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Resummed one�loop determination of the phase boundary of the SU(3)R × SU(3)L linear

sigma model in the (mπ − mK)�plane
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Complete one-loop parametrization of the linear sigma model is performed and the phase boundary

between �rst order and 
rossover transition regions of the mπ −mK�plane is determined using the

optimized perturbation theory as a resummation tool of perturbative series. Away from the physi
al

point the parameters of the model were determined by making use of 
hiral perturbation theory.

Along the diagonal mπ = mK of the mass�plane we estimate mc
π = 110 ± 20 MeV. The lo
ation of

the tri
riti
al point on the mπ = 0 axis is estimated in the interval mTCP
K ∈ (1700, 1850) MeV.

PACS numbers: 11.10.Wx, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

In an attempt to understand the restoration of 
hiral and axial U(1) symmetries, 
hiral e�e
tive models are a
tively

investigated (see e.g. [1, 2, 3℄ for some re
ent works). E�e
tive models indi
ate a very ri
h stru
ture for the strongly

intera
ting matter as fun
tion of quark masses and various 
hemi
al potentials [4, 5℄. The e�e
tive treatment represents

a 
omplementary approa
h to the latti
e QCD �eld theory whi
h, however based on �rst prin
iples, has di�
ulties

mainly related to the 
omputational power, in going towards the 
hiral limitmu = md = ms = 0. These e�e
tive models

are 
onstru
ted to share the same global symmetries as the massless QCD. It is expe
ted that the lower mu,md,ms

quark masses are (or alternatively mπ and mK) the better they work. Universal arguments [6℄ predi
t a �rst order

phase transition for the 
hiral limit. Latti
e simulations with staggered quarks with a pion to rho mass ratio tuned to

its physi
al value demonstrate a 
rossover type transition [7℄.

In QCD the 
riti
al line separating �rst order transitions from the 
rossover region in the mu,d − ms�plane is not

pre
isely mapped, be
ause of the di�
ulties of simulating dynami
al fermions. There are several latti
e studies with

degenerate quarks mu = md = ms, whi
h show that the value of the pion mass on the boundary between the 
rossover

and �rst order phase transitions drops substantially when �ner latti
es and improved a
tions are used, from the initial

estimates of mc
π ≈ 290 MeV [8℄ or mc

π ≈ 270 MeV [9℄ to mc
π = 67(18) MeV [10℄. In view of su
h low values one hopes

that the boundary of the phase transition 
an be investigated reliably using e�e
tive 
hiral models.

Although in prin
iple it is simpler to solve an e�e
tive model than QCD, an exa
t solution 
annot be given. Finding a

good parametrization and an adequate method of approximation are the key issues when dealing with them. Attempts

to parametrize physi
ally the linear sigma model (LσM) date ba
k to the early 70's when in a series of papers Haymaker

and 
ollaborators have performed it at tree-level and started to 
al
ulate one-loop 
orre
tions at zero temperature (see

[11℄ and referen
es therein). Re
ently other parametrizations were proposed in the literature [12, 13℄ (see also [14℄).

It turned out that at tree-level it is not possible to �x the parametrization of the model using only the well-known

pseudos
alar masses, information is also needed from the less known s
alar se
tor. Moreover, the 
onsequen
e of

performing a tree-level parametrization is that one omits the e�e
t of zero temperature va
uum �u
tuations, whi
h

logarithmi
ally depend on the renormalization s
ale. At �nite temperature in the broken symmetry phase, the omitted

terms have an additional impli
it dependen
e on the temperature through the masses whi
h depends on the order

parameter. If the e�e
tive model is solved in an approximation whi
h is not renormalization s
ale invariant, then

the renormalization s
ale appears as any other parameter of the theory, and it has to be in
luded in the pro
ess

of parametrization in whi
h some quantities 
al
ulated at quantum level are mat
hed against their experimentally

measured physi
al values. The e�e
t of the renormalization s
ale turns out to be both quantitatively and qualitatively

important. It 
an have an e�e
t on the pole stru
ture of the s
alar Green's fun
tion in the 
omplex plane, as it

happened in Ref. [15℄. It in�uen
es the temperature dependen
e of the va
uum expe
tation value, and it 
an happen

that above some temperature there is no solution to the equation of state (see e. g. [16℄). The renormalization s
ale


an even 
hange the order of the phase transition. All this re�e
ts the approximate nature of the solution. A good idea

is to 
hoose a range of the renormalization s
ale where its variation a�e
ts the other parameters of the theory and the

physi
al quantities less (e.g. trying to a
hieve approximate renormalization s
ale independen
e).

Due to the e�e
ts of the renormalization s
ale mentioned above, it seems 
ustomary in the literature not to use the

zero temperature quantum �u
tuations of the �eld theory, and forgetting the renormalization issue just solve the model
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in a statisti
al me
hani
s inspired �nite temperature quasi-parti
le approximation. Attempts to renormalize the model

in the Hartree approximation of the CJT-formalism [17℄ were reported in [18℄, but the result was not satisfa
tory.

Re
ently mu
h e�ort has been put in the renormalization of self-
onsistent resummation s
hemes of �nite temperature

QFT [19, 20, 21, 22℄. In view of these results, solving the model in a properly renormalized approximation is nowadays

a 
ompelling requirement. In the present paper we want to go beyond the tree-level treatment of the model and its

quasi-parti
le thermodynami
s as it was treated in [14℄, and investigate the 
hallenges of solving the renormalized

version of the model by taking into a

ount the logarithmi
 
orre
tions. In parti
ular, we want to investigate the extent

they in�uen
e the lo
ation of the phase boundary in the pion�kaon mass�plane.

In se
tion II we present the one-loop parametrization of the model in the mπ −mK�plane. It turns out to be rather

hard to �nd a unique parametrization whi
h works in the relevant region. The thermodynami
s and the in�uen
e of

the logarithmi
 terms are dis
ussed at the physi
al point in se
tion III. In se
tion IV we des
ribe our results on the

phase boundary, and we 
on
lude in se
tion V.

II. PARAMETRIZATION OF THE MODEL AT ONE-LOOP LEVEL

The Lagrangian of the SUL(3) × SUR(3) symmetri
 linear sigma model with expli
it symmetry breaking terms is

given by

L(M) =
1

2
Tr (∂µM

†∂µM + µ2M †M)− f1
(

Tr (M †M)
)2 − f2Tr (M

†M)2 − g
(

det(M) + det(M †)
)

+ ǫxσx + ǫyσy, (1)

where the mixing se
tor is written in the non-strange (x)- strange (y) basis instead of the original 0 � 8 basis, by

performing an orthogonal transformation on the �elds as in [14℄ (see Appendix A). The 
omplex 3×3 matrix M de�ned

by the s
alar (σ) and pseudos
alar (π) �elds 
an be written as

M =
1√
2

7
∑

i=1

(σi + iπi)λi +
1√
2
diag(σx + iπx, σx + iπx,

√
2(σy + iπy)), (2)

where λi : i = 1 . . . 7 are the Gell-Mann matri
es. Isospin breaking is not 
onsidered, therefore in the broken phase

only the s
alar �elds σx and σy have non-zero expe
tation values: x := 〈σx〉, y := 〈σy〉. After shifting the �elds in the

Lagrangian by their expe
tation values with a little bit of algebra one 
an perform the tra
es. Details 
an be found in

[11, 13℄. Requiring that the sum of terms linear in the �u
tuations vanishes we obtain two equations of state. They

are given expli
itly in se
tion III. The 
oe�
ients of the quadrati
 terms are the tree-level masses (see Tab. I), while

the third and fourth order terms give the three- and four-point intera
tion verti
es.

In what follows, a set of non-linear one-loop equations will be given whi
h determines at T = 0 the 8 parameters of

the Lagrangian: the 
ouplings µ, f1, f2, g, the 
ondensates x, y and the external �elds ǫx, ǫy. Many ways of sele
ting

these equations 
an be envisaged, see [11℄ for alternatives. We have 
hosen to use as input the low lying pseudos
alar

mass spe
trum, namely the pion, kaon and eta meson masses and the de
ay 
onstants of the pion and kaon, be
ause

they are the best known theoreti
ally.

In the broken phase a resummation is need/home/szepzs/fermion/renorm/kor3/proof/DS9047-1.psed, in order to

avoid the appearan
e of negative mass squares in the �nite temperature 
al
ulations of one-loop quantities. This 
an

be done for instan
e using the Optimized Perturbation Theory (OPT) of Chiku and Hatsuda [16℄. In the OPT the

mass parameter −µ2
of the Lagrangian, whi
h in the broken phase 
ould be negative, is repla
ed with an e�e
tive

(temperature-dependent) mass parameter m2
whi
h is determined using the 
riterion of fastest apparent 
onvergen
e

(FAC). The mass term of the Lagrangian reads:

Lmass =
1

2
m2

TrM †M − 1

2
(µ2 +m2)TrM †M ≡ 1

2
m2

TrM †M − 1

2
∆m2

TrM †M, (3)

where the �nite 
ounterterm ∆m2
is taken into a

ount �rst at one-loop level.

This resummation method repla
es −µ2
by the e�e
tive mass square m2

in the tree-level masses (see Tab. I), and

preserves all the perturbative relations upon whi
h Goldstone's theorem relies [16℄. The renormalization is a
hieved

m2

π = m2 + 2(2f1 + f2)x
2 + 4f1y

2 + 2gy m2

a0
= m2 + 2(2f1 + 3f2)x

2 + 4f1y
2 − 2gy

m2

K = m2 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 −
√
2x(2f2y − g) m2

κ = m2 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 +
√
2x(2f2y − g)

m2

ηxx
= m2 + 2(2f1 + f2)x

2 + 4f1y
2 − 2gy m2

σxx
= m2 + 6(2f1 + f2)x

2 + 4f1y
2 + 2gy

m2

ηyy = m2 + 4f1x
2 + 4(f1 + f2)y

2 m2

σyy
= m2 + 4f1x

2 + 12(f1 + f2)y
2

m2

ηxy
= −2gx m2

σxy
= 8f1xy + 2gx

TABLE I: The squared masses of the (pseudo)s
alar nonet appear in the (�rst) se
ond 
olumn. The last three rows represent

the mixing se
tors. They 
an be written in the 
onventional basis using the formulas of Appendix A.
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both in the symmetri
 and the broken phase by the following 
ounterterms

δµ2 =
(5f1 + 3f2)Λ

2

π2
− (5f1 + 3f2)m

2 − g2

π2
ln

Λ2

l2
, (4)

δg =
3g(f1 − f2)

2π2
ln

Λ2

l2
, (5)

δf1 =
13f2

1 + 12f1f2 + 3f2
2

2π2
ln

Λ2

l2
, (6)

δf2 =
3f1f2 + 3f2

2

π2
ln

Λ2

l2
, (7)

where Λ is the 3d regularization 
uto�, and l is the renormalization s
ale. Note that only the mass 
ounterterm di�ers

from its standard expression [11℄. In the present form this 
ounterterm is temperature-dependent through the e�e
tive

mass, but this temperature dependen
e is 
an
eled by higher-loop terms [16, 23℄. In what follows, all quantities and

equations are renormalized without any 
hange in the notations.

The above mentioned FAC 
riterion, whi
h determines the e�e
tive mass square m2
, is realized in the present 
ase

by the requirement that the pole and the residue of the one-loop pion propagator

Dπ(p) =
iZ−1

π

p2 −m2
π − Σπ(p2,mi, l)

, (8)

stay equal to their tree-level values. Here we anti
ipated that we also need a �nite wave fun
tion renormalization in

order to make the residuum equal to 1, and res
aled the pion �elds as π → Z
− 1

2

π π.
A

ording to this FAC 
riterion the inverse of the �nite wave fun
tion renormalization 
onstant is

Z−1

π := 1− ∂Σπ(p
2,mi, l)

∂p2

∣

∣

∣

∣

p2=M2
π

. (9)

The one-loop pion pole mass

M2

π = −µ2 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy + Re

{

Σπ(p
2 = M2

π ,mi, l)
}

(10)

has to be equal to its tree-level value (Mπ
!
= mπ). Therefore, using the expression of the tree-level pion mass of Tab. I,

the following �gap� equation 
an be obtained for the e�e
tive mass:

m2 = −µ2 + Re

{

Σπ(p
2 = m2

π,mi(m
2), l)

}

, (11)

where the m2
-dependen
e of the self-energy (through the tree-level masses) is expli
itly shown. The di�erent 
ontribu-

tions to the self-energy are depi
ted in Fig. 1.

The e�e
tive mass 
an be repla
ed by the pion mass by expressing it from its tree-level formula. Then (11) 
an be

interpreted as a zero temperature gap-equation for the pion mass:

m2

π = −µ2 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy + Re

{

Σπ(p
2 = m2

π,mi(mπ), l)
}

, (12)

where the tree masses of all mesons are expressed through the pion mass. A similar gap-equation will be used in the

thermodynami
al 
al
ulations for the temperature dependen
e of the pion mass. At T = 0, the task is �reversed�: the

pion mass is known and (12) belongs to the set of equations, whi
h determines the parameters. We have 
hosen to

express the e�e
tive mass m2
from the tree-level mass formula of the pion be
ause the pion has the smallest mass,

and positive solutions of (12) ensure the positiveness of all the other masses. We use the kaon and eta masses, the

relations of the Partially Conserved Axial-Ve
tor Current (PCAC) for the pion and kaon at one-loop order, and the

two equations of state to �x the remaining parameters.

The one-loop kaon propagator is the following:

DK(p) =
iZ−1

K

p2 −m2

K − ΣK(p2,mi, l)
. (13)

Z−1

K and the one-loop pole mass of the kaon MK 
an be 
al
ulated similarly as in the 
ase of the pion:

Z−1

K := 1− ∂ΣK(p2,mi, l)

∂p2

∣

∣

∣

∣

p2=M2

K

, (14)

and

M2

K = −µ2 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 −
√
2x(2f2y − g) + Re

{

ΣK(p2 = M2

K ,mi, l)
}

. (15)
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Σπ =
∑

i=π,K, η, η′

� +
∑

i=a0, κ, σ, f0

� +
∑

i=a0, σ, f0
�

+
∑

i=η, η′

�

+

�

+�

ΣK =
∑

i=π,K, η, η′

� +
∑

i=a0, κ, σ, f0

� +
∑

i=a0, σ, f0
	

+
∑

i=π, η, η′




+�

Σ ηkl
=
∑

i=K, η, η′

� +
 +

j=η, η′

∑

i=σ, f0
Æ

+

�

+

�

+ δkl

[

� +
∑

i=a0, σ, f0

� +�

]

FIG. 1: The physi
al 
ontent of the one-loop pseudos
alar self-energies.

The des
ription of the η and η′ mesons is slightly more 
ompli
ated be
ause of the mixing in the x− y se
tor ( 0− 8
in the 
onventional basis). The propagator is a 2×2 matrix, and pole masses are de�ned as the real part of the solutions

of the following equations

Det

(

p2 −m2
ηxx

− Σηxx
(p2,mi, l) −m2

ηxy
− Σηxy

(p2,mi, l)

−m2
ηxy

− Σηxy
(p2,mi, l) p2 −m2

ηyy
− Σηyy

(p2,mi, l)

)∣

∣

∣

∣

∣

p2=M2
η ,Mη′

= 0. (16)

This yields two equations for the mass eigenvalues Mη, Mη′
:

M2

η =
1

2
Re

{

m2

ηxx
+Σηxx

(p2 = M2

η ,mi, l) +m2

ηyy
+ Σηyy

(p2 = M2

η ,mi, l)

−
√

(m2
ηxx

+Σηxx
(p2 = M2

η ,mi, l)−m2
ηyy

− Σηyy
(p2 = M2

η ,mi, l))2 + 4(m2
ηxy

+Σηxy
(p2 = M2

η ,mi, l))2
}

,(17)

M2

η′ =
1

2
Re

{

m2

ηxx
+Σηxx

(p2 = M2

η′ ,mi, l) +m2

ηyy
+Σηyy

(p2 = M2

η′ ,mi, l)

+
√

(m2
ηxx

+Σηxx
(p2 = M2

η′ ,mi, l)−m2
ηyy

− Σηyy
(p2 = M2

η′ ,mi, l))2 + 4(m2
ηxy

+Σηxy
(p2 = M2

η′ ,mi, l))2
}

.(18)

The de�nitions (10), (15), (17) and (18) of the pole masses give the 
orre
t one-loop masses only when the self-energy

is not 
omplex. We note that if the tree-level masses are 
lose to their experimental values, then by looking at the

self-energy 
ontributions of pion and kaon in Fig. 1, one 
an re
ognize that they have no imaginary part for p2 = m2

π

and p2 = m2

K , respe
tively. This is also true in the 
ase of the η self-energy. It turns out that the η′ self-energy has

an imaginary part at the pole-mass determined as the zero of the real part of the self-energy ex
ept the narrow range

of 1820 MeV < l < 1880 MeV. For this reason we de
ided not to in
lude the one-loop equation for Mη′
into the set

of equations used for the parametrization. We make up for the missing equation by extending FAC 
riterion to the

one-loop kaon mass too. This 
ondition reads:

M2

K
!
= m2

K = m2

π − 2gy + 4f2y
2 −

√
2x(2f2y − g). (19)

Two more equations are provided by the one-loop PCAC relations whi
h a

ording to [11℄ reads as

fπ = Z
− 1

2

π
−iD−1

π (p = 0)

M2
π

x, (20)

fK = Z
− 1

2

K

−iD−1

K (p = 0)

M2

K

x+
√
2y

2
. (21)

As shown in Appendix C, these equations 
an be rewritten in an expli
itly renormalization s
ale-independent form.
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FIG. 2: The renormalization s
ale dependen
e of various quantities at the physi
al point: the parameters (a), the non-strange

(x) and strange (y) va
uum expe
tation values and the �nite wave fun
tion renormalization 
onstants Zπ and ZK (b), the

pseudos
alar masses (
), and the s
alar masses (d).

Finally, the last two parameters, the two symmetry breaking external �elds ǫx and ǫy are determined by the one-loop

equations of state, with the help of zero temperature 
hiral Ward identities (Appendix B):

ǫx = Z−1

π

(

−iD−1

π (p = 0)
)

x, (22)

ǫy = Z−1

K

(

−iD−1

K (p = 0)
)

(

x√
2
+ y

)

− Z−1

π

(

−iD−1

π (p = 0)
) x√

2
. (23)

One 
an noti
e that, sin
e OPT preserves Ward identities at tree and at one-loop level as well, the above parametriza-

tion, in whi
h the tree-level masses of pion and kaon equal the one-loop masses, ensures at zero temperature the validity

of Goldstone's theorem for both pion and kaon.

A. Parametrization at the physi
al point

The parameters were determined as follows. From (10) and (19) one 
an express µ2
and g, respe
tively. Next, from

the system of 4 non-linear equation (15), (17), (20), (21) one 
an numeri
ally determine f1, f2, x, and y as fun
tions

of the renormalization s
ale l. Going ba
k to (10) and (19) one 
an 
ompute µ2
and g, respe
tively. Substituting these

parameters into (22) and (23) one 
an determine ǫx and ǫy. Unlike the tree-level parametrization 
ase [14℄, now all

s
alar masses are predi
ted.

The numeri
al solution for di�erent renormalization s
ales l is presented in Fig. 2 (a) for the physi
al point, where

mπ = 138 MeV, mK = 495.6 MeV, mη = 547.8 MeV, fπ = 93 MeV, and fK = 113 MeV. In �gure Fig. 2 (b) one 
an

see the renormalization s
ale (l) dependen
e of the non-strange (x) and strange (y) va
uum expe
tation values and

of the �nite wave fun
tion renormalization 
onstants Zπ and ZK . They have a plateau for l < 1400 MeV, and the

tree-level mη′
(see Fig. 2 (
)) is the 
losest to its physi
al value in the region l ∈ (1000, 1400) MeV, where the variation

of the tree-level s
alar masses (see Fig. 2 (d)) is the mildest too. We have de
ided to use in our thermodynami
al

investigation this range of the renormalization s
ale in whi
h the tree-level masses entering into the propagators of

Fig. 1 are reasonably 
lose to their experimentally measured values. In Fig. 2 (
, d) we present an estimation of the

predi
ted one-loop pole-masses based on the real parts of the 
orresponding self-energies. This is a good approximation

in the 
ase of η′, a0 and f0 sin
e the zeros of the inverse propagators 
orrelate well with the lo
ation of the well-de�ned

peak in the 
orresponding spe
tral fun
tions. The one-loop mass Mf0 , whi
h is not shown in the �gure, has a rather

large value in the present range of the renormalization s
ale (de
reasing from Mf0 = 2000 MeV for l = 1000 MeV to

Mf0 = 1400 MeV for l = 1400 MeV). The shapes of the spe
tral fun
tions of κ and σ (see Fig. 2 for ρσ) are more


ompli
ated, they have a threshold dominated peak with large width, and are very sensitive to the renormalization

s
ale. In this 
ase, it would be more appropriate to de�ne the mass and width of a de
aying parti
le as the real and

imaginary part of a 
omplex pole. In the O(N) model in the large N approximation [24℄, this 
ontinuation into the

se
ond Riemann sheet was performed in the sigma 
hannel and the poles of the propagators were determined. In this

model the 
ontinuation of the propagators into the 
omplex plane would be more di�
ult due to the appearan
e of

many de
ay thresholds and is beyond the s
ope of the present investigation.
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FIG. 3: The kaon mass dependen
e of mη as given by ChPT and the Veneziano formula for mπ = 10 MeV.

B. Parametrization in the mπ −mK�plane

Sin
e we are interested in the phase boundary on the mπ − mK-plane, we have to take into a

ount the variation

of the parameters with mπ and mK . A method for the parametrization away from the physi
al point was proposed

in [14℄, whi
h relies on the formulas provided by the Chiral Perturbation Theory (ChPT) [25℄. Be
ause our present

parametrization does not use the η′ meson, we make use of the SU(3) ChPT des
ribing the 
hiral dynami
s of the

pseudos
alar o
tet. In the large Nc limit, the formulas for the pion, kaon mass dependen
e of the de
ay 
onstants and

of the η mass up to O(1/f2) read as [26℄:

fπ = f

(

1 + 4L5

m2

π

f2

)

, (24)

fK = f

(

1 + 4L5

m2

K

f2

)

, (25)

m2

η =
4m2

K −m2

π

3
+

32

3
(2L8 − L5)

(

m2

K −m2

π

)2

f2
, (26)

where L5 and L8 are low energy 
onstants and f is the de
ay 
onstant in the 
hiral limit. All the parameters of the

large Nc limit of the SU(3) ChPT 
an be determined at the physi
al point from the equations above. Their values,

L5 = 2.0152 · 10−3
, L8 = 8.472 · 10−4

and f = 91.32 MeV, are �xed for all values of mπ and mK .

For low values of mπ and mK the sensitivity to the renormalization s
ale of the LσM is bigger than the un
ertainties


oming from the omission of the 
hiral logarithms. As an e�e
t of these 
hiral logarithms, for large values of mK , the

formula of the SU(3) ChPT yields a de
reasing value for mη for in
reasing mK , see Fig. 3. If we use (26), the same

behavior o

urs at a larger value, whi
h is around mK ≈ 1300 MeV. This is non-physi
al as both the kaon and the eta

parti
les have to de
ouple in order to arrive at the O(4) model for mK → ∞. This shows the failure of the ChPT at

high values of the kaon mass.

In view of the bad behavior of mη determined using large Nc ChPT, we have used, as an alternative, the following

mass-formula by Veneziano [27℄ :

m2

η = m2

K +
1

2
∆m2

η0 −
1

2

√

(

2m2

K − 2m2
π − 1

3
∆m2

η0

)2

+
8

9
∆m4

η0. (27)

∆m2
η0 is the non-perturbative gluoni
 mass 
ontribution in the singlet 
hannel of the mixing η − η′ se
tor, related to

the axial U(1) dynami
s. Using the values of the masses at the physi
al point in (27) one 
an �x the value of the extra

mass 
ontribution: ∆m2

η0 = 2.3 GeV

2
. One 
an see in Fig. 3 that this parametrization gives for mη values whi
h are

almost identi
al to the values 
oming from the formula of ChPT in the large Nc limit, up to values of mK for whi
h

ChPT breaks down.

We note, that in the original paper ∆m2

η0 was determined using the tra
e of the 2 × 2 matrix of the mixing η − η′

se
tor. We indulged in modifying the pro
edure in order to make 
onta
t with the ChPT in the large Nc limit, as mη

obtained form (27) with the original parametrization is always smaller than the value given by the large Nc ChPT.

The 
ontinuation onto the mπ −mK�plane of fπ, fK , and mη, based on the formulas of this subse
tion, allow us to

determine the parameters as des
ribed in IIA in a wide region of the mass-plane, ex
ept for high values of mK , near

the mπ = 0 axis.
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III. COMPLETE 1�LOOP THERMODYNAMICS OF THE LσM

With the intention of determining the order of the phase transition in the pion�kaon mass�plane we have to monitor

the order parameters as fun
tions of temperature. They are obtained from a set of three equations: two equations of

state for x and y and a gap-equation for the pion mass. The temperature dependen
e of the order parameters at �nite

T 
an be obtained from the equations of state:

− ǫx +m2x+ 2gxy + 4f1xy
2 + (4f1 + 2f2)x

3 +
∑

i

Jit
x
i I(l,mi(T ), T ) + ∆m2x = 0 , (28)

−ǫy +m2y + gx2 + 4f1x
2y + 4(f1 + f2)y

3 +
∑

i

Jit
y
i I(l,mi(T ), T ) + ∆m2y = 0 , (29)

where in the tadpole integral I(l,mi(T ), T ) we have expli
itly displayed the impli
it temperature dependen
e of the

tree-level masses, expressed with the pion mass determined by the gap-equation

m2

π = −µ2 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy + Σπ(p
2 = m2

π,mi(mπ), l) + ΣT
π (ω = 0,mi(mπ)). (30)

The sum goes over all mass eigenstate meson �elds with isospin multipli
ity fa
tor Ji: Jπ,a0
= 3, JK,κ = 4, and

Jη,η′,σ,f0 = 1. The 
oe�
ients txi and tyi appearing in (28) and (29) are listed in Appendix C of [14℄. The standard

one-loop integrals appearing in the formulas above 
an be found for instan
e in [16℄. In the present study we use the

one-loop bubble integrals appearing in (30) for |p| = 0, 
orresponding to parti
les at rest. As in zero temperature


ase, at �nite temperature OPT guarantees through the gap-equation the validity of Goldstone's theorem for the pion.

Following Ref. [16℄, ΣT
π , the �nite-temperature part of the self-energy, is taken not on the mass-shell, but instead at

ω = 0. This is done be
ause above a given temperature Σπ(T )(ω = mπ(T ),0) be
omes 
omplex, and the real solution

of the gap equation 
eases to exist. At the physi
al mass-point this temperature is typi
ally below the value of the

pseudo
riti
al temperature, invalidating the study of the phase transition. The imaginary part is produ
ed by one-loop

bubble integrals where two unequal masses m1 and m2 appear, when the relation ω = mπ < |m1 − m2| is satis�ed.
It has the 
onsequen
e that we 
an not regard the pion gap-equation as the equation determining the �true� one-loop

mass of the pion. Due to the imaginary part of the self-energy the most adequate way of determining the pion mass

would be to look for a 
omplex pole of the pion propagator. Still, in the present work we 
ontent ourselves with the

study of the spe
tral fun
tion of the pion, whi
h, as we will see, in 
ertain temperature ranges also provides information

on the pion mass.

A. In�uen
e of the logarithmi
 terms

In order to estimate the in�uen
e of the logarithmi
 terms on the solution of the equations of state we have performed

the following 
he
k. We have taken the parameters determined with the one-loop parametrization presented in Se
. II,

and modi�ed the value of µ2
su
h as to in
orporate the zero temperature logarithmi
 terms. Then, at �nite temperature,

we have solved the gap equation and the two equations of state without taking into a

ount the logarithmi
 terms, whi
h

impli
itly depend on the temperature through the masses. The di�eren
e between these expe
tation values and the ones


al
ulated with the logarithmi
 terms (and with the original, unmodi�ed value of µ2
) is only due to the temperature

dependen
e of the logarithmi
 terms. This 
an be seen in Fig. 4: without the logarithmi
 terms the pseudo
riti
al

temperature is lower by about 20%. The variation of strange 
ondensate with the temperature is signi�
antly di�erent

in the two 
ases. We noti
e that at high temperature the solution obtained with logarithmi
 term in
luded 
eases

to exist, as was also observed in [16℄. This is a non-physi
al phenomenon, it happens before the restoration of 
hiral

symmetry 
ompletes. We 
onsider the solution reliable up to temperature values whi
h are below the turning point in

x and y.
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FIG. 4: Comparison of the temperature dependen
e of strange (y) and non-strange (x) 
ondensates with and without the

in
lusion of the logarithms for l = 1200 MeV.
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e of non-strange (x) and strange (y) order parameters for di�erent values of the renormal-

ization s
ale (l.h.s) and the T -dependen
e of the tree-level masses for l = 1200 MeV (r.h.s).

B. The solution at the physi
al point

At the physi
al point and in the investigated range of the renormalization s
ale, the behavior of the non-strange

order parameter shows a smooth restoration of the SU(2) 
hiral symmetry. The pseudo
riti
al temperature moderately

depends on the renormalization s
ale. The strange order parameter varies less and it is approximately s
ale-independent

until the solution is reliable, see the left panel of Fig. 5. The right panel shows that the tree-level SU(2) mass partners

tend towards degenera
y as the temperature in
reases. Unfortunately the solution falls dead before the restoration of

the 
omplete SU(3) symmetry, due to the e�e
t of the logarithmi
 terms (see III A).

Fig. 6 illustrates the temperature dependen
e of the spe
tral fun
tions in the pseudos
alar and s
alar 
hannels and

the behavior of the zeros of the real part of the inverse pion and sigma propagators. At low temperature the spe
tral

fun
tion in the pion 
hannel develops a peak whose lo
ation is 
lose to the physi
al mass value of the pion. Close to

the pseudo
riti
al temperature there are signi�
ant 
hanges in the peak stru
ture. In this temperature range, based

on the spe
tral fun
tion, one 
an not determine the true pion pole-mass. In this range, the tree-level pion mass, whi
h

is the solution of the gap-equation (12) interpolates between various zeros of the inverse propagator, see the left panel

of Fig. 6. At high temperature the spe
tral fun
tion has a well de�ned peak again, whose lo
ation 
orrelates with the

zero of the inverse pion propagator.

At low temperature the spe
tral fun
tion in the sigma 
hannel has a large width and the zeroes of the real part

of the inverse propagator are very sensitive to the renormalization s
ale, therefore the sigma pole mass 
an not be

estimated. We 
an de�ne the pole mass only at high temperature, where the spe
tral fun
tion develops a well�de�ned

peak, 
orrelated with the zero of the inverse sigma propagator. In
reasing the temperature its lo
ation approa
hes the

lo
ation of the peak in the pion 
hannel and eventually they be
ome degenerate. This shows that the one-loop masses

of the pion and sigma also re�e
t the restoration of the SU(2) 
hiral symmetry at high temperature.
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FIG. 6: The spe
tral fun
tion of the pion (l.h.s.) and sigma (r.h.s.) for various values of the temperature and l = 1200 MeV.

The zeros of the real part of the inverse pion/sigma propagators and the 
orresponding tree-level masses are also depi
ted, as

lines in the T − ω plane.
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IV. THE PHASE BOUNDARY ON THE mπ −mK�PLANE

The main result of our work is the determination of the boundary between the region where a 
rossover transition

o

urs, with a smooth variation of the order parameters, and a �rst order phase transition region, whi
h is signaled by

the multivaluedness of the order parameters.

It is remarkable, that at large values of the kaon mass, the boundary proves to be independent of the renormalization

s
ale

1

. For large values of mK the existen
e of a s
aling region belonging to a tri
riti
al point (TCP), with mean-�eld

exponent 
an be 
on�rmed. This is a new feature of the 
omplete QFT treatment, it was not observed using tree-level

parametrization! From mean-�eld studies (see e.g. [28℄) it is known that near the TCP the boundary of the edge of the

�rst order region deviates from the mu,d = 0 axis of the quark mass-plane a

ording to mu,d ≈ (mTCP
s −ms)

5/2
. Using

the tree-level formulas of ChPT, for m2
π and m2

K , namely m2
π = 2m̂B0, m

2

K = (m̂ + ms)B0 with m̂ = 1

2
(mu + md),

one 
an easily translate this into a relation between the 
riti
al values of mK and mπ: m
2

K = m2

K

∣

∣

TCP
+

m2

π

2
− αm

4/5
π .

Due to the failure of our parametrization at very high values of mK , and near the mπ = 0 axis we use this formula to

extrapolate the upper edge of the phase boundary to themK-axis. Using largeNc ChPT theory we obtainmTCP
K = 1718

MeV, while using the Veneziano formula (27) we get mTCP
K = 1838 MeV. Both �ts are of very good quality suggesting

the radius of the s
aling region to be ∆mc
π ≈ 40 MeV. In terms of the strange quark mass our estimate 
orresponds to

mTCP
s = 13 − 15 × ms. This result 
an be 
ompared to the re
ent latti
e result of [29℄, where it was estimated that

mtric
s ≈ 3ms. In 
ase of [29℄ the pie
e of the phase boundary used in the extrapolation to mTCP

s was mu
h 
loser to

the physi
al point and the lo
ation of the TCP was estimated using points with ms ≤ mphys
s . The latti
e estimate for

the lo
ation of TCP would improve if points 
ould be simulated 
loser to the s
aling region.

In the present treatment the 
riti
al pseudos
alar mass for degenerate quarks was obtained in the rangemc
π ∈ (90, 130)

MeV. The spread is the result of the renormalization s
ale dependen
e. This range of mc
π is signi�
antly above the

one previously obtained in [14℄ using a tree-level parametrization, whi
h eventually led to mc
π ∈ (20, 60) MeV. It is

interesting to note, that the boundary lies to the right from the �tted 
urves whi
h des
ribe the s
aling behavior near

TCP.
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FIG. 7: Phase boundary of LσM obtained using a one-loop parametrization at T = 0 and the formulas of large Nc ChPT for


ontinuation on the mπ −mK�plane. For large values of mK we have also used the Veneziano formula for mη 
f. IIB.

1

It 
an be seen after some straightforward 
al
ulation, that as the kaon mass in
reases, the relative weight of the terms 
ontaining log(l)
are be
oming negligible in the equations used for parametrization as well as in those used for thermodynami
al 
al
ulations.
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V. CONCLUSION

In this paper we have studied the phase boundary of the linear sigma model in the mπ − mK plane. We have

managed to �nd in a resummed perturbation theory a set of renormalized equations based on whi
h 
omplete one-loop

parametrization of the model is possible not only at the physi
al point, but in a large region of the mass-plane too.

We allowed for the variation of the parameters with mπ and mK when moving away from the physi
al point, and used

formulas of the ChPT for the 
ontinuation of 
ertain physi
al quantities into the mass�plane.

As a result of the one-loop solution of the model we were able to estimate the lo
ation of the tri
riti
al point on the

mπ = 0 axis of the mass plane at a rather high value of the kaon mass. We have shown eviden
e of the existen
e of a

s
aling region around it. These were not observed previously in the quasi-parti
le approximations to the model. For

the same values of mK the phase boundary line lies at higher values of pion masses than in the 
ase of the tree-level

parametrization of the model, and without the in
lusion of the va
uum �u
tuations. For degenerate pseudos
alar

masses the phase boundary was obtained in the range mc
π ∈ (90, 130) MeV.

We have dis
ussed also the limitation of the optimized perturbation theory, related to the fa
t that one looks for real

solutions of the gap-equation for the resummed mass in temperature ranges where the self-energies develop imaginary

parts too. It would be interesting to study the phase boundary using a self-
onsistent approximation based on the

exa
t propagator, like the 2PI approximation.

A
knowledgement

Work supported by Hungarian S
ienti�
 Resear
h Fund (OTKA) under 
ontra
t number T046129. Zs. Sz. is

supported by OTKA Postdo
toral Fellowship (grant no. PD 050015). We thank A. Patkós for 
ontinuous support and

dis
ussions during the work and the elaboration of the paper. We also thank P. Szépfalusy for useful 
omments. We

thank P. Ková
s, A. Patkós and P. Szépfalusy for 
arefully reading of the manus
ript.

APPENDIX A: CONNECTION BETWEEN (0 � 8) AND (X�Y) BASIS

From the x − y basis used in se
tion II one 
an obtain, with the help of an orthogonal transformation, the mixed

s
alar-, pseudos
alar and the external �elds in the 
onventional (0 � 8) basis as:

(

σ0

σ8

)

:= O

(

σx

σy

)

,

(

π0

π8

)

:= O

(

πx

πy

)

,

(

ǫ0
ǫ8

)

:= O

(

ǫx
ǫy

)

, where O :=
1√
3

(√
2 1

1 −
√
2

)

. (A1)

The transformation of the mass matri
es, and the mass eigenvalues are

(

m2

η00
m2

η08

m2

η08
m2

η88

)

= O

(

m2

ηxx
m2

ηxy

m2

ηxy
m2

ηyy

)

O , and m2

η′ , η
=

m2

ηxx
+m2

ηyy
±
√

(m2
ηxx

−m2
ηyy

)2 + 4m4
ηxy

2
. (A2)

Similar expressions also hold for the s
alar �elds.

APPENDIX B: WARD IDENTITIES

From (8) and (13), the inverse pion and kaon propagators at zero external momenta are

− iZ−1

π D−1

π (p = 0) = m2

π +Σπ(p = 0) + ∆m2
(B1)

−iZ−1

K D−1

K (p = 0) = m2

K +ΣK(p = 0) + ∆m2, (B2)

where the �nite 
ounterterms of OPT are now expli
itly indi
ated. Comparing the expressions of tree-level masses

(Table I) with the tree-level part of the equations of state (28), (29), one 
an obtain the 
orresponding tree-level Ward

identities ǫx = m2

πx and ǫy = m2

K(
√
2/2x+y)−m2

π

√
2/2x. The diagrams for the self-energies are shown in Fig. 1. They

in
lude both tadpole and bubble diagrams, and the latter ones 
an be de
omposed for non-equal propagator masses

and zero external momenta into the di�eren
e of two tadpoles:

�

=
1

m2
1
−m2

2

·
[

�

−
�

]

. (B3)

Therefore, the pseudos
alar self energies at p = 0 
an be represented as a linear 
ombination of tadpole 
ontributions

whose weights are 
ompli
ated expressions of the tree-level masses and the 
orresponding four- and three-point 
ouplings
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(see [11℄). In the 
ase of pion and kaon these weights simplify to

Σπ(p = 0) =

∑

Jit
x
i I(mi, l) + x∆m2

x
, (B4)

ΣK(p = 0) =

∑

Ji(t
x
i +

√
2tyi )I(mi, l) + (x +

√
2y)∆m2

x+
√
2y

, (B5)

where I(mi, l) is the T = 0 tadpole integral and the sum goes over all mass eigenstate meson �elds with isospin

multipli
ity Ji. Substituting these and the 
orresponding tree-level Ward identities into the expressions (8), (13),

one 
an obtain the equations of state (28) and (29), whi
h determine the external �elds at zero temperature in the

parametrization pro
ess. The relations (22) and (23) are also valid at �nite temperature and ensure the ful�llment of

Goldstone's theorem at one-loop order.

APPENDIX C: PCAC RELATIONS

The one-loop order PCAC relations for the pion and kaon are given in [11℄ by

fπM
2

π =
√

Zπǫx , fKM2

K =

√
ZKǫy√
2

+
√

Zπǫx . (C1)

With the help of (22), (23) the external �elds 
an be eliminated and one 
an obtain the expressions (20), (21), whi
h

appear renormalization s
ale-dependent. However, one 
an rearrange the pion self-energies appearing in (20) as follows:

fπ =
m2

π +Σπ(p = 0, l)

M2
π

Z
− 1

2

π =
m2

π +Σπ(p
2 = M2

π , l) + (Σπ(p = 0, l)− Σπ(p
2 = M2

π , l))

M2
π

Z
− 1

2

π

=

(

1− Σ̃π(p
2 = M2

π)

M2
π

)

Z
− 1

2

π . (C2)

In the last step above we used the fa
t, that m2

π + Σπ(p
2 = M2

π) is just the de�nition of the pole mass M2

π . The

p-dependent part of the self energy, Σ̃, like the wave fun
tion renormalization 
onstant, does not depend on the

renormalization s
ale and in 
onsequen
e (C2) is a
tually s
ale-independent. The PCAC equation for the kaon 
an be

analyzed in a similar way.
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