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The ritial surfae of the SU(3)L × SU(3)R hiral quark model at non-zero baryon

density
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The boundary of the �rst order hiral phase transition region is studied in the mπ − mK − µB
spae using the one-loop optimized perturbation theory for the resummation of the perturbative

series. Chiral perturbation theory for mesons and baryons is used for the T = 0 parametrization

of the model. The surfae of seond order transition points bends with inreasing µB towards the

physial point of the mπ −mK mass plane allowing for the existene of the ritial end point in the

µB − T plane at the physial point. The loation and saling region of the CEP is explored.

PACS numbers: 11.10.Wx, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

In the past few years muh e�ort was invested in the mapping of the phase diagram of strongly interating matter.

Apart from the theoretial importane of the phase transition for understanding of the physis of the early universe

the ontinuous interest in this issue is also triggered by the fat that some parts of the phase diagram are within the

reah of urrent and future heavy ion ollision experiments. In QCD and also in its e�etive models the parameter

spae ontains both experimentally tunable quantities like the temperature and various hemial potentials (isospin,

strange, baryoni) and parameters like the quark masses whih have a �xed value in nature (physial point). At zero

hemial potential the nature of the phase transition at the physial point was established only very reently. The

ontinuum extrapolation in the lattie investigation of Refs. [1, 2℄ using staggered fermions showed that the transition

is of analyti ross-over type. How far the physial point is loated from the boundary of the �rst order transition

region, expeted on theoretial grounds in the limit of vanishing quark masses, is not yet de�nitively quanti�ed. Both

lattie simulations with improved staggered quarks (p4 ation) [3℄ and e�etive model studies [4, 5, 6, 7℄ show that for

degenerate quark masses the �rst order transition region extends to pseudo-Goldstone meson masses with values well

below the physial mass of the pion.

For non-vanishing baryoni hemial potential the �rst order transition region persists and its seond order boundary

forms a ritial surfae in the mu,d −ms − µB spae on whih the transition as a funtion of temperature is of seond

order. Generally it is expeted that for high values of the hemial potential the phase transition is of �rst order, so that

the ritial surfae bends towards the physial point (positive urvature). In this ase at physial quark masses there

is a ritial end point (CEP) in the hemial potential-temperature plane at whih the �rst order transition line ends.

In this plane, for hemial potential values smaller than the value at CEP the phase transition hanges to a ross-over.

The CEP was found in staggered lattie QCD �rst for a non-physial value of mud [8℄ and then for physial values of the

quark masses [9℄ (pion to rho meson masses tuned to its physial value). The loation of the CEP was also estimated

in Ref. [10℄ using Taylor expansion around µB = 0. However, the question of the existene and loation of the CEP is

not yet settled for two reasons. First the ontinuum extrapolation is not yet performed and not all the lattie methods

used to address the notoriously di�ult problem of performing simulations at �nite hemial potential ould �nd the

CEP. Aording to the simulation of Ref. [11℄ performed with imaginary hemial potential the ritial surfae turns

out to be extremely quark mass sensitive and ontrary to the standard expetation seems to have negative urvature

(the �rst order transition region shrinks with inreasing µB). This would imply the absene of the CEP in the validity

range of the method used in Ref. [11℄ estimated to be µB < 500 MeV, but leave the possibility of its appearane above

this limiting value.

In this paper our aim is to study the phase boundary of the �rst order transition region of the hiral phase transition

in the mπ−mK−µB spae with speial interest for the loation of the ritial end point in the µB −T -plane ourring
at the physial point of the mass-plane. For this investigation the SU(3)L× SU(3)R hiral quark model [12℄ is used as

an e�etive model of strong interations. This model has the same global symmetry features as the QCD. In view of

the result of [11℄ whih shades doubts on the existene of the CEP, we investigate thoroughly, by studying the predited

mass spetrum, how reliable is the existene of the CEP predited by our model (Se. II). Then by ontinuing the
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parameters of the model as funtions ofmπ andmK using the hiral perturbation theory (CHPT) for meson and baryons

we study the shape of the ritial surfae whih bounds the region of hiral �rst order transitions in the mπ−mK−µB
spae (Se. III A). For physial values of mπ and mK the loation of the CEP in the µB − T plane will be determined

in Se. III B. We onlude in Se. IV.

II. THE MODEL AND THE DETERMINATION OF ITS PARAMETERS

The Lagrangian of the SU(3)L×SU(3)R symmetri hiral quark model ontaining expliit symmetry breaking terms

is given by

L =
1

2
Tr (∂µM

†∂µM +m2
0M

†M)− f1
(

Tr (M †M)
)2 − f2Tr (M

†M)2 − g
(

det(M) + det(M †)
)

+ ǫ0σ0 + ǫ8σ8

+ψ̄ (i /∂ − gFM5)ψ. (1)

The quark �eld ψ̄ = (u, d, s) has impliit Dira and olor indies. The two 3 × 3 omplex matries are de�ned in

terms of the salar σi and pseudosalar πi �elds as M = 1√
2

∑8

i=0(σi + iπi)λi and M5 =
∑8

i=0
1

2
(σi + iγ5πi)λi, with

λi : i = 1 . . . 8 the Gell-Mann matries and λ0 :=
√

2

3
1. From the original 0-8 basis we swith to the non-strange (x)

- strange (y) basis by performing the orthogonal transformation

(

vx
vy

)

=
1√
3

(√
2 1

1 −
√
2

)(

v0
v8

)

, (2)

applied to the salar, pseudosalar mesons and external �elds, that is v ∈ {σ, π, ǫ}. Then one has

M5 =
1√
2

7
∑

i=1

(σi + iγ5πi)λi +
1√
2
diag(σx + iγ5πx, σx + iγ5πx,

√
2(σy + iγ5πy)), (3)

and similarly for M .

In the broken phase the �elds are shifted with their expetation values x := 〈σx〉 and y := 〈σy〉, whih are obtained

from 〈σ0〉 and 〈σ8〉 f. Eq. (2). No isospin breaking is onsidered whih means that the u and d onstituent quarks are

degenerate in mass: Mu = Md = gFx/2. The mass of the strange onstituent quark is Ms = gF y/
√
2. The expliit

expression for the mesoni setor of the Lagrangian obtained after performing the traes an be found in [13, 14℄. The

sum of terms linear in the �utuations gives two equations of state whih at one-loop level are

0 = 〈 ∂L
∂σx

〉 = −ǫx −m2
0x+ 2gxy + 4f1xy

2 + 2(2f1 + f2)x
3 +

∑

α,i,j

txαi,j
〈αiαj〉+

gF
2
(〈ūu〉+ 〈d̄d〉), (4)

0 = 〈 ∂L
∂σy

〉 = −ǫy −m2
0y + gx2 + 4f1x

2y + 4(f1 + f2)y
3 +

∑

α,i,j

tyαi,j
〈αiαj〉+

gF√
2
〈s̄s〉, (5)

where α goes over the pseudosalar and salar �elds and i ∈ {1 . . .7, x, y}. The non-zero three-point ouplings txαi,j
and

tyαi,j
are given in Appendix C of Ref. [6℄. Note, that in a given multiplet the three-point ouplings are degenerate, e.g.

tπ11 = tπ22 = tπ33. The oe�ients of the quadrati terms in the �utuations are the tree-level masses (see Table 1 of [7℄).

The mixing in the x − y (0 − 8) setor is re�eted by the fat that the o�-diagonal xy omponent of the mass matrix

is non-vanishing. In Appendix A we sketh how the propagators of the mass eigenvalues (η, η′ and σ, f0) are obtained.
In Ref. [7℄ a method was proposed to determine the parameters of the Lagrangian. At the ore of this proedure there

is a resummation performed using the so-alled Optimized Perturbation Theory (OPT) of Ref. [15℄ in order to avoid the

appearane of negative propagator mass squares in the �nite temperature alulations with one-loop auray. In the

OPT the mass parameter −m2
0 of the Lagrangian, whih ould be negative if the model exhibits symmetry breaking,

is replaed by an e�etive (temperature-dependent) mass parameter m2
:

Lmass =
1

2
m2

TrM †M − 1

2
(m2

0 +m2)TrM †M ≡ 1

2
m2

TrM †M − 1

2
∆m2

TrM †M. (6)

m2
is determined using the riterion of fastest apparent onvergene (FAC) and the �nite ounterterm ∆m2

is taken

into aount �rst at one-loop level.

Compared to [7℄, apart from the fat that we have to �x the Yukawa oupling gF , we have hanged the parametrization

in two aspets. 1. In plae of the one-loop relations of the Partially Conserved Axial-Vetor Current (PCAC) we

use only the tree-level relation for the pion deay onstant, beause it turned out that in ontrast to the one loop-

bosoni ontributions, whih are expliitly renormalization sale independent, the fermioni ontribution depends on

the fermioni renormalization sale. 2. We have modi�ed the gap equation for the pions and de�ned the one-loop
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pion mass as −iG−1(p = 0) = M2
π instead of de�ning it as a pole-mass. This is beause previous investigations [7, 15℄

showed that an unavoidable feature of the OPT method is that at �nite temperature the solutions of the gap equation

and of the equations of state ease to exist above a ertain temperature, unless we impose arbitrarily that the �nite

temperature part of the mesoni bubble integral is taken at vanishing external momentum.

In what follows we present the equations used to determine at T = 0 the 9 parameters of the Lagrangian: the ouplings

m2
0, f1, f2, g, gF , the ondensates x, y and the external �elds ǫx, ǫy. The physial ontent of the one-loop pseudosalar

self-energies are shown diagrammatially in Fig. 1 of [7℄, here we give expliitly only the fermioni ontributions. The

integrals are given in Appendix B. The renormalization of the mesoni part was disussed in [7℄ where the ounterterms

δm2
0, δg, δf1 and δf2 were given by Eqs. (4)-(7). Sine the fermions are taken into aount perturbatively one an

easily see from Eqs. (4) and (5) that using ut-o� regularization the renormalization of the momentum-independent

fermioni parts an be ahieved with the following ounterterms

δm2,F
0 = −

g2f
8π2

Λ2, δfF2 = − g4F
64π2

ln
Λ2

l2f
. (7)

Λ is the 3d ut-o�. The renormalization of the momentum-dependent fermioni parts an be ahieved with a wave

funtion renormalization onstant in the mesoni setor: δZ = − g2F
16π2 ln

Λ
2

l2
f

.

The FAC riterion used to determine the e�etive mass m2
is implemented by requiring that the one-loop pion mass

M2
π = −m2

0 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy +Σπ(p = 0,mi,Mu) (8)

stays equal to the tree-level pion mass (Mπ
!
= mπ). The fermioni ontribution in the self-energy Σπ(p = 0) is

ΣFπ (p = 0) = −2g2FTF (Mu), (9)

where Mu = gFx/2, and TF (Mu) the fermion tadpole de�ned in Appendix B.

Using the expression of the tree-level pion mass the equation above results in a �gap� equation for the e�etive mass

m2 = −m2
0 +Σπ(p = 0,mi(m

2),Mu). (10)

We introdue the expression above for the e�etive mass in the expression of the tree-level pion mass. For all the other

tree-level propagator masses mi appearing in the self-energy we replae the e�etive mass with the pion's mass using

its tree-level expression. Thus we arrive at the following gap-equation for the pion mass

m2
π = −m2

0 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy +Σπ(p = 0,mi(mπ),Mu). (11)

This is the �rst equation from the set of equations used for the parametrization at T = 0 and has a distintive role in

our investigation beause in the thermodynamial alulation one has to solve its T -dependent ounterpart in order to

determine mπ(T ).
The next 2 equations require that the one-loop pole mass of the kaon and eta are equal to the orresponding physial

masses. The one-loop equation for the kaon and eta pole masses read (see [7℄ for their derivation):

M2
K = −m2

0 + 2(2f1 + f2)(x
2 + y2) + 2f2y

2 −
√
2x(2f2y − g) + Re

{

ΣK(p2 =M2
K ,mi)

}

, (12)

M2
η =

1

2
Re

{

m2
ηxx

+Σηxx
(p2 =M2

η ,mi) +m2
ηyy +Σηyy (p

2 =M2
η ,mi)

−
√

(m2
ηxx

+Σηxx
(p2 =M2

η ,mi)−m2
ηyy − Σηyy (p

2 =M2
η ,mi))2 + 4(m2

ηxy
+Σηxy

(p2 =M2
η ,mi))2

}

. (13)

The fermioni ontribution to the self-energies of the kaon and of the di�erent omponents in the x− y mixing setor

are:

ΣFK(p) = −g2F
[

TF (Mu) + TF (Ms)− (p2 − (Mu −Ms)
2)IF (p,Mu,Ms)

]

, (14)

ΣFηxx
(p) = −g2F

[

2TF (Mu)− p2IF (p,Mu)
]

, ΣFηyy (p) = −g2F
[

2TF (Ms)− p2IF (p,Ms)
]

, ΣFηxy
(p) = 0, (15)

where the fermioni bubble integral IF is given in Appendix B. We implemented the FAC priniple for the kaon by

requiring additionally Σ(p2 =M2
K) = 0. The gap equation for the pion together with these three equations are su�ient

to determine m2
0, f1, f2 and g, if we know x, y and gF . The tree-level PCAC equation �xes x = fπ. Then the Yukawa

oupling is obtained from the tree-level relation gF = 2Mu/x, where Mu is the non-strange onstituent quark mass.

With the value of gF �xed we determine y from the strange onstituent quark mass y =
√
2Ms/gF . The values of the

external �elds are determined from the two equations of state (4) and (5).

We are fored to use the tree-level quark masses beause the one-loop quantum orretion to it turned out to be very

large. This ould be kept reasonably small only by using unrealistially low mass values for the tree-level onstituent

quarks.
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FIG. 1: Contour levels for the quantity R (Eq. (16)) whih gives the average perentage for the deviation of the predited

spetrum from the physial one. Shown is also the order of the phase transition on the T = 0/µB = 0 axes of the T − µB-plane

as a funtion of the fermioni and bosoni renormalization sale lf and lb ( stands for ross-over).

Sine we are working with one-loop self-energies, two renormalization sales emerge, one for the renormalization

of bosoni integrals, lb and one for fermioni integrals, lf . The parameters were determined as funtions of these

renormalization sales lb and lf using as input the values of the physial quantities mπ = 138 MeV, mK = 495.6 MeV,

mη = 547.8 MeV, fπ = 93 MeV, Mu = 313 MeV and Ms = 530 MeV. The values of the onstituent quark masses are

related to the masses of the baryon otet omponents as Mu ≈ MN/3 and Ms ≈ (MΛ +MΣ)/2 − 2Mu. Constraints

on the values of lb and lf an be obtained by onfronting the predited part of the tree-level and one-loop level mass

spetrum with the physial data. To quantify the deviation a quantity is introdued suh to re�et the best the spirit

of our parametrization

R =
1

|T |
∑

i∈T

|mtree

i −mphys

i |
mphys

i

+
1

|L|
∑

i∈L

|mtree

i −m1-loop

i |
mtree

i

, (16)

where T = {η, η′, a0, f0, σ}, L = {η′, a0, κ, f0} and |T | = 5, |L| = 4. Sine the propagator masses that enter the one-loop

integrals and determine the quantum orretions are the tree-level masses we measure their average deviation from a

given physial spetrum. We also inluded into the test quantity, R the average deviation of the one-loop masses from

the tree-level ones. The one-loop masses are determined from the orresponding propagators through the equation

Re iG−1
i (p2 = m2

i,1-loop) = 0. There are two notable omissions from the right hand side of Eq. (16). m1-loop

σ is omitted

beause in a relatively large range of the lf − lb-spae to be sanned Re iG−1
σ (p2 = m2

σ,1-loop) = 0 has no solution.

mtree

κ is omitted beause it is atually independent of lb and lf . This beomes evident if we use the tree-level relation

m2
κ,tree = (m2

KfK − m2
πfπ)/(fK − fπ) where at tree-level fK = x/2 + y/

√
2 and aording to the parametrization

above neither x nor y depend on lb and lf
1

. The pseudosalar physial spetrum used as a referene is ompleted

by mη′ = 958 MeV. As for the salars, it is still not lear whih mesons form the lightest nonet. Possible andidates

are the isosalar σ and f0(980), the isovetor a0(980) and the isospinor κ(900). For the isosalar masses we hoose

mσ = 700 MeV and mf0 = 1370 MeV, beause this parametrization of the model annot aommodate an f0 lighter

than 1 GeV.

The ontour plot of the average perentage for the deviation from the physial spetrum measured by R an be seen

in Fig. 1. Based on this plot we have hosen the point marked with a star in the �gure for whih lb = 520 MeV and

lf = 1210 MeV. At this point the 1-loop sigma mass an be obtained using the pole-mass de�nition given above and

one obtains mσ = 614.2 MeV. The one-loop mass of f0 is mf0 = 1210.9 MeV. Around this optimal point the quantity

R an be ompleted by the ontribution of the one-loop mass of the σ meson and the new analysis on�rms the hoie

of lB and lf given above.

As indiated in Fig. 1 the order of the phase transition on the axes of the µB − T plane turns out to be sensitive to

the value of the renormalization sales. It is very interesting to note, that the requirement of minimal deviation from

the physial spetrum results in values of the renormalization sales for whih the transition is of �rst order on the

T = 0 axis and of ross-over nature on the µB = 0 axis of the µB − T phase diagram. This feature turned out to be

independent of the way we quantify this deviation, that is the way we de�ne the quantity R. In onlusion, the most

reliable parametrization of this model positively predits the existene of the CEP.

1

Note, that with this parametrization the kaon deay onstant turns out to be fK = (1+Ms/Mu)fπ/2 = 125.23 MeV whih is 10% larger

than the physial value
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III. THE PHASE DIAGRAM IN THE mu,d −ms − µB SPACE

In order to determine the order of the phase transition in the mu,d − ms − µB spae we have to determine the

temperature dependene of the order parameters. This is obtained by solving the two equations of state and the gap

equation whih form a set of oupled equations:

0 = −ǫx +m2x+ 2gxy + 4f1xy
2 + (4f1 + 2f2)x

3 +
∑

i

Jit
x
i T

β
B(mi(mπ))− 4gFMuT

β
F (Mu) + ∆m2x , (17)

0 = −ǫy +m2y + gx2 + 4f1x
2y + 4(f1 + f2)y

3 +
∑

i

Jit
y
i T

β
B(mi(mπ))− 2

√
2gFMsT

β
F (Ms) + ∆m2y , (18)

m2
π = −m2

0 + (4f1 + 2f2)x
2 + 4f1y

2 + 2gy +Σπ(p = 0,mi(mπ),Mu). (19)

Ji stand for the isospin multipliity fators whih are Jπ,a0 = 3, JK,κ = 4, and Jη,η′,σ,f0 = 1. The expliit renormalized

expressions of the temperature dependent integrals T βB,F (m) are given in Appendix B. In the notation above we made

expliit that the tree-level bosoni masses depend on the pion mass determined by the gap-equation. A �rst order phase

transition is reognized by the multivaluedness in a given temperature and/or hemial potential range of either of the

two vauum expetation values. The point where a �rst order phase transition goes over into a ross-over is identi�ed

as a seond order phase transition point.

A. The surfae of seond order phase transition points

In order to obtain the surfae of the seond order phase transition points in the mu,d −ms − µB spae we have to

determine the variation of the parameters of the Lagrangian with the pion and kaon masses. In addition to the mass

of eta and the deay onstant of the pion, the onstituent quark masses are also used in the parametrization, so their

mπ and mK dependene is required as well. For fπ and mη we use the formulas of the CHPT in the large Nc limit at

O(1/f2) as in Ref. [7℄

fπ = f

(

1 + 4L5

m2
π

f2

)

, (20)

m2
η =

4m2
K −m2

π

3
+

32

3
(2L8 − L5)

(

m2
K −m2

π

)2

f2
. (21)

The values of the onstants are: L5 = 2.0152 · 10−3
, L8 = 8.472 · 10−4

and f = 91.32 MeV. These quantities are

independent of mπ and mK , and were determined in Ref. [7℄ from the ondition that at the physial point the pion

and kaon deay onstants and mη take their physial values.

In a simple onstituent quark piture the onstituent quark masses are related to the values of the baryon masses

whose dependene on mπ and mK is obtained using the formulas of the CHPT for baryons at O(q3) [16℄ (q denotes

the momentum). To this order in the hiral expansion the masses of the baryon otet are given by

MB =M0 − 2b0(m
2
π,2 +m2

K,2) + bDγ
D
B + bFγ

F
B − 1

24πf2

[

απBm
3
π + αKBm

3
K + αηBm

3
η

]

, (22)

where B ∈ {N,Σ,Λ,Ξ, }. απB, αKB , α
η
B are simple expressions of two low energy onstants D and F , the oe�ients

haraterizing the lowest order baryon Lagrangian (see Eq. (6.9a) of Ref. [16℄ for the expliit expressions). The

expressions of γDB and γFB read as:

γDN = γDΞ = −4m2
K,2, γFN = −γFΞ = 4(m2

K,2 −m2
π,2), γDΣ = −4m2

π,2, γDΛ = −4m2
η,2 γFΣ = γFΛ = 0. (23)

The subsript 2 refers to the fat that the squared meson mass is taken at the lowest, O(q2) order. Originally these

lowest-order mass expressions appear also in the O(f−2) term, but it is allowed to replae them with their physial

values. For the O(f0) piee we use m2
M,2 = m2

M − 8m4
πf

−2(2L8 − L5) for M = π,K and Eq. (21) to relate the

lowest-order mass with the physial one. Note, that due to the lowest order Gell-Mann�Okubo relation the �rst term

in Eq. (21) is m2
η,2.

The unknown onstants are M0, the baryon mass in the hiral limit and b0, bD, bF the oe�ients of the lowest

order symmetry breaking part (ontat ontribution). Sine M0 and b0 appear in the same ombination for all the

masses an additional relation is needed in order to disentangle them. This relation is usually hosen to be the so-alled

nuleon sigma-term de�ned in terms of the proton matrix element of the 11 omponent of the sigma ommutator
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FIG. 2: The surfae of seond order phase transition points.

σπN = 〈p|σ11(0)|p〉/2Mp, where Mp is the proton mass.

2

At O(q3) the sigma-term reads [16℄

σπN = −2(2b0 + bD + bF )m
2
π,2 −

m2
π

64πf2

[

4απNmπ + 2αKNmK +
4

3
αηNmη

]

. (24)

The four onstants are determined from the expressions of MN , MΞ, (MΣ+MΛ)/2 and σπN using as input D = 0.8,
F = 0.5, MN = 938.92 MeV, MΣ = 1193.15 MeV, MΛ = 1115.683 MeV, MΞ = 1317.915 MeV and σπN = 45 MeV. The

obtained values are: M0 = 939.82 MeV, b0 = −0.869 GeV

−1
, bD = 0.0363 GeV

−1
and bF = −0.582 GeV

−1
. We keep

these values �xed when determining the onstituent quark masses on the mπ −mK mass plane as Mu = MN/3 and

Ms = (MΛ +MΣ)/2− 2Mu. Then at �xed values of the renormalization sales the parametrization desribed in se. II

is performed for eah point of the mass plane.

The result obtained after �nding the nature of the phase transition by solving Eqs. (17),(18),(19) is displayed in

Fig. 2. The seond order surfae is shown only in a restrited region of the mass plane for two reasons. On the one

hand the parametrization breaks down lose to the diagonal of the mass-plane. Along the diagonal the masses beome

degenerate and we annot determine the same number of parameters from fewer equations. On the other hand, for

large values of the kaon masses mK > 400 MeV we see that the surfae bends away from the mπ = 0 axis (apparently

no rossing ours). This is an unphysial behavior sine within the linear sigma model, that is without fermions, it was

shown in Ref. [7℄ that for µB = 0 the boundary of the �rst order transition region approahes the mπ = 0 axis, allowing
to loate there a triritial point (TCP). This anomalous behavior originates from the way the baryon masses depend

on mK : all of them start to derease with inreasing mK , for mN at around mK = 300 MeV, for mΛ at mK ≈ 400 MeV

and for mΣ and mΞ this ours at around mK = 500 MeV. This means that above mK = 400 MeV one an not trust

the O(q3) formulas of the CHPT for the baryon masses. Based on the mK dependene of the baryon masses presented

in [17℄ we an say that had we used the more ompliated O(q4) formulas we would have observed the bending away

of the surfae from the mπ = 0 axis at around mK = 600 MeV. The result of Ref. [7℄ shows that even at this value of

the kaon mass we would be far from the saling region of the TCP.

We an see that the surfae grows out perpendiularly from the mass plain (µB = 0). This means that the ritial

points µcB(mπ ,mK) whih are lose to the mass plane are extremely sensitive to the values of mπ and mK . This was

observed in lattie simulation using imaginary hemial potential, where this is the region whih is traversed when

performing the analytial ontinuation to real hemial potential [11℄. We an also see that the tangent plane to the

surfae has a dereasing angle with the mass plane as one approahes the ritial point whih orresponds to the physial

masses. Here the dependene of µcB(mπ,mK) on the masses is milder.

B. The CEP at the physial point of the mass-plane

Now we turn bak to the physial point in order to study the loation of the CEP in the µB − T -plane. There are
many e�etive model studies published in the literature (see Ref. [18℄ for an extensive list), the major part of them was

done with two �avors.

2

The sigma ommutator is de�ned as σab(x) = [QaA(x0), [Q
b
A(x0),Hsb

(x)]], where QaA(x0) is the axial harge operator and H
sb

= q̄Mq is
the hiral symmetry breaking term of the QCD Hamiltonian (M = diag(mu,md,ms)).
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FIG. 3: The phase diagram orresponding to the point denoted with a star in Fig. 1. Shown are the universal hemial freeze-out

line from Ref. [24℄ and the CEP obtained in the lattie [9℄. The arrow at the CEP shows the temperature diretion of the 3d

Ising model.

As we have disussed in Se. II, reasonable values, namely lf = 520 MeV and lb = 1210 MeV have been hosen

for the renormalization sales. In the ross-over region we determined for inreasing values of µB the pseudo-ritial

temperature Tc through the loation of the peak of the derivative of the non-strange order parameter x with respet

to T . The peak diverges at the CEP. For higher values of µB in the �rst order transition region the spinodals were

de�ned as the two turning points of the two-valued order parameter x as funtion of µB at �xed T . Sine we have not
alulated the e�etive potential, we de�ned the �rst order line through the points between the two spinodals, where

x(µB) has an in�etion point at �xed T . This line together with the two spinodals, plus the ross-over transition line

and the loation of the CEP (T
CEP

= 74.83 MeV, µB,CEP = 895.38 MeV) an be seen in Fig. 3. The fat that the CEP

value of the temperature is smaller and that of the µB is larger than what is found on the lattie (T
CEP

= 162± 2 MeV

and µB,CEP = 360± 40 MeV, f. [9℄) seems to be a ommon feature of all results obtained in the linear sigma model

and the Nambu�Jona-Lasinio model.

In Fig. 3 we display also the universal hemial freeze-out urve of Ref. [24℄ whih is parametrized as T (µB) =
a − bµ2

B − cµ4
B, where a = 0.166 GeV, b = 0.139 GeV

−1
and c = 0.053 GeV

−3
. We an see that for µB > 400 MeV

our phase transition line lies above the urve whih separates a region dominated by inelasti proesses (high-T region)

from a region dominated by elasti proesses. The parameters of the freeze-out urve (µB and T ) reprodue in thermal

models the partile yields measured in experiments performed at di�erent beam energies. It is alled universal beause

is obtained from the ondition that the average energy per average number of hadrons is approximately 1 GeV. The

sensitivity of this urve to other freeze-out onditions is studied in Ref. [24℄. It is expeted that the hemial freeze-

out takes plae below the true phase transition line. In the resonant gas model with resaled mass spetrum suh

as to reprodue mπ = 770 MeV of the lattie simulation with 2 �avor QCD using Taylor expansion of the fermion

determinant, the line of �xed energy density reprodues the transition line of the lattie. The set of physial resonanes

expeted to appear in the (2+1)-�avor QCD results in a line of �xed energy density whih is lose to the hemial

freeze-out line in the meson dominated region (µB < 400 MeV) and lies above it in the baryon dominated region

(µB > 400 MeV) [25℄.

There are some quantities like the width of the peak of the hiral suseptibility and the urvature of the ross-over

line at µB = 0, whih an be ompared with their values measured on the lattie. The width of the hiral suseptibility

as a funtion of T gives information on the strength of the ross-over transition. The ontinuum result of Ref. [1℄ is

∆Tc(χψ̄ψ) = 28(5)(1) MeV. We obtain ∆Tc(xχ) = 15.5 MeV whih means that the transition is more abrupt in our

ase

3

. It is interesting to remark that for the simulation of Ref. [9℄ in whih the CEP was found the width is about

an order of magnitude smaller than in the ontinuum limit [19℄. Then a natural expetation is that in the ontinuum

limit the loation of the CEP would move to higher values of µB , that is a larger value of µB would be required to turn

the phase transition into a �rst order type if one starts with a week ross-over at µB = 0.

Another quantity whih an be ompared is the urvature at µB = 0 whih is measured by C := Tc
d2Tc

dµ2

B

∣

∣

µB=0
. Our

value C = −0.09 is 35 − 40% larger that the lattie result C = −0.058(2) for Nf = 2 + 1 of Ref. [9℄. Our pseudo-

3

It is worth to note, that the suseptibility whih an be de�ned in this model, namely χ = dx/dǫx an be onneted with the hiral

suseptibility of the light quarks χψ̄ψ = d〈ψ̄ψ〉/dmu . This is based on the following relations: 〈ψ̄ψ〉 ∼ x, m2
π = B0mu (lowest order

relation in CHPT) and m2
π = ǫx/x (Goldstone theorem). From these immediately follows: χψ̄ψ ∼ xχ.
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ritial temperature at vanishing hemial potential Tc = 154.84 MeV is quite lose to Tc = 164(2) MeV obtained

in Ref. [9℄ but is even loser to what was obtained in the ontinuum limit in Ref. [1℄, namely Tc = 151(3) MeV. A

olletion of urvatures obtained in di�erent lattie approahes and for di�erent �avor numbers is given in Ref. [20℄,

where it was observed that the urvature is onsiderably dereased if the oe�ient g of the determinant term in the

Lagrangian dereases with the temperature. The rapid derease of the anomaly near the hiral transition temperature

is indiated by lattie simulations. In NJL model the T-dependene of g an be extrated by �tting the lattie result

on the topologial suseptibility with an analyti formula of the suseptibility [21℄. Following Ref. [22℄ we onsidered

g(T ) = exp(−(T/T0)
2). As a onsequene the urvature was redued to C = −0.08. This means that the restoration

of the UA(1) symmetry has an in�uene on the shape of the rossover transition line and on the loation of CEP. More

detailed dependene of g on T and µB is needed in order to assess this in�uene on the loation of the CEP.

We have studied the shape of the ritial region based on the hiral suseptibility χ = dx/dǫx. This is important in

phenomenology, sine aording to Ref. [26℄ if the ritial region is larger that the region where the so-alled fousing

e�et (see Ref. [27℄) is realized, then the interations annot be negleted and the use of resonane gas model ould

be questionable. We found that the ritial region is heavily strethed in the diretion of rossover transitions line as

shown in the smaller piture on Fig.3, in whih we depited the ratio χ/χfree, where χfree is the hiral suseptibility

of a free massless quark gas, given by χfree = T 2/6 + µ2
B/(18π

2). The ontours shown are 1.2, 0.8, 0.6 from inside out.

The highest values are onentrated around the pseudo-ritial line in a 1− 2 MeV wide elongated region. The shape

of the ritial region is similar to what was observed based on quark number suseptibility in Ref. [23℄ in the two-�avor

e�etive QCD.

We determined the mapping of the temperature axis of the Ising model onto the µB−T plane at the CEP whih is in

the universality lass of a 3d Ising model. To do this, we have measured, through the relation χ ∼ (|µB−µB,CEP| cosα+
|T −T

CEP

| sinα)−γ , the ritial exponent of the hiral suseptibility along di�erent diretions pointing toward the CEP
and haraterized by an angle α ∈ [0, 360◦] measured from the positive µB axis. Going with inreasing µB along the

diretion tangent to the ross-over line at the CEP having α = 320.85◦ we obtained γ = 1.01, whih orresponds to the

mean-�eld exponent 1. This diretion orresponds to the temperature axis of the Ising model and it is shown in Fig. 3

by the arrow at CEP. From diretions not parallel to the tangent line γ ∼ 0.64, as was found in Ref. [23℄.

Below we present in details how the diretion orresponding to the Ising temperature axis was found. Aording

to the Landau-Ginzburg type analysis of Ref. [23℄, the ritial region of the CEP is splited into two saling regions.

One of them ontains path whih are asymptotially parallel to the tangent line of the ross-over urve at the CEP

along whih γ = 1 (mean �eld exponent), while the other one is the omplement region of the �rst where γ = 2/3.
In aordane with these, we found that by hoosing a path whih is near the asymptotially parallel diretion, the

hiral suseptibility as funtion of the distane from the CEP onsists of two straight lines in a log-sale plot having

slopes 1 and 2/3, respetively. Moreover, as we approah the diretion of the tangent line to the ritial urve at the

CEP, the range of the line with slope 2/3 shrinks and the range of the line with slope 1 grows, as one an see in Fig. 4.

Asymptotially parallel to the tangent line there is no more rossing of saling regions, the path remains in the region

haraterized by γ = 1.

IV. CONCLUSION

A resummed perturbation theory was used for the parametrization of the SU(3)L × SU(3)R hiral quark model

with one-loop auray using as input the physial pseudosalar setor and the masses of the onstituent quarks. We
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found that in a large range of the bosoni and fermioni renormalization sales, within the parametrization sheme

used the model gives 1

st

order transition on the T = 0 axis and rossover type transition on the µB = 0 axis of

the µB − T -plane at the physial point of the mπ − mK mass-plane. The renormalization sales were �xed by the

requirement of minimal deviation of the predited mass spetrum from the physial one and the ritial end point was

loated at µB,CEP = 895.38 MeV and T
CEP

= 74.83 MeV. The loation and the shape of the ritial region of the CEP

were onfronted with other results from the literature. We onsider that in an e�etive model a �nite answer for the

atual loation of the CEP an be given only by supplementing the hiral nature of the transition with other aspets

of a true deon�nement transition, like the in�uene of the on�nement, whih an be taken into aount through

the Polyakov loop potential and the dependene of the axial anomaly on the temperature and density. For this more

detailed knowledge of these phenomena is needed.

We also studied the surfae of the seond order phase transition points in the mπ − mK − µB spae using hiral

perturbation theory for meson and baryons in order to ontinue the model's parameters from their value at the physial

point. This surfae rises from the boundary of the �rst order phase transition region on the mπ −mK plane as the

baryoni hemial potential is inreased. We found that the surfae has positive urvature bending monotonially

towards the physial point of the mass-plane.
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APPENDIX A: CALCULATION IN THE MIXING SECTOR

Not all of the salar and pseudosalar �elds of the Lagrangian are mass eigenstates, there is a mixing between

the singlet and the otet states. Sine physially only mass eigenstates an propagate we have to diagonalize the

propagators enountered when alulating the self-energies. In the mixing, x − y setor, the diagonal matrix G̃
ontaining the tree-level physial propagators are obtained through an orthogonal transformation performed with

the matrix O =

(

cos θ sin θ
− sin θ cos θ

)

(tan2θ = 2m2
xy/(m

2
xx − m2

yy)) as G̃ = OGOT . Following the onvention of

Ref. [14℄ (see Eqs. (18) and (20) ) we de�ne G̃S = diag(Gσ, Gf0) (G̃P = diag(Gη′ , Gη)) in the (pseudo)salar

setor. It is easy to show, that one has sin 2θP = 2mηxy/
√

(m2
ηxx −m2

ηyy)
2 + 4m4

ηxy, cos2 θP = [1 + (m2
ηxx −

m2
ηyy)/

√

(m2
ηxx −m2

ηyy)
2 + 4m4

ηxy]/2 in the pseudosalar setor and sin 2θS = −2mσxy/
√

(m2
σxx −m2

σyy)
2 + 4m4

σxy,

cos2 θS = [1 − (m2
σxx − m2

σyy)/
√

(m2
σxx −m2

σyy)
2 + 4m4

σxy]/2 in the salar setor. These expressions are to be used

when expressing the xx, xy and yy omponents of the internal propagators of Feynman diagrams. In the pseudosalar

setor one has

GPxx = Gη′ cos
2 θP +Gη sin

2 θP , GPyy = Gη′ sin
2 θP +Gη cos

2 θP , GPxy = (Gη′ −Gη) sin θP cos θP , (A1)

and similarly for the salar setor with the replaements Gη′ → Gσ, Gη → Gf0 and θP → θS . By doing this in the

non-mixing setor we obtain the self-energies in terms of the physial propagators, while in the mixing setors we obtain

the xx, xy and yy omponents of the self-energies. In this latter setor an additional diagonalization is required to

obtain the self-energies for the mass eigenstates η′, η, f0 and σ.

APPENDIX B: INTEGRALS

The one-loop fermioni integrals enountered in the alulation are the tadpole T βF (mq) and the bubble IF (p,mq).
In the imaginary-time formalism the tadpole integral for a quark with mass mq is de�ned as:

〈q̄q〉 = −4mqiT

∞
∑

n=−∞

∫

d3k

(2π)3
i

ω2
n − ~k2 −m2

q

=: −4mqT
β
F (mq), (B1)

where ωn = (2n+ 1)iπT . After renormalization at �nite temperature one has

T βF (mq) =
m2
q

16π2
ln
m2
q

l2f
+

1

2π2

∫ ∞

mq

dω
√

ω2 −m2
qfF (ω), (B2)
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where in terms of the Fermi-Dira distributions for quarks and antiquarks f±
F (ω) = 1/(exp(β(ω ∓ µq)) + 1), fF (ω) is

given by fF (ω) = − 1

2

[

f+
F (ω) + f−

F (ω)
]

and µq = µB/3. (The bosoni tadpole T
β
B(m) looks exatly the same but with

fF (ω) replaed by the Bose-Einstein distribution fB(ω) = 1/(exp(βω)− 1)).
There are two types of bubble integrals, the �rst ours in the pseudosalar self-energies and is used in the proess

of the parametrization while the other gives ontribution to the salar self-energies when alulating the one-loop mass

of the salars. Both are needed only at zero temperature. Their expressions stand here:

ΣP/S(p,m1,m2) =
g2F
2
Tr

∫

d4k

(2π)4
iΓP/S( /k +m1)ΓP/S( /p− /k +m2)

(k2 −m2
1)((k − p)2 −m2

2)

= g2F
[

(p2 − (m1 ∓m2)
2)I(p,m1,m2)− TF (m1)− TF (m2)

]

, (B3)

where for pseudosalars ΓP = γ5 and for salars ΓS = −i. I(p,m1,m2) is the expression enountered when alulating

a bosoni bubble integral:

I(p,m1,m2) =
1

16π2

[

ln
m2

2

el2f
+

1

2

(

1 +
m2

1 −m2
2

p2
ln
m2

1

m2
2

)

]

+
G

16p2π2



















−1

2
ln

∣

∣

∣

∣

m2
1 +m2

2 − p2 +G

m2
1 +m2

2 − p2 −G

∣

∣

∣

∣

− iπΘ(p2 − (m1 +m2)
2), for p2 > (m1 +m2)

2, p2 < (m1 −m2)
2,

arctan
p2 −m2

1 +m2
2

G
+ arctan

p2 +m2
1 −m2

2

G
, for (m1 −m2)

2 < p2 < (m1 +m2)
2,

(B4)

where G =
∣

∣

(

p2 − (m1 +m2)
2
) (

p2 − (m1 −m2)
2
) ∣

∣

1/2
. For two equal masses the orresponding expression an be

easily obtained.
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