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Abstract

We study the density of states method to explore the phasggadmof the
chiral transition on the temperature and quark chemica @t plane. Four
quark flavors are used in the analysis. Though the methoditis expensive
small lattices show an indication for a triple-point contieg three different
phases on the phase diagram.

1 Introduction

To clarify the phase diagram of QCD and thus the nature ofenattder extreme conditions is one of the
most interesting and fundamental tasks of high energy pbysiattice QCD has been shown to provide
important and reliable information from first principals @CD at zero density. However, Lattice QCD
at finite densities has been harmed by the complex actiorigmoéver since its inception. Far> 0 the
determinant of the fermion matrixi¢tM) becomes complex. Standard Monte Carlo techniques using
importance sampling are thus no longer applicable whenulzing observables in the grand canonical
ensemble according to the partition function

Zac(w) = [ DU detM[U] (1) exp{~Sa[U]}. 1)

Recently many different methods have been developed taroiwent the complex action problem for
smallp/T [, [2]. For a recent overview see al$o [3].

2 Formulation of the method
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A very general formulation of the DOS method is the followi@ne exposed paramete) (s fixed. The
expectation value of a thermodynamic observably Gccording to the usual grand canonical partition
function [1), can be recovered by the integral

<0>= [ s (01V)),0(0) / [ do (HO)), p(6) @

where the density of stateg)(is given by the constrained partition function:

p(w) = Zy(w) = [ DUG0)8(6 ). 3)

With () s We denote the expectation value with respect to the constigyartition function. In addition,
the product of the weight functionf g has to give the correct measureffc: fg = detM exp{—Sg}.
This idea of reordering the partition functions is rathet @ahd was used in many different cases [4]5, 6]
The advantages of this additional integration becomes,aideen choosing = P andg(U) = 1. In this
casep(¢) is independent of all simulation parameters. The obseevehh be calculated as a function
of all values of the lattice coupling. If one has stored all eigenvalues of the fermion matrix fibr a

* Speaker


https://core.ac.uk/display/333612934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-lat/0512032v1

configurations, the observable can also be calculated asctidn of quark massn{) and number of
flavors[S] (Ny). In this work we chose
p=P and g = |detM|exp{—S}, f = exp{ib}. 4)

In other words we constrain the plaquette and perform sitiouls with measuregy. In practice, we
replace the delta function in Equatidd (3) by a sharply pdgkatential [6]. The constrained partition
function for fixed values of the plaquette expectation valae then be written as

p(a) = [ DU g0 exp {~V (@)} ©)
whereexp{—V (z)} is a Gaussian potential with

1
V(e)=5v(@—P). (6)
We obtain the density of states({)) by the fluctuations of the actual plaqueftearound the constraint
valuez. The fluctuation dissipation theorem gives

d

Elnp(w) =<zx—P>;. (7

Before performing the integrals in Equatid (2) we compubenfan ensemble generated ag, 5o):
(OfU)), (1 8) = (Of(U)R(p, po, B, Bo)), / (R(k, pro, B, Bo)) » (8)
(FOU)y (1, B) = (fU)R(p, o, B, Bo))s / (R(k, 110, B, Bo)) s » 9)
Liwpa,u,B) = (e~ PYR(s o, 5, o)), - (10)
Here R is given by the quotient of the measurat the point(x, 5) and at the simulation poirti, 5o),
Rl o, 5, 50) = 90, 5) 00, o) = (53 25 exp{Sa(5) - S} 1)

Having calculated the expressiohk (81(10), we are ablettagolate the expectation value of the observ-
able [2) to any pointu, 5) in a small region around the simulation poip, 5y). For any evaluation of
(O) (, B), we numerically perform the integrals in Equatiéh (2). Wepatombine the data from several
simulation points to interpolate between them.

3 Simulationswith constrained Plaquette

The value we want to constrain is the expectation value ofltbleal plaquette, which is given on every
gauge configuration by the sum over all lattice poigjsad directionsv) of the local plaquetté,, (v)
and its adjointP], (y),

1
P=3 Y |TtPuly) + TR} )). (12)
Yy 1<p<v<4
Since the plaquette is also the main part of the gauge action,
1
Sq = —52 Z {6 {TrPW(x) + TrP/IV(x)} - 1} , (13)
T 1<pu<v<4

the additional potential” can be easily introduced in the hybrid Monte Carlo updatequiare of the
hybrid-R algorithm[[7]. After calculating the equation obion for the link variabled/,(y), we find
for the gauge part of the force

g

i) = [ wnm (1+ )]

Here the subscripT’A indicates the traceless anti-Hermitian part of the matki%e see that in each
molecular dynamical step the measurement of the plaguetegjuired. However, the only modification
in the gauge force is the factor in round brackets.

(14)
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Fig. 1: (a) Results for Simulations gt= 4.98, 1 = 0.3, A = 0.02, ny = 4, am = 0.05, and number of lattice pointst4.
Shown are the density of statpér), the phase factofcos(0)), and their product. (b) Results for SimulationsGat= 5.1,

X = 0.01, ny = 4, am = 0.05, and number of lattice pointsi*. Shown is the suppression from the complex phase of the
fermion determinan{cos(6)) for different chemical potentials.

4 Simulation details and the strength of the sign problem

Simulations have been performed with staggered fermiods$\gn= 4. We chose 9 differed points in the
(B, )-plane for thet* lattice and 8 points for thé* lattice. On each of these points we did simulations
with 20-40 constrained plaquette values, all with quarkswas = 0.05. Further simulations has been
done with(3, 1) = (5.1,0.3) on the6? x 8 lattice foram = 0.05 andam = 0.03. In order to calculate
the plaquette expectation value, or its susceptibilitg bas to perform the following integrals:

(P) = /daz xzp(x) (cos(h)), , <P2> = /daz z%p() (cos (), . (15)

Thus the functiong(x) and (cos(6)), have to be known quite precisely. We plot both functions in
Figure[l(a). The transition is signaled in the double pealcsire ofp(z). The phase factofcos(0)) .
suppresses the peakfr) at smaller plaquette values, which results in a shift of titecal temperature

to smaller values, in comparison with the phase quencheshthén Figure[dl(b) we show the phase
factor for different chemical potentials. With increasidlgemical potential the phase factor becomes
compatible with zero within errors. In fact, its averageueabecomes as low ass(6) ~ 0.005. There
exist however a small interval arourfél ~ 2.85, where the phase factor stays finite. In this way, the
Plaquette expectation values is strongly altered by theekector. Figur&€ll(b) demonstrates also the
advantage of he DOS method over the other approaches otl&QD to finite density. Using the DOS
method one is able to do simulations at directly those Pligjualues which are relevant at finite density.
This solves the so called overlap problem of the reweighdimgroach. Furthermore we have checked in
[8], that results with have been obtained within the framdwaf the DOS method agree very well with
earlier results from the multi-reweighting approach.

5 ThePlaquette expectation value and the phases diagram

Performing the integration in Eq_{{L5) numerically, we ciédte the plaquette expectation values as
shown in Fig[R. At chemical potentials<0.36, the plaquette signals the QCD transition through a rapid
crossover from a low temperature phase<of” >~ 2.9 to a high temperature phaseaf P >~ 3.1.

For 1>0.36 the plaquette expectation value at small temperaturessdmg P >~ 2.85. This new
low temperature phase of the plaguette at high chemicahpate is caused by the fermion determinant.
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Fig. 2: Results for Simulations @ = 5.1, A = 0.01, ny = 4, am = 0.05, and number of lattice point§*. Shown is: (a) the
Plaquette expectation value as a function of the coupfifigr different chemical potentials and (b) the plaguetteeetation
value at fixed coupling, as a function of the chemical poténti
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Fig. 3: The phase diagram in physical (a), and the quark nuchmsity at constant temperatufe= 143 MeV (4* lattice),
T = 124 MeV (6" lattice) andI’ = 93 MeV (6° x 8 lattice).

As on can see in Figuid 1(b) the region around- 2.85 is the region which is less suppressed by the
phase factor. Another interesting observation is that thigal coupling, which is decreasing jm for

u < 0.36 starts to increase fgr > 0.36. The plaquette expectation value thus suggests the esésten
of three different phases in th& (u)-diagram with a triple point, where all those phases cdiaciln
Figure[3(a) we show the phase diagram in physical units. Tase boundaries were determined by
calculating the peaks in the plaquette susceptibility.eNtitat we make no statement about the order of
the transition lines. To determine the order of the tramsitine has to perform finite a finite-size-scaling
analysis.

The scale was set by the Sommer radigsmeasured on @03 x 20 lattice. The triple point is
located arounqugri ~ 300 MeV, however its temperaturd{*) decreases frorfi’*"! ~ 148MeV on the
4% lattice toT'™ ~ 137MeV on the6* lattice. This shift reflects the relatively large cut-offeafts one
faces, with standard staggered fermions and temporal texbéd and 6.

Also shown in Figurél3(a) are points from simulations wittadumasszm = 0.03. The phase
boundary turned out to be — within our statistical uncettagr— independent of the the mass.



6 Thequark number density

To reveal the properties of the new phase located in the loigkt corner of the phase diagram, we
calculated the quark number density, at constant coupgliagd at constant temperature respectively. To
obtain the density,, we perform the following integration

<W> = /dm <WCOS(9)>xp($) (16)

The thermodynamic quantity, are given as usual by

1 <dln detM> (17)

M = adSN3N; \  d(ap)

In Figure[3(b) we show the baryon number density, which iateel to the quark number density by
np = ng/3. The results are plotted in physical units and correspond ¢onstant temperature of
T =~ 143 MeV (4* lattice), T ~ 124 MeV (6* lattice) andT' ~ 93 MeV (6* x 8 lattice). In order
to divide out the leading order cut-off effect, we multiplyevihave multiplied the data with the factor
¢ = SB(N;)/SB, which is the Stefan-Boltzmann value of a free lattice gaguafrks at a given value
of IV, divided by its continuum Stefan-Boltzmann value. At thensavalue of the chemical potential
where we find also a peak in the susceptibility of the plagugit), we see a sudden rise in the baryon
number density. Thus fgr > u. we enter a phase of dense matter. The transition occurs ais#ydef

(2 —3) x ny, wheren y denotes nuclear matter density. Above the transition, #msity reaches values
of (10 — 20) x ny. Quite similar results have been obtained recently by sitraris in the canonical
ensemble ]9].
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