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Abstract
We study the density of states method to explore the phase diagram of the
chiral transition on the temperature and quark chemical potential plane. Four
quark flavors are used in the analysis. Though the method is quite expensive
small lattices show an indication for a triple-point connecting three different
phases on the phase diagram.

1 Introduction

To clarify the phase diagram of QCD and thus the nature of matter under extreme conditions is one of the
most interesting and fundamental tasks of high energy physics. Lattice QCD has been shown to provide
important and reliable information from first principals onQCD at zero density. However, Lattice QCD
at finite densities has been harmed by the complex action problem ever since its inception. Forµ > 0 the
determinant of the fermion matrix (detM) becomes complex. Standard Monte Carlo techniques using
importance sampling are thus no longer applicable when calculating observables in the grand canonical
ensemble according to the partition function

ZGC(µ) =

∫

DU detM[U](µ) exp{−SG[U]}. (1)

Recently many different methods have been developed to circumvent the complex action problem for
smallµ/T [1, 2]. For a recent overview see also [3].

2 Formulation of the method

A very general formulation of the DOS method is the following: One exposed parameter (φ) is fixed. The
expectation value of a thermodynamic observable (O), according to the usual grand canonical partition
function (1), can be recovered by the integral

< O >=

∫

dφ 〈Of(U)〉φ ρ(φ)

/
∫

dφ 〈f(U)〉φ ρ(φ) (2)

where the density of states (ρ) is given by the constrained partition function:

ρ(x) ≡ Zφ(x) =

∫

DU g(U) δ(φ − x). (3)

With 〈 〉φ we denote the expectation value with respect to the constrained partition function. In addition,
the product of the weight functionsf, g has to give the correct measure ofZGC : fg = detMexp{−SG}.
This idea of reordering the partition functions is rather old and was used in many different cases [4, 5, 6]
The advantages of this additional integration becomes clear, when choosingφ = P andg(U) = 1. In this
caseρ(φ) is independent of all simulation parameters. The observable can be calculated as a function
of all values of the lattice couplingβ. If one has stored all eigenvalues of the fermion matrix for all
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configurations, the observable can also be calculated as a function of quark mass (m) and number of
flavors[5] (Nf ). In this work we chose

φ = P and g = |detM | exp{−SG}, f = exp{iθ}. (4)

In other words we constrain the plaquette and perform simulations with measureg. In practice, we
replace the delta function in Equation (3) by a sharply peaked potential [6]. The constrained partition
function for fixed values of the plaquette expectation valuecan then be written as

ρ(x) ≈

∫

DU g(U) exp {−V (x)} , (5)

whereexp{−V (x)} is a Gaussian potential with

V (x) =
1

2
γ (x− P )2 . (6)

We obtain the density of states (ρ(x)) by the fluctuations of the actual plaquetteP around the constraint
valuex. The fluctuation dissipation theorem gives

d

dx
ln ρ(x) =< x− P >x . (7)

Before performing the integrals in Equation (2) we compute from an ensemble generated at(µ0, β0):

〈Of(U)〉x (µ, β) = 〈Of(U)R(µ, µ0, β, β0)〉x / 〈R(µ, µ0, β, β0)〉x , (8)

〈f(U)〉x (µ, β) = 〈f(U)R(µ, µ0, β, β0)〉x / 〈R(µ, µ0, β, β0)〉x , (9)
d

dx
ln ρ(x, µ, β) = 〈(x− P )R(µ, µ0, β, β0)〉x . (10)

HereR is given by the quotient of the measureg at the point(µ, β) and at the simulation point(µ0, β0),

R(µ, µ0, β, β0) = g(µ, β)/g(µ0, β0) =
|det(µ)|

|det(µ0)|
exp{SG(β)− SG(β0)}. (11)

Having calculated the expressions (8)-(10), we are able to extrapolate the expectation value of the observ-
able (2) to any point(µ, β) in a small region around the simulation point(µ0, β0). For any evaluation of
〈O〉 (µ, β), we numerically perform the integrals in Equation (2). We also combine the data from several
simulation points to interpolate between them.

3 Simulations with constrained Plaquette

The value we want to constrain is the expectation value of theglobal plaquette, which is given on every
gauge configuration by the sum over all lattice points (y) and directions (µν) of the local plaquettePµν(y)
and its adjointP †

µν(y),

P =
∑

y

∑

1≤µ<ν≤4

1

6

[

TrPµν(y) + TrP †
µν(y)

]

. (12)

Since the plaquette is also the main part of the gauge action,

SG = −β
∑

x

∑

1≤µ<ν≤4

{

1

6

[

TrPµν(x) + TrP †
µν(x)

]

− 1

}

, (13)

the additional potentialV can be easily introduced in the hybrid Monte Carlo update procedure of the
hybrid-R algorithm [7]. After calculating the equation of motion for the link variablesUµ(y), we find
for the gauge part of the force

iḢµ(y) =

[

β

3
Uµ(y)Tµ(y)

(

1 +
γ(x− P )

β

)]

TA

. (14)

Here the subscriptTA indicates the traceless anti-Hermitian part of the matrix.We see that in each
molecular dynamical step the measurement of the plaquette is required. However, the only modification
in the gauge force is the factor in round brackets.
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Fig. 1: (a) Results for Simulations atβ = 4.98, µ = 0.3, λ = 0.02, nf = 4, am = 0.05, and number of lattice points:44.

Shown are the density of statesρ(x), the phase factor〈cos(θ)〉, and their product. (b) Results for Simulations atβ = 5.1,

λ = 0.01, nf = 4, am = 0.05, and number of lattice points:64. Shown is the suppression from the complex phase of the

fermion determinant〈cos(θ)〉 for different chemical potentials.

4 Simulation details and the strength of the sign problem

Simulations have been performed with staggered fermions andNf = 4. We chose 9 differed points in the
(β, µ)-plane for the44 lattice and 8 points for the64 lattice. On each of these points we did simulations
with 20-40 constrained plaquette values, all with quark mass am = 0.05. Further simulations has been
done with(β, µ) = (5.1, 0.3) on the63 × 8 lattice foram = 0.05 andam = 0.03. In order to calculate
the plaquette expectation value, or its susceptibility, one has to perform the following integrals:

〈P 〉 =

∫

dx xρ(x) 〈cos(θ)〉x ,
〈

P 2
〉

=

∫

dx x2ρ(x) 〈cos(θ)〉x . (15)

Thus the functionsρ(x) and 〈cos(θ)〉x have to be known quite precisely. We plot both functions in
Figure 1(a). The transition is signaled in the double peak structure ofρ(x). The phase factor〈cos(θ)〉x
suppresses the peak ofρ(x) at smaller plaquette values, which results in a shift of the critical temperature
to smaller values, in comparison with the phase quenched theory. In Figure 1(b) we show the phase
factor for different chemical potentials. With increasingchemical potential the phase factor becomes
compatible with zero within errors. In fact, its average value becomes as low ascos(θ) ∼ 0.005. There
exist however a small interval aroundP ∼ 2.85, where the phase factor stays finite. In this way, the
Plaquette expectation values is strongly altered by the phase factor. Figure 1(b) demonstrates also the
advantage of he DOS method over the other approaches of lattice QCD to finite density. Using the DOS
method one is able to do simulations at directly those Plaquette values which are relevant at finite density.
This solves the so called overlap problem of the reweightingapproach. Furthermore we have checked in
[8], that results with have been obtained within the framework of the DOS method agree very well with
earlier results from the multi-reweighting approach.

5 The Plaquette expectation value and the phases diagram

Performing the integration in Eq. (15) numerically, we calculate the plaquette expectation values as
shown in Fig. 2. At chemical potentialsµ<∼0.36, the plaquette signals the QCD transition through a rapid
crossover from a low temperature phase of< P >∼ 2.9 to a high temperature phase of< P >∼ 3.1.
For µ>∼0.36 the plaquette expectation value at small temperatures drops to< P >∼ 2.85. This new
low temperature phase of the plaquette at high chemical potentials is caused by the fermion determinant.
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Fig. 2: Results for Simulations atβ = 5.1, λ = 0.01, nf = 4, am = 0.05, and number of lattice points:64. Shown is: (a) the

Plaquette expectation value as a function of the couplingβ for different chemical potentials and (b) the plaquette expectation

value at fixed coupling, as a function of the chemical potential.
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Fig. 3: The phase diagram in physical (a), and the quark number density at constant temperatureT = 143 MeV (44 lattice),

T = 124 MeV (64 lattice) andT = 93 MeV (63 × 8 lattice).

As on can see in Figure 1(b) the region aroundP ∼ 2.85 is the region which is less suppressed by the
phase factor. Another interesting observation is that the critical coupling, which is decreasing inµ for
µ < 0.36 starts to increase forµ > 0.36. The plaquette expectation value thus suggests the existence
of three different phases in the (T ,µ)-diagram with a triple point, where all those phases coincide. In
Figure 3(a) we show the phase diagram in physical units. The phase boundaries were determined by
calculating the peaks in the plaquette susceptibility. Note, that we make no statement about the order of
the transition lines. To determine the order of the transition one has to perform finite a finite-size-scaling
analysis.

The scale was set by the Sommer radiusr0, measured on a103 × 20 lattice. The triple point is
located aroundµtri

q ≈ 300 MeV, however its temperature (T tri) decreases fromT tri ≈ 148MeV on the
44 lattice toT tri ≈ 137MeV on the64 lattice. This shift reflects the relatively large cut-off effects one
faces, with standard staggered fermions and temporal extents of 4 and 6.

Also shown in Figure 3(a) are points from simulations with quark massam = 0.03. The phase
boundary turned out to be — within our statistical uncertainties — independent of the the mass.
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6 The quark number density

To reveal the properties of the new phase located in the lowerright corner of the phase diagram, we
calculated the quark number density, at constant couplingβ and at constant temperature respectively. To
obtain the densitynq we perform the following integration

〈

d ln detM

d(aµ)

〉

=

∫

dx

〈

d ln detM

d(aµ)
cos(θ)

〉

x

ρ(x) (16)

The thermodynamic quantitynq are given as usual by

nq =
1

a3N3
sNt

〈

d ln detM

d(aµ)

〉

(17)

In Figure 3(b) we show the baryon number density, which is related to the quark number density by
nB = nq/3. The results are plotted in physical units and correspond toa constant temperature of
T ≈ 143 MeV (44 lattice), T ≈ 124 MeV (64 lattice) andT ≈ 93 MeV (64 × 8 lattice). In order
to divide out the leading order cut-off effect, we multiply we have multiplied the data with the factor
c = SB(Nt)/SB, which is the Stefan-Boltzmann value of a free lattice gas ofquarks at a given value
of Nt, divided by its continuum Stefan-Boltzmann value. At the same value of the chemical potential
where we find also a peak in the susceptibility of the plaquette (µc), we see a sudden rise in the baryon
number density. Thus forµ > µc we enter a phase of dense matter. The transition occurs at a density of
(2− 3)×nN , wherenN denotes nuclear matter density. Above the transition, the density reaches values
of (10 − 20) × nN . Quite similar results have been obtained recently by simulations in the canonical
ensemble [9].
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