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We study θ-vacua in the 2-d lattice O(3) model using the standard action and an optimized
constraint action with very small cut-off effects, combined with the geometric topological charge.
Remarkably, dislocation lattice artifacts do not spoil the non-trivial continuum limit at θ 6= 0, and
there are different continuum theories for each value 0 ≤ θ ≤ π. A very precise Monte Carlo study
of the step scaling function indirectly confirms the exact S-matrix of the 2-d O(3) model at θ = π.

As Bethe showed in 1931, the spin 1
2 antiferromag-

netic Heisenberg chain is gapless [1]. In 1983 Haldane
conjectured that the spin S chain has a gap for inte-
ger S = 1, 2, 3, . . ., but is gapless for half-integer spins
S = 1

2 ,
3
2 ,

5
2 , . . . [2]. In the semi-classical large S limit, he

showed that the corresponding low-energy effective field
theory is the 2-d O(3) model at vacuum angle θ = 2πS,
with coupling g2 = 2/S. Chains with integer spin hence
correspond to θ = 0, while half-integer spin chains have
θ = π. The 2-d O(3) model at θ = π should reduce to
the k = 1 WZNW model [3–5] at low energies. Haldane’s
conjecture has been confirmed by numerical simulations
of integer and half-integer quantum spin chains [6, 7]. A
direct comparison with the 2-d O(3) model at θ = π is
more difficult, due to the notorious complex action prob-
lem in numerical simulations. However, using a meron-
cluster algorithm (an extension of the Wolff cluster algo-
rithm [8]) it was possible to simulate at θ = π, and consis-
tency with the WZNW model predictions was obtained
within statistical errors [9]. In this paper, we also use a
variant of a method developed by Hasenbusch [10, 11] to
simulate θ-vacuum effects in the 2-d O(3) model with un-
precedented per mille level precision. For the first time,
this numerically confirms the conjectured exact S-matrix
of the 2-d O(3) model at θ = π [12] beyond any rea-
sonable doubt, which also implies that the model indeed
reduces to the WZNW model at low energies.
The 2-d O(3) model is equivalent to the CP (1) model.

2-d CP (N − 1) models [13, 14] share many features with
4-d non-Abelian Yang-Mills theories: they are asymptoti-
cally free, have a non-perturbatively generated massgap,
instantons, as well as non-trivial θ-vacua. CP (N − 1)
models on the lattice have been studied by Berg and
Lüscher [15] who introduced a geometric definition for
the lattice topological charge Q. Field configurations
with Q = 1 and a minimal value of the lattice action
are known as dislocations. In general, dislocations have
a smaller action than Q = 1 instantons — the minimal
action configurations of the continuum theory. When the
dislocation action is less than a critical value (determined
by the 1-loop β-function coefficient), a semi-classical (but
non-rigorous) argument suggests that the topological sus-

ceptibility χt = 〈Q2〉/V (where V is the space-time vol-
ume) should suffer from an ultra-violet power-law diver-
gence in the continuum limit [16]. In CP (N − 1) models
with N ≥ 4, the dislocation problem does not arise when
one uses the standard lattice action in combination with
the geometric definition of the lattice topological charge.
In the CP (2) model (i.e. for N = 3) the problem is ex-
pected to arise, but can be avoided by the use of an im-
proved lattice action [17], which pushes the dislocation
action above the critical value. Finally, in the CP (1)
(i.e. the O(3)) model the critical value of the disloca-
tion action agrees with the continuum instanton action.
Consequently, dislocations can be suppressed only by a
delicate fine-tuning of the lattice action. This was real-
ized in a study with a classically perfect lattice action,
which indeed led to a logarithmic rather than a power-
law divergence of χt [18]. Semiclassically, the logarithmic
ultra-violet divergence also arises directly in the contin-
uum [16, 19] and may thus not be a lattice artifact. In
that case, χt would not be a physically meaningful quan-
tity in the 2-d O(3) model. Along the way, the whole
concept of distinct topological sectors and corresponding
θ-vacua has been questioned in the 2-d O(3) model. In
fact, one may suspect that θ is an irrelevant parameter
that renormalizes to zero non-perturbatively. In this pa-
per, for the first time we demonstrate with high accuracy,
that θ is actually relevant and that each value 0 ≤ θ ≤ π
is associated with a different continuum theory.
A first indication that dislocations may not have a dev-

astating effect on the continuum limit arose in a recent
study of the 2-d O(3) model at θ = 0 with a topologi-
cal lattice action [20], where we found again just a loga-
rithmic divergence of χt. Topological lattice actions are
invariant against small deformations of the lattice fields.
In particular, in [20] an action with a constraint on the
maximally allowed angle between neighboring spins has
been used [21]. All allowed configurations (i.e. those that
respect the constraint) have the same action value zero.
As a consequence, this lattice model does not have the
correct classical continuum limit, it violates the Schwarz
inequality between action and topological charge, and it
cannot be treated in perturbation theory. Despite these
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FIG. 1. Triangulated square lattice: the triangles 〈xyz〉 in the
shaded stripe S(t1, t2) carry the topological term iθq〈xyz〉.

various deficiencies, as was shown by very accurate Monte
Carlo simulations of the step scaling function introduced
in [22], the 2-d O(3) model with a topological lattice ac-
tion still has the correct quantum continuum limit [20].
Furthermore, although there are even zero-action dislo-
cations, χt was found to have only a logarithmic and not
a power-law divergence. The continuum result for the
step scaling function is known analytically thanks to an
ingenious use of the thermodynamic Bethe ansatz [23].
Remarkably, the step scaling function is known analyti-
cally also at θ = π [24]. At intermediate values of θ, on
the other hand, the 2-d O(3) model is expected not to
be integrable. Still, by expanding around θ = π, some
interesting analytic results have been obtained even in
that regime [25].

As we will see, using very accurate Monte Carlo simu-
lations, we confirm the analytic results for the step scal-
ing function at θ = π with better than per mille level
accuracy. This requires good control of lattice artifacts.
In fact, in the 2-d O(3) model (at θ = 0) the behavior
of lattice artifacts, which is apparently linear in the lat-
tice spacing a, has been puzzling for many years [26, 27].
Only recently, the puzzle has been resolved by a careful
analysis in the framework of Symanzik’s improvement
program [11, 28]. It turned out that the apparent linear
behavior is mimicked by the expected quadratic behavior
modified by large logarithmic corrections. Interestingly,
on some lattices the topological action approaches the
continuum limit of the step scaling function from below,
while the standard action approaches it from above. Here
we combine both actions in such a way that cut-off ef-
fects are extremely reduced to at most a few per mille.
Using that action as well as the standard action allows
us to extrapolate reliably to the continuum limit.

Let us consider the O(3) model on a triangulated
square lattice as illustrated in Figure 1, with a 3-
component unit-vector ~ex ∈ S2 attached to each lattice
site x. We choose periodic boundary conditions in the
short spatial direction of extent L and open boundary
conditions in the long Euclidean time direction. The ac-
tion is defined on nearest-neighbor bonds 〈xy〉 (but not
on the plaquette diagonals), and is given by

S[~e] =
∑

〈xy〉

s(~ex, ~ey), s(~ex, ~ey) =
1

g2
(1− ~ex · ~ey), (1)

for ~ex · ~ey > cos δ and s(~ex, ~ey) = ∞ otherwise. This
action eliminates field configurations for which the angle
between neighboring spins exceeds δ [21]. For δ = π the
constraint becomes irrelevant and the action reduces to
the standard action, while for g = ∞ it reduces to the
topological action of [20]. Besides the standard action,
we will use an action with an optimized constraint angle,
cos δ = −0.345, which has very small cut-off effects [29].
Let us also define the geometric topological charge den-

sity q〈xyz〉 ∈ [− 1
2 ,

1
2 ] associated with a triangle 〈xyz〉,

R exp(2πiq〈xyz〉) = 1 + ~ex · ~ey + ~ey · ~ez + ~ez · ~ex

+ i~ex · (~ey × ~ez), R ≥ 0, (2)

with 4πq〈xyz〉 being the oriented area of the spherical
triangle on S2 defined by the three unit-vectors ~ex, ~ey,
and ~ez. On a periodic lattice, the topological charge
Q =

∑

〈xyz〉 q〈xyz〉 would be an integer in the second ho-

motopy group Π2[S
2] = Z. Here we work with open

boundary conditions in Euclidean time and we sum the
topological charge density only over the stripe S(t1, t2)
of shaded plaquettes between t1 and t2 illustrated in
Figure 1. This yields the non-integer valued quantity
Q(t1, t2) =

∑

〈xyz〉∈S(t1,t2)
q〈xyz〉. In order to determine

the massgap, we introduce the operator ~E(t) =
∑

x1
~ex,

where the sum extends over all points x = (x1, t) in a
time-slice. We now define the 2-point function

C(t1, t2; θ) =
1

Z(t1, t2; θ)

∏

x

∫

S2

d~ex ~E(t1) · ~E(t2)

× exp(−S[~e] + iθQ(t1, t2)) ∼ exp(−m(θ, L)(t2 − t1)),

Z(t1, t2; θ) =
∏

x

∫

S2

d~ex exp(−S[~e] + iθQ(t1, t2)), (3)

which decays exponentially with the θ- and L-dependent
massgap m(θ, L) at large Euclidean time separations.
The massgap has been determined with high accuracy
from numerical simulations using the meron-cluster al-
gorithm [9] as well as a variant of a method developed
by Hasenbusch [10], which was further improved in [28].
It is straightforward to include the topological term in
this method. Numerically, we obtain C(t1, t2; θ) as the
ratio of C(t1, t2; θ)Z(t1, t2; θ)/Z(0) and Z(t1, t2; θ)/Z(0),
where Z(0) = Z(t1, t2; 0), which is independent of t1 and
t2. It turns out that the resulting complex action prob-
lem for θ 6= 0 is mild for the moderate spatial volumes
that are relevant in this study.
Following [22], we set u0 = Lm(θ, L) and define the

step 2 scaling function Σ(θ, 2, u0, a/L) = 2Lm(θ, 2L).
Remarkably, both for θ = 0 [23] and for θ = π [24],
the continuum limit σ(θ, 2, u0) = Σ(θ, 2, u0, a/L → 0)
has been determined analytically. One particular value
is σ(θ = 0, 2, u0 = 1.0595) = 1.2612103 [23]. Figure 2
shows the cut-off effects of Σ(0, 2, u0, a/L) for the stan-
dard action, the topological action, and the optimized
constraint action. The constraint has been optimized
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FIG. 2. Cut-off dependence of the step scaling function
Σ(θ, 2, u0 = 1.0595, a/L) for three different lattice actions:
the standard action, the topological lattice action of [20], and
the optimized constraint action with cos δ = −0.345, as well
as for three different values of θ = 0 (top) and θ = π

2
, π (bot-

tom). The lines are fits based on eq.(4). The horizontal lines
represent the analytic continuum results for θ = 0 [23] and
θ = π [24], and the fitted continuum value for θ = π

2
.

to cos δ = −0.345 by demanding that Σ(0, 2, u0, a/L =
1
10 ) = σ(0, 2, u0) for u0 = 1.0595. For L/a ≥ 6, the
remaining cut-off effects are then less than a per mille.
The data are fitted to Symanzik’s effective theory, which
predicts [28]

Σ(0, 2, u0, a/L) =

σ(0, 2, u0) +
a2

L2

[

B log3(L/a) + C log2(L/a) + . . .
]

.(4)

They are in excellent agreement with the analytic pre-
diction to four significant digits accuracy.
Figure 2 also shows corresponding results at θ = π

and π/2, both for the standard action and for the op-
timized constraint action with cos δ = −0.345. At
θ = π the analytic result for the step scaling function
is σ(π, 2, u0 = 1.0595) = 1.231064 [24]. Remarkably, al-
though the constraint was optimized for θ = 0, the cut-off

effects are still at most a few per mille at θ = π. Since
exp(iπQ) = (−1)Q = exp(−iπQ), for θ = π the topologi-
cal term does not explicitly break any symmetries of the
θ = 0 theory. Consequently, the corresponding analysis
of the cut-off effects [28], which underlies the fits in Fig-
ure 2, still applies. Again, we find excellent agreement
with the analytic result to four digits accuracy, which in-
directly confirms the corresponding exact S-matrix [12]
that underlies the analytic calculation. Agreement of the
same quality is obtained for other values of u0.

Finally, let us consider the case θ = π
2 , which is again il-

lustrated in figure 2. For θ 6= 0 or π there are no analytic
results. The topological term then breaks both parity
and charge conjugation and hence the detailed analysis of
the cut-off effects in [28] no longer applies. Still, remark-
ably the optimized constraint action with cos δ = −0.345
has no observable cut-off effects, and extrapolates to the
same continuum value σ(π2 , 2, u0 = 1.0595) = 1.24733(4)
as the standard action. This value of the step scaling
function differs from the values at θ = 0 and θ = π by
three significant digits. This shows that the continuum
limit at θ = π

2 indeed represents a different theory. The
same is true for other intermediate values 0 < θ < π.
Hence, θ is indeed a relevant physical parameter that
does not renormalize to 0 or π non-perturbatively, as one
might have expected due to the presence of dislocations.

If χt is logarithmically ultra-violet divergent in the con-
tinuum limit, which may not be the case for other defini-
tions of the topological charge [30], the difference between
the energy densities of different θ-vacua diverges as well.
This is a peculiarity of the 2-d O(3) model, which should
not extend to CP (N−1) models with N > 2. Despite the
divergence of the vacuum energy density, the massgap
m(θ, L) is completely well-behaved, and a proper non-
trivial continuum field theory can be defined for any value
of θ. It will be interesting to further investigate these the-
ories. At large volume L and low energies, for θ = π one
expects the O(3) symmetry to dynamically enhance to
the O(4) = SU(2)L × SU(2)R symmetry of the WZNW
model. In the infinite volume limit, the triplet state
should then become massless, i.e. m(θ = π, L → ∞) → 0,
and degenerate with an O(3) singlet state. For small val-
ues of θ, the singlet state is a scattering state with an
energy 2m(θ, L → ∞). For example, it would be inter-
esting to figure out whether there is a critical value θc
at which the singlet becomes a bound state [25]. Since
θ does not get renormalized, despite the fact that the
energy density difference between different θ-vacua may
be logarithmically ultra-violet divergent, the massgap is
a finite physical quantity, whose value at θ = π is even
known analytically; e.g. at Lm(0, L) = 1.0595 one ob-
tains Lm(π, L) = 1.048175 [24]. As shown in Figure 3,
the numerical data for L = 24a, which extend to ar-
bitrary values of θ, agree with this analytic prediction
below the permille level. There is a remaining tiny cut-
off effect, which diminishes only for volumes as large as
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FIG. 3. The θ-dependent massgap Lm(θ, L) at Lm(0, L) =
1.0595 using the optimized constraint action for L = 24a,
compared to the analytic result at θ = π [24] (cross).

L = 128a. The cut-off effects of constraint actions will
be discussed in detail in forthcoming publications [29].

Since dislocations do not prevent a non-trivial contin-
uum limit in the 2-d O(3) model with θ 6= 0, the same is
expected for 2-d CP (N −1) models. Using an unconven-
tional D-theory regularization by SU(N) quantum spin
ladders, CP (N − 1) models have been simulated success-
fully at θ = π [31]. More recently, a worm algorithm
has been constructed for CP (N − 1) models [32], which,
however, suffers from a sign problem at θ 6= 0. Still, this
algorithm or a variant of Hasenbusch’s method may be
sufficiently powerful to simulate CP (N − 1) models for
arbitrary values of θ, and thus generalize the results we
have obtained here. Furthermore, it is obvious to ask
whether θ-vacua effects in 4-d Yang-Mills theories can be
addressed with similar methods, using a geometric def-
inition of the lattice topological charge [33–36]. In that
case, a potential dislocation problem arises for SU(2) and
SU(3) [37], but can be cured by using an improved lattice
action [38]. Based on the results obtained here, we ex-
pect that dislocations are harmless also in 4-d Yang-Mills
theories, and that θ-vacuum effects can be simulated at
least in moderate spatial volumes.

We dedicate this paper to P. Hasenfratz on the occa-
sion of his 65th birthday. Over many years, we have ben-
efitted tremendously from his deep insights into strongly
interacting field theories, which he generously shared
with us. We are indebted to J. Balog, M. Lüscher, and
P. Weisz for illuminating discussions, and to J. Balog
for providing exact values of the step scaling function
at θ = π prior to publication. This work has been
supported by the Regione Lombardia and CILEA Con-
sortium through a LISA 2011 grant, as well as by the
Schweizerischer Nationalfonds (SNF).
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[7] U. Schollwöck and T. Jolicoeur, Europhys. Lett. 30

(1995) 493.
[8] U. Wolff, Phys. Rev. Lett. 62 (1989) 361.
[9] W. Bietenholz, A. Pochinsky, and U.-J. Wiese, Phys.

Rev. Lett. 75 (1995) 4524.
[10] M. Hasenbusch, Nucl. Phys. Proc. Suppl. 42 (1995) 764.
[11] J. Balog, F. Niedermayer, and P. Weisz, Nucl. Phys. B824

(2010) 563.
[12] A. B. Zamolodchikov and V. A. Fateev, Sov. Phys. JETP

63 (1986) 913.
[13] A. D’Adda, P. Di Vecchia, and M. Lüscher, Nucl. Phys.
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[15] B. Berg and M. Lüscher, Nucl. Phys. B190 (1981) 412.
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