-point this temperature is typially below the value of the

pseudoritial temperature, invalidating the study of the phase transition. The imaginary part is produed by one-loop

bubble integrals where two unequal masses m1 and m2 appear, when the relation ω = mπ < |m1 − m2| is satis�ed.
It has the onsequene that we an not regard the pion gap-equation as the equation determining the �true� one-loop

mass of the pion. Due to the imaginary part of the self-energy the most adequate way of determining the pion mass

would be to look for a omplex pole of the pion propagator. Still, in the present work we ontent ourselves with the

study of the spetral funtion of the pion, whih, as we will see, in ertain temperature ranges also provides information

on the pion mass.

A. In�uene of the logarithmi terms

In order to estimate the in�uene of the logarithmi terms on the solution of the equations of state we have performed

the following hek. We have taken the parameters determined with the one-loop parametrization presented in Se. II,

and modi�ed the value of µ2
suh as to inorporate the zero temperature logarithmi terms. Then, at �nite temperature,

we have solved the gap equation and the two equations of state without taking into aount the logarithmi terms, whih

impliitly depend on the temperature through the masses. The di�erene between these expetation values and the ones

alulated with the logarithmi terms (and with the original, unmodi�ed value of µ2
) is only due to the temperature

dependene of the logarithmi terms. This an be seen in Fig. 4: without the logarithmi terms the pseudoritial

temperature is lower by about 20%. The variation of strange ondensate with the temperature is signi�antly di�erent

in the two ases. We notie that at high temperature the solution obtained with logarithmi term inluded eases

to exist, as was also observed in [16℄. This is a non-physial phenomenon, it happens before the restoration of hiral

symmetry ompletes. We onsider the solution reliable up to temperature values whih are below the turning point in

x and y.
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FIG. 4: Comparison of the temperature dependene of strange (y) and non-strange (x) ondensates with and without the

inlusion of the logarithms for l = 1200 MeV.
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FIG. 5: The temperature dependene of non-strange (x) and strange (y) order parameters for di�erent values of the renormal-

ization sale (l.h.s) and the T -dependene of the tree-level masses for l = 1200 MeV (r.h.s).

B. The solution at the physial point

At the physial point and in the investigated range of the renormalization sale, the behavior of the non-strange

order parameter shows a smooth restoration of the SU(2) hiral symmetry. The pseudoritial temperature moderately

depends on the renormalization sale. The strange order parameter varies less and it is approximately sale-independent

until the solution is reliable, see the left panel of Fig. 5. The right panel shows that the tree-level SU(2) mass partners

tend towards degeneray as the temperature inreases. Unfortunately the solution falls dead before the restoration of

the omplete SU(3) symmetry, due to the e�et of the logarithmi terms (see III A).

Fig. 6 illustrates the temperature dependene of the spetral funtions in the pseudosalar and salar hannels and

the behavior of the zeros of the real part of the inverse pion and sigma propagators. At low temperature the spetral

funtion in the pion hannel develops a peak whose loation is lose to the physial mass value of the pion. Close to

the pseudoritial temperature there are signi�ant hanges in the peak struture. In this temperature range, based

on the spetral funtion, one an not determine the true pion pole-mass. In this range, the tree-level pion mass, whih

is the solution of the gap-equation (12) interpolates between various zeros of the inverse propagator, see the left panel

of Fig. 6. At high temperature the spetral funtion has a well de�ned peak again, whose loation orrelates with the

zero of the inverse pion propagator.

At low temperature the spetral funtion in the sigma hannel has a large width and the zeroes of the real part

of the inverse propagator are very sensitive to the renormalization sale, therefore the sigma pole mass an not be

estimated. We an de�ne the pole mass only at high temperature, where the spetral funtion develops a well�de�ned

peak, orrelated with the zero of the inverse sigma propagator. Inreasing the temperature its loation approahes the

loation of the peak in the pion hannel and eventually they beome degenerate. This shows that the one-loop masses

of the pion and sigma also re�et the restoration of the SU(2) hiral symmetry at high temperature.
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FIG. 6: The spetral funtion of the pion (l.h.s.) and sigma (r.h.s.) for various values of the temperature and l = 1200 MeV.

The zeros of the real part of the inverse pion/sigma propagators and the orresponding tree-level masses are also depited, as

lines in the T − ω plane.
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IV. THE PHASE BOUNDARY ON THE mπ −mK�PLANE

The main result of our work is the determination of the boundary between the region where a rossover transition

ours, with a smooth variation of the order parameters, and a �rst order phase transition region, whih is signaled by

the multivaluedness of the order parameters.

It is remarkable, that at large values of the kaon mass, the boundary proves to be independent of the renormalization

sale

1

. For large values of mK the existene of a saling region belonging to a triritial point (TCP), with mean-�eld

exponent an be on�rmed. This is a new feature of the omplete QFT treatment, it was not observed using tree-level

parametrization! From mean-�eld studies (see e.g. [28℄) it is known that near the TCP the boundary of the edge of the

�rst order region deviates from the mu,d = 0 axis of the quark mass-plane aording to mu,d ≈ (mTCP
s −ms)

5/2
. Using

the tree-level formulas of ChPT, for m2
π and m2

K , namely m2
π = 2m̂B0, m

2

K = (m̂ + ms)B0 with m̂ = 1

2
(mu + md),

one an easily translate this into a relation between the ritial values of mK and mπ: m
2

K = m2

K

∣

∣

TCP
+

m2

π

2
− αm

4/5
π .

Due to the failure of our parametrization at very high values of mK , and near the mπ = 0 axis we use this formula to

extrapolate the upper edge of the phase boundary to themK-axis. Using largeNc ChPT theory we obtainmTCP
K = 1718

MeV, while using the Veneziano formula (27) we get mTCP
K = 1838 MeV. Both �ts are of very good quality suggesting

the radius of the saling region to be ∆mc
π ≈ 40 MeV. In terms of the strange quark mass our estimate orresponds to

mTCP
s = 13 − 15 × ms. This result an be ompared to the reent lattie result of [29℄, where it was estimated that

mtric
s ≈ 3ms. In ase of [29℄ the piee of the phase boundary used in the extrapolation to mTCP

s was muh loser to

the physial point and the loation of the TCP was estimated using points with ms ≤ mphys
s . The lattie estimate for

the loation of TCP would improve if points ould be simulated loser to the saling region.

In the present treatment the ritial pseudosalar mass for degenerate quarks was obtained in the rangemc
π ∈ (90, 130)

MeV. The spread is the result of the renormalization sale dependene. This range of mc
π is signi�antly above the

one previously obtained in [14℄ using a tree-level parametrization, whih eventually led to mc
π ∈ (20, 60) MeV. It is

interesting to note, that the boundary lies to the right from the �tted urves whih desribe the saling behavior near

TCP.
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FIG. 7: Phase boundary of LσM obtained using a one-loop parametrization at T = 0 and the formulas of large Nc ChPT for

ontinuation on the mπ −mK�plane. For large values of mK we have also used the Veneziano formula for mη f. IIB.

1

It an be seen after some straightforward alulation, that as the kaon mass inreases, the relative weight of the terms ontaining log(l)
are beoming negligible in the equations used for parametrization as well as in those used for thermodynamial alulations.
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V. CONCLUSION

In this paper we have studied the phase boundary of the linear sigma model in the mπ − mK plane. We have

managed to �nd in a resummed perturbation theory a set of renormalized equations based on whih omplete one-loop

parametrization of the model is possible not only at the physial point, but in a large region of the mass-plane too.

We allowed for the variation of the parameters with mπ and mK when moving away from the physial point, and used

formulas of the ChPT for the ontinuation of ertain physial quantities into the mass�plane.

As a result of the one-loop solution of the model we were able to estimate the loation of the triritial point on the

mπ = 0 axis of the mass plane at a rather high value of the kaon mass. We have shown evidene of the existene of a

saling region around it. These were not observed previously in the quasi-partile approximations to the model. For

the same values of mK the phase boundary line lies at higher values of pion masses than in the ase of the tree-level

parametrization of the model, and without the inlusion of the vauum �utuations. For degenerate pseudosalar

masses the phase boundary was obtained in the range mc
π ∈ (90, 130) MeV.

We have disussed also the limitation of the optimized perturbation theory, related to the fat that one looks for real

solutions of the gap-equation for the resummed mass in temperature ranges where the self-energies develop imaginary

parts too. It would be interesting to study the phase boundary using a self-onsistent approximation based on the

exat propagator, like the 2PI approximation.

Aknowledgement

Work supported by Hungarian Sienti� Researh Fund (OTKA) under ontrat number T046129. Zs. Sz. is

supported by OTKA Postdotoral Fellowship (grant no. PD 050015). We thank A. Patkós for ontinuous support and

disussions during the work and the elaboration of the paper. We also thank P. Szépfalusy for useful omments. We

thank P. Kovás, A. Patkós and P. Szépfalusy for arefully reading of the manusript.

APPENDIX A: CONNECTION BETWEEN (0 � 8) AND (X�Y) BASIS

From the x − y basis used in setion II one an obtain, with the help of an orthogonal transformation, the mixed

salar-, pseudosalar and the external �elds in the onventional (0 � 8) basis as:

(

σ0

σ8

)

:= O

(

σx

σy

)

,

(

π0

π8

)

:= O

(

πx

πy

)

,

(

ǫ0
ǫ8

)

:= O

(

ǫx
ǫy

)

, where O :=
1√
3

(√
2 1

1 −
√
2

)

. (A1)

The transformation of the mass matries, and the mass eigenvalues are

(

m2

η00
m2

η08

m2

η08
m2

η88

)

= O

(

m2

ηxx
m2

ηxy

m2

ηxy
m2

ηyy

)

O , and m2

η′ , η
=

m2

ηxx
+m2

ηyy
±
√

(m2
ηxx

−m2
ηyy

)2 + 4m4
ηxy

2
. (A2)

Similar expressions also hold for the salar �elds.

APPENDIX B: WARD IDENTITIES

From (8) and (13), the inverse pion and kaon propagators at zero external momenta are

− iZ−1

π D−1

π (p = 0) = m2

π +Σπ(p = 0) + ∆m2
(B1)

−iZ−1

K D−1

K (p = 0) = m2

K +ΣK(p = 0) + ∆m2, (B2)

where the �nite ounterterms of OPT are now expliitly indiated. Comparing the expressions of tree-level masses

(Table I) with the tree-level part of the equations of state (28), (29), one an obtain the orresponding tree-level Ward

identities ǫx = m2

πx and ǫy = m2

K(
√
2/2x+y)−m2

π

√
2/2x. The diagrams for the self-energies are shown in Fig. 1. They

inlude both tadpole and bubble diagrams, and the latter ones an be deomposed for non-equal propagator masses

and zero external momenta into the di�erene of two tadpoles:

�

=
1

m2
1
−m2

2

·
[

�

−
�

]

. (B3)

Therefore, the pseudosalar self energies at p = 0 an be represented as a linear ombination of tadpole ontributions

whose weights are ompliated expressions of the tree-level masses and the orresponding four- and three-point ouplings
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(see [11℄). In the ase of pion and kaon these weights simplify to

Σπ(p = 0) =

∑

Jit
x
i I(mi, l) + x∆m2

x
, (B4)

ΣK(p = 0) =

∑

Ji(t
x
i +

√
2tyi )I(mi, l) + (x +

√
2y)∆m2

x+
√
2y

, (B5)

where I(mi, l) is the T = 0 tadpole integral and the sum goes over all mass eigenstate meson �elds with isospin

multipliity Ji. Substituting these and the orresponding tree-level Ward identities into the expressions (8), (13),

one an obtain the equations of state (28) and (29), whih determine the external �elds at zero temperature in the

parametrization proess. The relations (22) and (23) are also valid at �nite temperature and ensure the ful�llment of

Goldstone's theorem at one-loop order.

APPENDIX C: PCAC RELATIONS

The one-loop order PCAC relations for the pion and kaon are given in [11℄ by

fπM
2

π =
√

Zπǫx , fKM2

K =

√
ZKǫy√
2

+
√

Zπǫx . (C1)

With the help of (22), (23) the external �elds an be eliminated and one an obtain the expressions (20), (21), whih

appear renormalization sale-dependent. However, one an rearrange the pion self-energies appearing in (20) as follows:

fπ =
m2

π +Σπ(p = 0, l)

M2
π

Z
− 1

2

π =
m2

π +Σπ(p
2 = M2

π , l) + (Σπ(p = 0, l)− Σπ(p
2 = M2

π , l))

M2
π

Z
− 1

2

π

=

(

1− Σ̃π(p
2 = M2

π)

M2
π

)

Z
− 1

2

π . (C2)

In the last step above we used the fat, that m2

π + Σπ(p
2 = M2

π) is just the de�nition of the pole mass M2

π . The

p-dependent part of the self energy, Σ̃, like the wave funtion renormalization onstant, does not depend on the

renormalization sale and in onsequene (C2) is atually sale-independent. The PCAC equation for the kaon an be

analyzed in a similar way.
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