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Abstract

We show that the eigenvalues of the first order partial differential equa-

tion derived by quasi-classical approximation of the Schrödinger equation

can be computed from the trace of a classical operator. The derived trace

formula is different from the Gutzwiller trace formula. The Fredholm de-

terminant of the new operator is an entire function of the complex energy

plane in contrast to the semi-classical spectral determinant derived from

the Gutzwiller trace formula.

1 Introduction

The Gutzwiller trace formula[1] is the most important tool for semiclassical

quantization of non-integrable systems. The trace formula, in general, does not

converge close to the semiclassical energy eigenvalues or resonances where we

would like to use it. The spectral determinant, derived by Voros[2] from the

trace formula, has much better mathematical properties. However it also does

not converge on the whole complex energy plane[3] and cannot be used to de-

termine all the complex resonances of a system. One possible solution of the

convergence problem is to introduce smeared trace formulas or spectral determi-

nants. These methods limit the accuracy of the resonances and allows only qual-

itative comparison of the exact quantum and the semiclassical spectra. Trace

formulas and spectral determinants can be introduced for classical systems[4]

including thermodynamic formalism[5] and their analytical properties can be

studied. The convergence problems of these formulas and the semiclassical con-

vergence problems have the same origin [7]. For a large class of classical systems
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with ‘nice’ mathematical properties the recent theorem of H. H. Rugh[6] assures

the convergence of classical spectral (Fredholm) determinants for a large class

of classical systems with ‘nice’ mathematical properties. This theory can be ex-

tended to semiclassical trace formulas[8], and the semiclassical resonances can

be computed without convergence problems. In addition, the numerical error of

the semiclassical resonances decreases super-exponentially ∼ exp(−nβ) (β > 1)

as a function of the maximal topological length n of periodic orbits.

The theory in Ref.[8] has been developed on an abstract mathematical

ground. Here, the connection of this mathematical description and the quasi-

classical approximation, introduced by Maslov[10], is discussed. The term quasi-

classical is more appropriate than semiclassical since the Maslov type descrip-

tion leads to a pure classical Perron-Frobenius operator in a natural way. The

Fredholm determinant of this operator can serve as a well defined and mathe-

matically clean starting point of the semiclassical approximation of the spectra.

One additional advantage of this description is that the wave function evolves

along one single classical trajectory and we do not have to compute sums over

increasing numbers of classical trajectories as in computations involving Van

Vleck formula[11].

2 The quasi-classical approximation

Following mostly Ref.[9], we give a summary of the quasi-classical approxima-

tion, which was worked out by Maslov[10] in this form. This approximation was

used earlier by Liouville, Green, Stokes, Rayleigh and others.

The Schrödinger equation for a single particle of unit mass in a potential U

is

ih̄
∂ψ

∂t
= −

h̄2

2
∆ψ + U(q)ψ, (1)

where ∆ is the Laplace operator and ψ(q, t) is the wave function. The h̄ is the

small parameter of the problem, and the quasi-classical approximation gives the

solution of this equation for h̄ → 0. This asymptotic solution is of short wave

form

ψ(q, t) = ϕ(q, t)eiS(q,t)/h̄, (2)

where the amplitude ϕ(q, t) and the phase S(q, t) are smooth real functions on

2



some bounded region of the configuration space. Substituting (2) in the Schrö-

dinger equation, we can derive partial differential equations (PDE) for the am-

plitude and the phase with initial conditions ϕ(q, 0) = ϕ0(q) and S(q, 0) = S0(q)

respectively. In the limit h̄→ 0 omission of the non-leading terms proportional

to h̄2 leads to the following quasi-classical partial differential equations

∂̺

∂t
+ div (̺∇S) = 0, (3)

∂S

∂t
+H(q,∇S) = 0, (4)

where ̺(q, t) = ϕ2(q, t) and H(q, p) is the Hamilton function. Equation (4),

which is the Hamilton-Jacobi equation, is a first order partial differential equa-

tion whose solution corresponding to an initial S(q, 0) = S0(q), can be given

independently from (3). However, the continuity equation (3) can be solved

only if the solution S(q, t) of (4) is known. In other words, the Hamilton-Jacobi

equation is autonomous while the continuity equation is driven by the solution

S(q, t) of (4).

We know from the theory of first order PDE’s[12] that their solutions lead to

ordinary differential equations (ODE). As is well known, the Hamilton-Jacobi

equation leads to the Hamilton differential equations

q̇ =
∂H(q, p)

∂p
,

ṗ = −
∂H(q, p)

∂q
, (5)

where the new variable

p = ∇S(q, t)

has been introduced. In the PDE description we evolve the whole function

S(q, t) and compute its gradient at a given point q0. Computation of the gradient

requires information about the behavior of the function S(q, t) in the vicinity

of q0 and can not be recovered from the value of S(q0, t) alone. In the ODE

description we evolve both q and p = ∇S(q, t). Therefore at a given time, we do

not have to compute the gradient from S(q, t) since the evolution is local in the

(q, p) space. From the ODE description we can reconstruct the whole solution

of the PDE as

S(q′, t) = S(q, 0) +

∫ t

0

L(q(τ), q̇(τ))dτ, (6)
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where we have to integrate the Lagrange function along the phase space trajec-

tory with

q′ = q(t), q = q(0),∇S(q′, t) = p(t),∇S(q, 0) = p(0).

For a generic S(q, 0) only one such trajectory exists.

The ‘local’ solution of the continuity equation (3) is also straightforward.

At a given starting point q0 the momentum is given by p0 = ∇S0(q0), and

the amplitude of the wave function is ϕ0(q). After time t the coordinate q0

evolves to q(t) and p0 to p(t) according to the full Hamiltonian flow. The

new amplitude can be derived from the probability conservation as follows:

Take an infinitesimal initial d dimensional directed volume V (q0) around q0 in

the configuration space. The points of this volume evolve to the infinitesimal

directed volume V (q(t)) around q(t) according to the Hamiltonian flow. The

value of the amplitude changes according to

ϕ(q(t)) = ±

(

V (q(t))

V (q(0))

)

−1/2

ϕ0(q0), (7)

where the sign ±1 reflects the ambiguity of the transformation from the density

̺ to ϕ. Careful analysis shows that the minus sign refers to the case where the

orientation of the final volume is the opposite the initial one. The ratio of vol-

umes is independent of the way we specify the initial infinitesimal volume. To

understand which quantities determine the volume ratio, we specify an initial

directed parallelepiped around q0 with edges given by d independent infinites-

imal vectors δq1, δq2, . . . δqd. After time t these vectors are transformed into

δq′

1, δq
′

2, . . . δq
′

d by the flow. The initial point (q0, p0) and the set of initial vec-

tors do not specify uniquely the image vectors. This is a consequence of the fact

that the infinitesimal vectors are transformed by the full Jacobian matrix of the

Hamilton flow, and we have not specified the infinitesimal momentum vectors

around p0 corresponding to these vectors. The initial function S0(q) determines

a set δp1, δp2, . . . δpd of vectors through the second derivative matrix:

δp = Mδq, Mji =
∂2S0(q)

∂qj∂qi
, (8)

which we shall call the curvature matrix. The initial curvature matrix M0 is an

important initial condition, and we are not able to compute the image of the
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volume without it. The vector (δqi, δpi) is transformed by the Jacobi matrix

δq′

i = Jqqδqi + Jqpδpi, (9)

δp′

i = Jpqδqi + Jppδpi, (10)

(11)

where the subscripts q and p denote the corresponding [d × d] submatrices of

the full [2d× 2d] Jacobian. The Jacobian is determined by the initial condition

(q0, p0) and can be computed as a time ordered integral along the phase space

trajectory

J(q, p, t) = T exp

{
∫ t

0

dτD2H(q(τ), p(τ))

}

, (12)

where D2H(q, p) denotes the second symplectic derivative matrix of the Hamil-

tonian and T is the time ordering operator. The curvature matrix of the function

S(q, t) around q(t) defines a (8) type relation between the infinitesimal vectors

δp′ = M′δq′, M′

ji =
∂2S(q′, t)

∂qj∂qi
. (13)

Using (8) and (13), we can eliminate the vectors δpi and δp′

i and can get

relations between the initial and final infinitesimal configuration vectors and

the curvature matrices

δq′ = (Jqq + JqpM)δq, (14)

M′ = (Jpq + JppM)(Jqq + JqpM)−1. (15)

From the first relation (14) we can read off the volume ratio:

V (q′)

V (q0)
= det(Jqq + JqpM). (16)

The second relation (15) is a recursion relation for M and can be considered as

the matrix generalization of the usual fractional rational transformation. From

(15) we can derive a differential equation for M(t), if we substitute the elements

of the infinitesimal Jacobi matrix. This differential equation

Ṁ = −

(

∂2H

∂q∂q
+M

∂2H

∂p∂q
+
∂2H

∂q∂p
M+M

∂2H

∂p∂p
M

)

, (17)

is a driven one since the second partial derivatives of the Hamilton function

should be computed along the phase space trajectory. If we solve this differential
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equation along the phase space trajectory the volume ratio can be written as a

time ordered integral along the phase space and M(t) trajectory

V (q′)

V (q0)
= T exp

{
∫ t

0

Tr

[

∂2H

∂p∂q
+
∂2H

∂p∂p
M

]

dτ

}

(18)

The square root of the volume ratio is also a time ordered integral:

(

V (q′)

V (q0)

)

−1/2

= Texp

{

−
1

2

∫ t

0

Tr

[

∂2H

∂p∂q
+
∂2H

∂p∂p
M

]

dτ

}

. (19)

The computation of this expression requires some care when the solution of the

differential equation (17) is singular. Close to a singularity, where

M(t→ tc) = ∞,

we can neglect the non-leading terms from (17) and use the solution of

Ṁ = −M
∂2H

∂p∂p
M. (20)

The second derivative matrix can be decomposed into combinations of dyads

and their eigenvalues in the usual way

∂2H

∂p∂p
=

d
∑

i=1

λiDi, DiDj = δijDj . (21)

The solution close to the singularity can be a linear combination of some of

these dyads corresponding to singular directions l:

M(t) =
1

t− tc

R
∑

l=1

1

λl
Dl, (22)

where R is the number of singular directions. The time ordered integral close

to the singularity is dominated by

(

V (q(tc+0))

V (q(tc
−0))

)−1/2

= exp

(

−
1

2

∫ tc+0

tc−0

R

τ − tc
dτ

)

. (23)

This integral can be computed by adding infinitesimal imaginary value iǫ to tc

and taking the ǫ→ 0 limit

(

V (q(tc+0))

V (q(tc
−0))

)−1/2

= exp(iπ(R/2)). (24)
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Between two singular points the time ordered integral is positive and gives the

absolute value of the volume ratio. Notice that R counts the number of rank

reductions of the matrix M along the classical path, and it is also a function on

the initial condition M0.

Now we have everything needed to describe the time evolution of a quasi-

classical wave function. The wave function at time t is now

ψ(q′, t) = ϕ(q′, t)eiS(q′,t)/h̄ = ±

(

V (q′)

V (q0)

)

−1/2

e
i
∫

t

0

Ldτ/h̄
ϕ0(q0)e

iS0(q0)/h̄ (25)

where q0 is the starting point of a classical trajectory with initial momentum

∇S0(q0) which ends up in q after time t with momentum ∇S(q, t), and the

volume ratio is determined by the curvature matrix M = ∂i∂jS(q, 0).

3 Time evolution à la Maslov

At this point it is possible to express the volume ratio and the momentum with

the second and first derivatives of the minimal action between q′ and q. In

this way we recover the usual Van Vleck propagator[13]. The spirit of equation

(25) is that the wave amplitude ϕ at time t and at coordinate q′ is determined

by the amplitude at t = 0 at coordinate q. In calculations involving the Van

Vleck operator kernel this nice property is lost, and we have to compute lots of

trajectories to compute the volume ratio and we have to know the whole initial

wave function too. However we have a better option. We can keep track of the

variables p and M along only one trajectory and compute (6) and the volume

ratio (19). This means that the evolution takes place on the extended (q, p,M)

space. We can introduce classical density functions ψ̃ defined on this space. The

wave function then corresponds to the special function

ψ̃(q, p,M, t) = ψ(q, t)δ(p −∇S(q, t))δ

(

M−
∂2S(q, t)

∂qj∂qi

)

. (26)

The evolution of a general classical density function on the extended space

according to (25) can be rewritten in terms of a classical transfer operator

ψ̃(q′, p′,M′, t) =

∫

dqdpdML(q′, p′,M′, t | q, p,M, 0)ψ̃(q, p,M, 0), (27)
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with the kernel

e
iπν+

∫

t

0
dτ iL

h̄
+ 1

2
Tr
{

∂2H
∂p∂q

+ ∂2H
∂p∂p

M

}

δ(q′−qt(q, p))δ(p′−pt(q, p))δ(M′−Mt(q, p,M)),

(28)

where qt(q, p), pt(q, p) and Mt(q, p,M) denote the evolution of q, p and M

from the initial coordinates q,p = ∇S0(q) and M = ∂i∂jS0(q) during the time

t, and ν = N + R/2. The time ordered integrals should be computed along

the full trajectory, and also the number of rank reductions R and the number

of orientation changes N . The Dirac deltas assure that the operator connects

coordinates, which are connected by the classical dynamics, and give the correct

amplitude. This operator can evolve densities, which are not of the form (26),

and therefore we can expect that only a part of its spectrum has relevance to

semiclassics, but all the semiclassical eigenvalues will be contained in its spectra.

4 Entire Fredholm determinants

The spectral or Fredholm determinant of the operator (28) can be defined by

the identity

det(1− L) = exp

(

−

∞
∑

n=1

1

n
TrLn

)

, (29)

where the traces of the powers of the operator are

TrLn =

∫

dqdpdMLn(q, p,M | q, p,M). (30)

The zeroes of the Fredholm determinant on the complex energy plane yield the

eigenvalues of the operator. The simplest application of (28) is to 3-dimensional

hyperbolic Hamiltonian flows. In this case the spectral or Fredholm determinant

of the operator (28) is given by[8]

det(1− L) = exp

(

−
∑

p,r

1

r | Λr
p |

eirSp(E)+iνpπ

(1− 1/Λr
p)

2
∆p,r

)

∆p,r =
| Λr

p |1/2

1− 1/Λ2r
p

+
| Λr

p |−5/2

1− 1/Λ2r
p

, (31)

where p is the index of primitive periodic orbits, Λp is the corresponding eigen-

value of the stability matrix, and r is the repetition number. The practical
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advantage of (31) over the more familiar Gutzwiller-Voros and Ruelle type zeta

functions was demonstrated by detailed numerical studies[7] of the related quan-

tum Fredholm determinant[14]. It can be shown[15] that the Fredholm deter-

minant obtained by keeping only one of the terms in the sum in (31) is an entire

function in the whole energy plane. This enables us to show that the Gutzwiller-

Voros spectral determinant for Axiom A flows is meromorphic in the complex

E plane, as it can be written as a ratio of entire functions[8]. The non-physical

eigenvalues of (28) can be removed.

5 Conclusions

In conclusion, we have constructed a classical evolution operator for semi-

classical quantization based on Maslov’s quasi-classical quantization method,

and derived a new determinant for periodic orbit quantization of chaotic dy-

namical systems. The main virtue of the determinant (31) is that the theorem

of H.H. Rugh[6], applicable to multiplicative evolution operators such as (28),

implies that this determinant should be entire for Axiom A flows, i.e. free of

poles in the entire complex energy plane. Our numerical tests of the three disk

system also support the above claims[15].
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