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We study the effective potential of a real scalar ϕ4 theory as a function of the temperature
T within the simplest Φ-derivable approximation, namely the Hartree approximation. We apply
renormalization at a “high” temperature T⋆ where the theory is required to be in its symmetric
phase and study how the effective potential evolves as the temperature is lowered down to T = 0. In
particular, we prove analytically that no second order phase transition can occur in this particular
approximation of the theory, in agreement with earlier studies based on the numerical evaluation
or the high temperature expansion of the effective potential. This work is also an opportunity to
illustrate certain issues on the renormalization of Φ-derivable approximations at finite temperature
and non-vanishing field expectation value, and to introduce new computational techniques which
might also prove useful when dealing with higher order approximations.

I. INTRODUCTION

The two-particle-irreducible (2PI) effective action [1–5] offers a general and systematically improvable approach
for resumming infinite classes of Feynman diagrams of a given quantum field theory. One of its most compelling
aspects is that it appears to be applicable to a wide variety of situations ranging from out-of-equilibrium settings to
finite temperature calculations in equilibrium. In fact, the first orders of approximation of the 2PI effective action
seem to capture already many interesting features of quantum field theories. In the case of scalar fields for instance,
including the first non-local, field independent contribution to the 2PI effective action is enough to obtain a controlled
(non-secular) time evolution which shows thermalization at late times, at least at the level of the two-point function
[6]. In equilibrium, the same orders of approximation lead to a rather good convergence of some thermodynamic
quantities, such as the pressure [7], indicating that part of the infrared physics is properly taken into account. These
observations are not limited to scalar theories but concern also theories coupling scalar and fermionic degrees of
freedom (out-of-equilibrium) [8] or gauge theories (at finite temperature) [9, 10]. Some more genuine non-perturbative
effects can be captured by combining the 2PI effective action with a large-N type expansion [11, 12]. In the non-
equilibrium context the 2PI 1/N expansion at next-to-leading order proved to be particularly fruitful for the study of
a variety of problems, such that thermalization [11–13], preheating [14, 15], transport coefficients [16–18], non-thermal
fixed points [19], decoherence [20] and topological defect formation [21]. In equilibrium, the 2PI formalism was
applied to phenomenological studies in various approximations, see [22] and references therein as well as [23, 24]. Of
course, one can easily imagine that certain non-perturbative features are beyond reach within the 2PI framework or
its present approximations. However, higher order approximations of the 2PI effective action or its generalization
to 3PI, 4PI, ..., NPI effective actions [25], although numerically unaffordable at present, could allow to capture an
increasing number of such effects in the future [26–28]. Some investigations in these directions can be found in [29–31].

Concomitantly with the increasing number of applications of the 2PI effective action, new insight has been gained
on technical aspects regarding its renormalization. The systematic renormalization of approximations based on the
2PI effective action was first understood in the case of scalar theories at finite temperature both in the real-time
formalism [32, 33] and in the imaginary time formalism [34, 35]. It was then extended to the case of scalar theories
coupled to fermions [36] and also to abelian gauge theories [37]. Another important extension consisted in including
the possibility of non-vanishing field expectation values, of relevance for the determination of the effective potential
and thus the study of phase transitions [35, 38–42]. The renormalization of models with more complicated global
symmetry was studied in [43]. From all these studies, a certain consensus has emerged that the renormalization
of approximations based on the 2PI effective action seems always possible provided certain extensions of the
renormalization procedure are allowed in order to cope with certain approximation artifacts. For instance, in the
presence of non-vanishing field expectation values, it is well known that there exist different expressions for the two-
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and four-point functions, and more generally for higher n-point functions. Although equivalent in the exact theory,
these various expressions differ within a given approximation and bring their own divergences which can only be
absorbed by allowing for apparently more counterterms than usual [35]. Some of these counterterms are fixed by
means of the usual renormalization conditions. The others are fixed by imposing consistency conditions, that is
conditions which would be satisfied automatically if no approximation was considered at all [35, 44]. The fact that
the consistency conditions do not involve the parameters of the theory is crucial to maintain the number of such
parameters to its expected value, despite the larger number of counterterms. In fact, these apparently different
counterterms should be viewed as different subseries of the complete perturbative counterterm series and thus should
agree when no truncation of the 2PI effective action is considered.

In this paper we illustrate partly these issues regarding renormalization by revisiting one of the simplest approx-
imations of the 2PI effective action at non-zero field and finite temperature in the case of a real scalar field, the
so-called Hartree approximation. The calculation of the finite temperature effective potential of a real scalar ϕ4

theory in the Hartree approximation and the order of the phase transition that it predicts have been discussed many
times in the literature [13, 45–48]. Similar discussions exist for different approximations in the O(N) model with
N ≥ 2, see [49]. There is a wide consensus on the fact that the order of the phase transition predicted by this
approximation is first order, even though all existing studies are either based on numerical evaluations for particular
values of the parameters or involve a high temperature expansion which is not justified for all values of parameters.
Part of the originality of this work is that, without relying on a high temperature expansion, it presents a complete
analytic confirmation of these results, in the whole parameter space.

In section II, we briefly recall how the effective potential is computed using the 2PI effective action. The main
ingredient is the resolution of a self-consistent equation for the two-point function, the so-called gap equation, which
encodes the resummation of particular classes of Feynman diagrams. The Hartree approximation corresponds to the
leading order of a systematic approximation scheme for evaluating the 2PI effective action and the corresponding gap
equation is then an equation for a self-consistent mass. This equation encodes the resummation of superdaisy diagrams
[46, 50, 51] and is discussed at length in section III. We first recall how renormalization of the self-consistent mass is
performed at finite temperature and non-vanishing field expectation value, following a slightly different presentation
than the one which is usually found in the literature (although equivalent in practice). We put the emphasis on the
fact that not all the divergences of the gap equation lead to divergences of the self-consistent mass. The quadratic
divergence of the gap equation is indeed responsible for a divergence of the self-consistent mass, which needs to be
absorbed in the renormalization of the bare mass, as usual (sections III A and III B). In contrast, the remaining
logarithmic divergence of the gap equation does not lead to a divergence of the self-consistent mass. Instead, it makes
this self-consistent mass trivial in the continuum limit, that is equal to the renormalized mass, independently of the
value of the temperature or the field expectation value. In this respect, the renormalization of the bare coupling
does not appear as a way to absorb any divergence in the self-consistent mass but as a way to avoid triviality
(sections III B and III C). As it is well known, the price to pay for defining a non-trivial scalar theory by means of
coupling renormalization is that the theory needs to be regarded as a cut-off theory, with the cut-off Λ taken below a
certain scale, known as the Landau scale Λp. It is then important to discuss how calculations can be made insensitive
to Λ in this context. This is discussed in section IIID where we provide a complete analytical discussion of the
solutions of the gap equation for any value of Λ, below and above the Landau scale. Finally, in section III E, we
present a new look at the gap equation based on “evolution” or “flow” equations for the thermal and field dependence
of the self-consistent mass: these equations not only provide an efficient way to solve the gap equation but they also
shed a new light on its renormalization. Section IV is then devoted to the analysis of the effective potential in the
Hartree approximation. Its renormalization is described in sections IVA and IVB with an emphasis on the links with
the more general approach presented in [35] and the distinction between renormalization and consistency conditions.
Sections IVC and IVD discuss analytically the shape of the effective potential as the temperature is lowered from an
initial “high” temperature T⋆ where the theory is chosen to be in the symmetric phase, down to T = 0. We prove
in particular that, depending on the values of the parameters, there is either no transition or a first order phase
transition. Section V is devoted to a discussion concerning the renormalization in the broken symmetry phase and to
conclusions.
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II. THE 2PI-RESUMMED EFFECTIVE POTENTIAL

In what follows, we consider a real scalar ϕ4 theory in four dimensions at finite temperature, defined by the
Euclidean action:

S[ϕ] ≡

∫ 1/T

0

dτ

∫

d3x

(

1

2
(∂τϕ)

2 +
1

2
(∇ϕ)2 +

m2
0

2
ϕ2 +

λ0

4!
ϕ4

)

, (1)

where the inverse temperature sets the size of the compact interval for temporal integration, and m0 and λ0 denote
respectively the bare mass and the bare coupling. Notice that, in order that the spectrum be bounded from below,
one should restrict to λ0 ≥ 0. In what follows we restrict our attention to the case λ0 > 0.

The two-particle-irreducible (2PI) formalism provides a representation of the effective potential γ(φ) corresponding
to S[ϕ] in terms of 2PI diagrams. More precisely, it is obtained as the value taken by the 2PI functional:

γ[φ,G] =
m2

0

2
φ2 +

λ0

4!
φ4 +

1

2

∫ T

Q

lnG−1 +
1

2

∫ T

Q

(Q2 +m2
0)G+Φ[φ,G;λ0] (2)

at its stationary point G = Ḡφ, that is γ(φ) = γ[φ, Ḡφ] with

0 =
δγ

δG

∣

∣

∣

∣

φ, Ḡφ

. (3)

In Eq. (2), φ represents a homogeneous field configuration and G(iωn, q) a function of the Matsubara frequency
ωn ≡ 2πnT and the three dimensional momentum q. We have also adopted the notation:

∫ T

Q

f(Q) ≡ T
∑

n

∫

q

f(iωn, q) ≡ T
∑

n

∫

d3q

(2π)3
f(iωn, q) . (4)

Finally, the functional −Φ[φ,G;λ0] corresponds to all 0-leg 2PI diagrams that one can draw in the shifted theory
S[φ + ϕ] − S[φ] − (δS/δφ)ϕ at finite temperature with propagator G. This functional cannot be computed exactly.
So-called Φ-derivable approximations consist in retaining in Φ[φ,G;λ0] only certain classes of diagrams. In this paper
we consider the well known Hartree approximation which corresponds to the truncation:

Φ[φ,G;λ0] =
λ0

4
φ2

∫ T

Q

G+
λ0

8

(

∫ T

Q

G

)2

. (5)

According to the above discussion, in order to compute the corresponding effective potential, we first need to determine
the stationary propagator Ḡφ.

III. GAP EQUATION

The stationarity condition (3) can be expressed equivalently as

Ḡ−1
φ, T (Q) = Q2 +m2

0 +
2δΦ

δG(Q)

∣

∣

∣

∣

Ḡφ, T

, (6)

where Q2 ≡ ω2
n + q2. We have used the subscripts φ and T to stress the fact that the solution Ḡφ, T depends on both

the field φ and the temperature T . In what follows, we shall omit this notation, unless specifically needed. In the
case of the Hartree approximation (5), the propagator takes a very simple form, namely Ḡ(Q) = 1/(Q2 + M̄2), with
the mass M̄ obeying the so-called gap equation:

M̄2 = m2
0 +

λ0

2

[

φ2 +

∫ T

Q

Ḡ

]

. (7)

We shall explain how to solve this equation later, in Section III E. Before doing so, a fundamental difficulty needs to
be bypassed, namely the fact that the gap equation only makes sense within a given ultraviolet regularization. It
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follows that its solution(s) can depend strongly on the chosen regularization, unless something is done to remove this
sensitivity. This is what renormalization is all about in this context.

Let us choose for instance a three dimensional, rotation invariant regularization. After performing the Matsubara
sum, the sum-integral entering the gap equation reads explicitly:1

∫ T

Q<Λ

Ḡ ≡

∫

q<Λ

1 + 2nεq

2εq
, (8)

where εq ≡ (q2 + M̄2)1/2 and n(ε) ≡ 1/(eβε − 1). The term corresponding to “1” in the numerator of Eq. (8) is
particularly sensitive to Λ. An explicit calculation leads to

∫

q<Λ

1

2εq
=

1

8π2

[

Λ
√

Λ2 + M̄2 − M̄2Arcsinh

(

Λ

M̄

)]

, (9)

which shows that the gap equation (7) possesses terms which depend quadratically and logarithmically on the scale
Λ. What is meant by this is that if we would take Λ to infinity, for fixed m2

0, λ0, and M̄2, the right-hand-side of the
gap equation would diverge quadratically and logarithmically. However, one should keep in mind that not all these
divergences lead to a divergence of the solution of the gap equation.2 The purpose of the remainder of this section is
to clarify the connection between the sensitivity of the gap equation to the scale Λ and the sensitivity of its solution(s)
to this very same scale, and to explain how the later can be removed, or at least substantially reduced.

A. Quadratic divergence

Let us first prove that the quadratic divergence of the gap equation (7) leads to a divergence of its solution M̄2.
We first prove that there is a unique solution for large enough Λ and then that this solution diverges with increasing
Λ. To this purpose, it is convenient to write the gap equation as 0 = fΛ(M̄

2) with

fΛ(M
2) ≡ −M2 +m2

0 +
λ0

2

[

φ2 +

∫ T

Q<Λ

G

]

(10)

and G ≡ 1/(Q2 +M2), and study the positive3 zeros of fΛ(M
2). The derivative of this function with respect to M2

reads

f ′
Λ(M

2) = −1−
λ0

2

∫ T

Q<Λ

G2 , (11)

which is always strictly negative because λ0 > 0. It follows that fΛ(M
2) decreases strictly from

fΛ(0) = m2
0 +

λ0

2

[

φ2 +

∫ T

Q<Λ

1

Q2

]

(12)

to fΛ(∞) = −∞ (the regularized tadpole integral in Eq. (10) is suppressed for M2 ≫ Λ2, T 2). Then, the existence of
a solution of the gap equation depends on the sign of fΛ(0). Even though the parameter m2

0 could be negative, the
quadratic and positive divergence in fΛ(0), given explicitly in Eq. (9), implies that there exists a value of Λ above
which fΛ(0) ≥ 0 and the gap equation admits a unique solution M̄2. For the same reason, given a mass µ, there
exists a value of Λ above which fΛ(µ

2) ≥ 0 and thus M̄2 ≥ µ2. This shows that the solution M̄2 diverges as Λ → ∞,
for fixed m2

0 and λ0, as announced.

1 Depending on the context, we use the notations Q < Λ and q < Λ to designate the same three dimensional regularization.
2 It is true that these divergent terms lead to quadratic and logarithmic divergences in the coefficients of the formal perturbative expansion
of the solution M̄2 in powers of λ0. However it is not true that they all lead to a divergence of M̄2, see the subsequent discussion.

3 We shall only be concerned with positive (M̄2 ≥ 0) solutions of the gap equation. For a discussion of negative solutions of the “explicit”
form of the gap equation at zero temperature, that is the gap equation where the integrals have been performed explicitly for M2 > 0
and then extended to any value of M2, see [52].
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B. Renormalization of the mass – Triviality

Since the quadratic divergence of the gap equation depends neither on φ nor on T , it can be absorbed by adjusting
the divergent part of m2

0. On the other hand, the finite part of m2
0 can be used to impose a condition at a given value

of φ and a given value of T . We choose φ = 0, T = T⋆ and impose the renormalization condition:

M̄2
φ=0, T⋆

= m2
⋆ . (13)

The parameter m2
⋆ is positive by construction, because it is a solution of the gap equation at φ = 0 and T = T⋆. We

shall choose it strictly positive in what follows. The renormalization condition (13) is quite natural when studying
how the system evolves as the temperature T is decreased from a “high” temperature T⋆ where the system is required
to be in the symmetric phase, see Section IV. It can be rewritten as a choice of the bare mass, namely:

m2
0 = m2

⋆ −
λ0

2

∫ T⋆

Q<Λ

G⋆ , (14)

with G⋆ ≡ 1/(Q2 +m2
⋆). With this choice, the gap equation reads 0 = f̃Λ(M̄

2), with

f̃Λ(M
2) ≡ −M2 +m2

⋆ +
λ0

2

[

φ2 +

∫ T

Q<Λ

G−

∫ T⋆

Q<Λ

G⋆

]

. (15)

The dependence of the gap equation on Λ has been changed by the renormalization procedure and we need to
reconsider its possible solutions and their dependence on Λ. As before, we do so by discussing the zeros of the
function f̃Λ(M

2).

Notice first that f̃ ′
Λ(M

2) = f ′
Λ(M

2) is strictly negative in view of Eq. (11). It follows that the function f̃Λ(M
2)

decreases strictly from

f̃Λ(0) = m2
⋆ +

λ0

2

[

φ2 +

∫ T

Q<Λ

1

Q2
−

∫ T⋆

Q<Λ

G⋆

]

(16)

to f̃Λ(∞) = −∞ (the regularized tadpole integral in Eq. (15) is suppressed for M2 ≫ Λ2, T 2). Using Eqs. (8) and

(9), it is easily checked that f̃Λ(0) diverges logarithmically like cm2
⋆ ln Λ, with c > 0. Then, there exists a value

of Λ above which f̃Λ(0) ≥ 0 and the gap equation admits a unique solution M̄2. For the same reason, for any

∆m2 > 0, f̃Λ(m
2
⋆ ± ∆m2) diverges logarithmically like ∓ c∆m2 ln Λ. Then, there exists a value of Λ above which

f̃Λ(m
2
⋆ −∆m2) ≥ 0 and f̃Λ(m

2
⋆ + ∆m2) ≤ 0, and thus |M̄2 −m2

⋆| ≤ ∆m2. This proves that M̄2 → m2
⋆ as Λ → ∞,

for fixed λ0. Using the gap equation 0 = f̃Λ(M̄
2) as well as Eqs. (8) and (9), it is possible to determine precisely how

this limit is approached. We obtain

M̄2 −m2
⋆ ∼

8π2

ln Λ

[

φ2 +

∫

q

δ⋆nε⋆q

ε⋆q

]

, (17)

where ε⋆q ≡ (q2 + m2
⋆)

1/2 and δ⋆nε ≡ nε − n⋆
ε, with n⋆

ε the thermal factor at temperature T⋆. Thus, unlike what
happened with the quadratic divergence, the logarithmic divergence of the gap equation (the one that remains after
mass renormalization) does not lead to a divergence of the solution M̄2.4 Rather, if we insist in taking the limit
Λ → ∞ for fixed λ0, the solution of the gap equation converges to the renormalized mass m2

⋆ for any value of the field
φ and the temperature T . This illustrates the triviality of ϕ4 theory [51], at least in the particular approximation
considered here. Equation (17) shows that the trivial limit is approached rather slowly (logarithmically).

4 The absence of divergence in the solution of the mass renormalized gap equation means that the resummation of superdaisy diagrams
encoded in this equation formally resums the perturbative logarithmic divergences associated with each diagram of this series into a
convergent contribution. That perturbative divergences can be resummed to non-divergent expressions was observed in [42, 53].
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C. Renormalization of the coupling – Landau pole

The previous analysis has shown that, for the particular choice of mass renormalization we have considered, the
triviality of ϕ4 theory is related to the presence of a logarithmically divergent term in the gap equation. In order to
define a non-trivial theory, one can absorb this divergence in a redefinition of λ0. Using the formula (see Appendix A):

∫ T

Q<Λ

Ḡ =

∫ T⋆

Q<Λ

Ḡ+

∫

q<Λ

δ⋆nεq

εq
, (18)

as well as the identity:

Ḡ−G⋆ = −(M̄2 −m2
⋆)G⋆ Ḡ = −(M̄2 −m2

⋆)G
2
⋆ + (M̄2 −m2

⋆)
2 G2

⋆ Ḡ , (19)

it is clear that the logarithmic divergence in Eq. (15) is entirely accounted for by the term −(M̄2 − m2
⋆)
∫ T⋆

Q<Λ
G2

⋆.

Isolating this contribution and defining an effective coupling λ⋆ [54] such that

1

λ⋆
≡

1

λ0

+
1

2

∫ T⋆

Q<Λ

G2
⋆ , (20)

the gap equation 0 = f̃Λ(M̄
2) can be rewritten as 0 = gΛ(M̄

2) with

gΛ(M
2) ≡ −M2 +m2

⋆ +
λ⋆

2

[

φ2 +

∫ T

Q<Λ

G−

∫ T⋆

Q<Λ

G⋆ + (M2 −m2
⋆)

∫ T⋆

Q<Λ

G2
⋆

]

= −M2 +m2
⋆ +

λ⋆

2

[

φ2 +

∫

q<Λ

δ⋆nεq

εq
+ (M2 −m2

⋆)
2

∫ T⋆

Q<Λ

G2
⋆ G

]

, (21)

where, in the second line, we have made use of Eqs. (18) and (19) to obtain an explicitly convergent expression that
we will use later. If we insist in keeping the bare coupling λ0 fixed and positive, then, according to Eq. (20), the
effective coupling λ⋆ goes to zero as Λ → ∞ and we recover the trivial result with M̄2−m2

⋆ ∼ λ⋆ [φ
2+
∫

q δ⋆nε⋆q/ε
⋆
q]/2,

in agreement with Eq. (17). In contrast, fixing the value of λ⋆ allows to avoid triviality. This corresponds to the
following redefinition of λ0 (λ0 is then φ- and T -independent as it should):

1

λ0

=
1

λ⋆
−

1

2

∫ T⋆

Q<Λ

G2
⋆ . (22)

However, it appears that in order to maintain λ0 > 0, and in turn a meaningful microscopic theory, one needs to
restrict the cut-off Λ below a certain scale known as the Landau scale or Landau pole Λp, defined by

0 =
1

λ⋆
−

1

2

∫ T⋆

Q<Λp

G2
⋆ . (23)

In other words, the non-trivial Hartree approximation has a meaning only if it is considered as describing an effective
theory. Notice that, from Eq. (23), it follows that λ⋆ > 0 (negative values of the renormalized coupling could
be possible with other renormalization schemes without violating the requirement λ0 > 0). More explicitly, using
Eq. (A4), we obtain

1

λ⋆
=

1

16π2



Arcsinh

(

Λp

m⋆

)

−
Λp

√

Λ2
p +m2

⋆



+
1

2

∫

q<Λp

n⋆
ε⋆q

− ε⋆qn
⋆′
ε⋆q

2ε⋆q
3

. (24)

In the limit λ⋆ → 0+, Λp → ∞ with Λ2
p ∼ µ2

⋆ e
32π2/λ⋆ where µ⋆ depends on m⋆ and T⋆:

µ2
⋆ =

m2
⋆

4
exp

(

2− 16π2

∫

q

n⋆
ε⋆q

− ε⋆qn
⋆′
ε⋆q

2ε⋆q
3

)

. (25)
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D. Ultraviolet sensitivity

Because, in the Hartree approximation at least, a non-trivial ϕ4 theory is only to be considered as a cut-off theory,
we need to wonder how calculations done within such a theory can be made almost independent of the cut-off Λ.
The main idea is that, if one considers the regime Λp ≫ T⋆, m⋆, φ, T , one can choose the cut-off Λ such that both
requirements Λp > Λ and Λ ≫ T⋆, m⋆, φ, T are met. Then, because all divergences of the gap equation have been
absorbed in the redefinition of the bare parameters, we expect that its solution M̄2 be almost cut-off independent,
up to terms of order T⋆/Λ ,m⋆/Λ , φ/Λ , T/Λ ≪ 1. The Hartree approximation offers the possibility to illustrate
this issue, for one can study its solutions as a function of Λ, in particular as Λ → ∞, and thus assess under which
conditions these solutions can be considered practically insensitive to Λ for Λ < Λp.

 

 Λ=∞Λp

φ2

φ2
p

φ2
p(T,∞)

φ2
p(T,Λ)

φ2
c(T)

2

0

10

1

FIG. 1: Number of solutions of the gap equation 0 = gΛ(M̄
2) in the (Λ, φ2)-plane in the regime of interest, that is when

Λ,Λp ≫ T⋆,m⋆, φ, T. Orange areas correspond to no solution, green areas correspond to one solution, and the blue area
corresponds to two solutions, as indicated also by the labels. In the regime of interest φ2

p ∼ Λ2
p/(8π

2) and φ2
p(T,∞) ∼ Λ2

p/(4π
2e2)

are both high scales.

The analysis of the solutions of the gap equation 0 = gΛ(M̄
2) as one varies the cut-off Λ is given in Appendix B

where, in order to simplify the discussion, we restrict our analysis to the “regime of interest” that is a regime where
both Λ and Λp are much larger than all the other scales T⋆, m⋆, φ, and T . The result of this analysis is that the number
of solutions of the gap equation depends on the values of Λ and φ2, as we represent in Fig. 1 and explain in what follows:

1. For Λ < Λp, there is a “critical” value φ2
c(T,Λ) of φ2 such that the gap equation admits a unique solution if

φ2 ≥ φ2
c(T,Λ) and no solution if φ2 < φ2

c(T,Λ), see Fig. 1. Notice that φ
2
c(T,Λ) is not necessarily positive. In practice

it is useful to know when it could become strictly positive, signaling the fact that the gap equation has no (positive)
solutions if 0 ≤ φ2 < φ2

c(T,Λ). To this purpose, one writes, see Appendix B:

φ2
c(T,Λ) = −

2C⋆

λ⋆
−

∫

q<Λ

nq

q
, (26)

with

C⋆ ≡ m2
⋆ +

λ⋆

2

[

−

∫

q<Λ

n⋆
q

q
+m4

⋆

∫ T⋆

Q<Λ

G2
⋆

Q2

]

. (27)
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Clearly, φ2
c(T,Λ) is strictly positive if the parameters Λ, T⋆, m⋆, and λ⋆ are such that C⋆ < 0 and the temperature T

is strictly below a certain “critical” temperature Tc defined by

∫

q<Λ

nc
q

q
≡ −

2C⋆

λ⋆
. (28)

Using Eq. (27), it is easy to check that φ2
c(T⋆,Λ) is strictly negative. It follows that Tc < T⋆. Moreover, in the regime

of interest, one can neglect the dependence of C⋆ and of the thermal integrals with respect to Λ. The critical value
φ2
c(T,Λ) is then independent of Λ (this is the reason why it is represented by an horizontal line in Fig. 1) and one

has φ2
c(T ) = (T 2

c − T 2)/12 with T 2
c = −24C⋆/λ⋆.

2. For Λ = Λp, a new “relevant” scale appears:

φ2
p ≡

∫ T⋆

Q<Λp

G⋆ > 0 , (29)

see Appendix B. It is such that φ2
p > φ2

c(T ) and the gap equation admits no solution if φ2 ≥ φ2
p, one solution

if φ2
p > φ2 ≥ φ2

c(T ), and again no solution if φ2 < φ2
c(T ), see Fig. 1. Notice that, in the regime of interest,

φ2
p ∼ Λ2

p/(8π
2) is a high scale.

3. Similarly, for Λ > Λp a new relevant scale φ2
p(T,Λ) > φ2

c(T ) enters the discussion. The gap equation admits

no solution if φ2 > φ2
p(T,Λ) one solution if φ2 = φ2

p(T,Λ), two solutions if φ2
p(T,Λ) > φ2 ≥ φ2

c(T ) and one solution

if φ2 < φ2
c(T ), see Fig. 1. The value of φ2

p(T,Λ) as Λ → Λ+
p is nothing but φ2

p. Moreover, in the regime of inter-

est, one can show that φ2
p(T,Λ) decreases with Λ, from φ2

p(T,Λ
+
p ) = φ2

p to φ2
p(T,∞) ∼ Λ2

p/(4π
2e2), another high scale.

The previous analysis shows in particular that the unique solution of the gap equation which exists for Λ < Λp and
φ2 ≥ φ2

c(T ) and which we shall call the physical solution, behaves rather differently, depending on the value of φ2, as
one increases the value of Λ. If φ2 ≥ φ2

p, as we show in Appendix B, the physical solution diverges as Λ → Λ−
p . In

contrast, if φ2
p > φ2 ≥ φ2

c(T ), nothing of this kind occurs: the physical solution can be extended beyond the Landau

scale and a second solution, which we call the unphysical solution, appears. If φ2
p > φ2 > φ2

p(∞), there is value of Λ at
which the two solutions merge into one solution and then cease to exist (without diverging). On the contrary, in the
convergence window φ2

p(∞) ≥ φ2 ≥ φ2
c(T ) the two solutions can be extended to Λ → ∞ and one can then assess how

rapidly they converge to their limiting values M̄2
∞. To do so, we take a derivative of the gap equation 0 = gΛ(M̄

2)
with respect to Λ. We obtain

∂M̄2

∂Λ
= −

1

g′Λ(M̄
2)

∂gΛ
∂Λ

, (30)

where ∂gΛ/∂Λ corresponds to the explicit dependence of gΛ with respect to Λ. An implicit dependence is also present,
through M̄2, which explains the appearance of g′Λ(M̄

2) in the previous formula. We are allowed to divide by g′Λ(M̄
2)

because, as long as φ2 < φ2
p(∞), one has g′Λ(M̄

2) 6= 0, see Appendix B. Moreover, this remain true in the limit
Λ → ∞. It follows that

∂M̄2

∂Λ
∼ −

1

g′∞(M̄2
∞)

∂gΛ
∂Λ

∣

∣

∣

∣

M̄2=M̄2
∞

. (31)

Then, a simple calculation using Eqs. (A1), (A4) and (B1) leads to

∂M̄2

∂Λ
∼ −

3

64π2g′∞(M̄2
∞)

(M̄2
∞ −m2

⋆)
2

Λ3
, (32)

or, in other words:

∣

∣

∣

∣

M̄2

m2
⋆

−
M̄2

∞

m2
⋆

∣

∣

∣

∣

∼
3λ⋆

128π2|g′∞(M̄2
∞)|

(

1−
M̄2

∞

m2
⋆

)2
m2

⋆

Λ2
, (33)

where we have expressed all the masses in units of the renormalized mass m⋆. Although we did not make it explicit,
the limiting value M̄2

∞ depends on T and φ. In the case of the physical solution M̄2
∞ increases strictly from 0 at
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φ2 = φ2
c(T ) to a very large value M̄2

p(∞) ∼ 4Λ2
p/e

2 at φ2 = φ2
p(∞) ∼ Λ2

p/(4π
2e2), see Appendix B. Thus, in the

regime of interest, such as in particular φ ≪ Λp, M̄
2
∞/m2

⋆ is of the order 1 or smaller and the scale multiplying the
convergence factor 1/Λ2 in Eq. (33) is a low scale of the order of m2

⋆ ≪ Λ2
p or smaller (the factor 1/g′∞(M̄2

∞) can only

improve the convegence, for it goes to zero when M̄2
∞ → 0). Then, the insensitivity of the physical solution to the

scale Λ is expected to be observed already for values of Λ below the Landau scale Λp. This expectation is confirmed
by the numerical results presented in Fig. 2 which shows the convergence of the physical solution as Λ → ∞ for
increasing values of φ : for small values of the field the physical solution has already converged for values of Λ well
below the Landau pole, while for very large values of φ the convergence, if it happens, occurs for values of Λ above
the Landau pole. This is a clear illustration of why, although there exists a Landau pole Λp which forces us to
choose the cut-off Λ < Λp, one can define, in some region of the parameter space, a theory whose results are almost
insensitive to the cut-off Λ.
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FIG. 2: Convergence of the physical solution of the renormalized and Λ-dependent gap equation at different values of the field
for m2

⋆
/T 2

⋆
= 0.5, λ⋆ = 20 and T/T⋆ = 0.012. The dahed vertical line, common to both plots, indicates the location of the

Landau scale. The left panel shows the dependence of the rescaled physical solution with respect to the cut-off Λ. The right
panel illustrates the validity of the asymptotic formula (33) represented by the solid lines. The inset shows the behavior of the
solution for two values of the field which lie outside of the convergence window (see text for details).

E. Flow approach to the gap equation

To conclude this section, we present an elegant way to solve the gap equation. This approach is also interesting
on formal grounds because it gives a new perspective on renormalization. It could also be used for higher order
approximations.

Let us assume that the solution of the gap equation is known for some φ and T , and let us ask how this solution
changes as we vary φ or T . The change in the solution is governed by “evolution” or “flow” equations that we now
derive. Let us first express the infinitesimal change of M̄2 with respect to φ2. From the original bare gap equation
(7) and using the fact that the bare parameters m2

0 and λ0 are φ-independent, we obtain

∂M̄2

∂φ2
=

λ0

2

[

1 +

∫ T

Q<Λ

∂Ḡ

∂φ2

]

=
λ0

2
−

λ0

2

∫ T

Q<Λ

Ḡ2 ∂M̄2

∂φ2
, (34)

where we used δḠ = −Ḡ2 δḠ−1. Collecting the derivatives of M̄2 on the same side of the equation, this can be
rewritten as

∂M̄2

∂φ2
=

V̄

2
, (35)
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with the function V̄ defined by

1

V̄
=

1

λ0

+
1

2

∫ T

Q<Λ

Ḡ2 . (36)

Similar manipulations are possible to express the infinitesimal change of M̄2 with respect to T . Using the fact that
the bare parameters are T -independent, one writes

∂M̄2

∂T
=

λ0

2

(

∂

∂T

∫ T

Q<Λ

)

Ḡ−
λ0

2

∫ T

Q<Λ

Ḡ2 ∂M̄2

∂T
, (37)

where the notation (∂/∂T
∫ T

Q<Λ
)Ḡ defined in Appendix A refers to a derivative with respect to the explicit thermal

dependence, not the implicit one, hidden in Ḡ. As before, this can be rewritten as:

∂M̄2

∂T
=

V̄

2

(

∂

∂T

∫ T

Q<Λ

)

Ḡ . (38)

A similar strategy can be used to express the infinitesimal variations of V̄ itself. We obtain:

∂V̄

∂φ2
=

V̄ 3

2

∫ T

Q<Λ

Ḡ3 , (39)

∂V̄

∂T
= −

V̄ 2

2

(

∂

∂T

∫ T

Q<Λ

)

Ḡ2 +
V̄ 3

2

(

∫ T

Q<Λ

Ḡ3

)(

∂

∂T

∫ T

Q<Λ

)

Ḡ . (40)

The interesting feature of Eqs. (35), (38), (39) and (40) is that they are explicitly finite, without the need to impose any
renormalization condition. They can be used as an alternative tool to solve the gap equation. The only information
that remains to be specified are the initial conditions for M̄2 and V̄ , for instance at φ2 = 0 and T = T⋆. The initial
condition for M̄2 reads M̄2

φ=0, T⋆
= m2

⋆ which is nothing but the renormalization condition (13). As for V̄ , its initial
condition reads:

V̄φ=0,T⋆
= λ⋆ , (41)

and it is easily checked that it can be reinterpreted as the the renormalization condition corresponding to
the choice of λ0 in Eq. (22). Thus, specifying the initial conditions in the flow approach corresponds to impos-
ing renormalization conditions in the standard approach5. As already discussed, m2

⋆ and λ⋆ are taken strictly positive.

In practice, it is more convenient to solve the evolution equations (35) and (38) coupled to the explicit and renor-
malized expression for V̄ which we obtain from combining Eqs. (36) and (22):

1

V̄
=

1

λ⋆
+

1

2

[

∫ T

Q<Λ

Ḡ2 −

∫ T⋆

Q<Λ

G2
⋆

]

. (42)

Because φ2
c(T⋆) < 0, we first solve the equation (35) at T = T⋆ from the initial condition M̄2

φ=0, T⋆
= m2

⋆ > 0 and

obtain the function M̄2
φ,T⋆

. For each value of φ, the solution M̄2
φ, T⋆

is then used as the initial condition for the flow

equation (38), which we solve from T⋆ for decreasing values of T . We obtain in this way the function M̄2
φ, T for any

value of φ and T (with φ2 ≥ φ2
c(T )). This method will be used in the next section where we evaluate the effective

potential. Notice finally that V̄ = −λ⋆/g
′
Λ(M̄

2) where gΛ(M
2) is the function introduced in Eq. (21) to discuss the

solutions of the renormalized gap equation (see Eq. (B2) for its derivative). We are only interested in the physical
solution to the gap equation. Irrespectively of the value of Λ, this solution is such that g′Λ(M̄

2) < 0, see Appendix B,
and thus V̄ > 0. From Eqs. (35) and (39), it follows then that M̄2 and V̄ increase with φ2. In particular at T = T⋆

and for any φ2, one has M̄2 ≥ m2
⋆ and V̄ ≥ λ⋆. We will make use of this remark later.

5 This is similar in spirit to the approach followed in [55].
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IV. EFFECTIVE POTENTIAL

Once the mass M̄ and the propagator Ḡ have been determined, one can evaluate numerically the renormalized
version of the effective potential to be given in Section IVB and study its change of shape as the temperature T is
lowered from the “high” temperature T⋆, possibly triggering a change of phase. In this section we show that a large
part of the analysis can be done analytically. We prove in particular that in the Hartree approximation, for those
values of the parameters such that there is a phase transition, the later cannot be of second order. To this purpose, we
use information on the geometry of the effective potential, such as its curvature, as well as information on the location
of its possible extrema, as given by the field equation. Notice that our analysis will be performed in the presence of a
cut-off Λ below the Landau scale Λp. After renormalization of the effective potential, see below, and for parameters
such that Λp is much larger than all other scales in the problem, the renormalized effective potential computed with
Λ < Λp will be essentially the same as the one computed in the limit Λ → ∞. We shall use this simplification when
evaluating the effective potential numerically.

A. Geometry of the effective potential

The geometry of the effective potential is encoded in its field derivatives. For instance, the curvature for a given
value of φ reads:

M̂2 ≡
δ2γ

δφ2
= m2

0 +
λ0

2
φ2 +

λ0

2

∫ T

Q<Λ

Ḡ−
λ0

2
φ

∫ T

Q<Λ

Ḡ2 ∂M̄2

∂φ
, (43)

where we made use of the stationnarity condition (3) and δḠ = −Ḡ2δḠ−1. From the flow equation (35), one obtains
∂M̄2/∂φ = V̄ φ. Plugging this into Eq. (43) and using Eq. (36), we arrive at:

M̂2 = M̄2 + V̄ φ2 − λ0 φ
2 . (44)

Similarly, the fourth derivative of the effective potential at φ = 0 is given by:

V̂φ=0 ≡
δ4γ

δφ4

∣

∣

∣

∣

φ=0

= λ0 −
3

2
λ0

∫ T

Q<Λ

Ḡ2
φ=0

∂2M̄2

∂φ2

∣

∣

∣

∣

φ=0

. (45)

The same argument as for M̂2 leads to:

V̂φ=0 = 3V̄φ=0 − 2λ0 . (46)

These results illustrate the general discussion given in the Introduction concerning the existence of different definitions
of n-point functions in a given approximation of the 2PI effective action. For instance, the two-point function (here

simply a mass) could be defined either from the solution M̄2 of the gap equation or from the second derivative M̂2

of the effective potential. Although these two definitions should coincide for any value of φ and T in the absence of
approximations, Eq. (44) clearly shows that, in the Hartree approximation, they coincide for φ = 0 only. For other
approximations, the discrepancy between the different definitions of the two-point function can also be observed for
φ = 0. Similar remarks apply to the four-point function. Notice however that these discrepancies always appear as
higher order effects. In the present case for instance, if we consider a formal expansion in power of the bare coupling
λ0, we obtain M̂2 − M̄2 = O(λ2

0) as well as V̂ − V̄ = O(λ2
0) which show that the discrepancies are beyond the

accuracy of the Hartree approximation.

More generally the discrepancies between the different definitions of a given n-point function are always of higher
order as compared to the accuracy of the 2PI truncation that one considers and are thus of little relevance a priori.
However, this is only true for n ≥ 6. For n = 2 and n = 4, the discrepancies between the different definitions of
n-point functions can be divergent, and they are thus negligeable only after divergences have been properly absorbed.
For instance, the two different definitions of the two-point function can bring independent quadratic divergences. In
order to remove them, one needs to allow for two independent bare masses following the general prescription of [35].
It turns out that in the case of the Hartree approximation, the quadratic divergences are not independent but equal6

6 This has to do with the fact that the two definitions of the mass coincide for φ = 0.
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which allows one to work with only one bare mass. Nevertheless the sensitivities M̄2 and M̂2 with respect to Λ are
radically different for, as we have seen above, M̄2 is defined for any value of Λ with Λ-dependent terms of the form
1/Λ2, whereas, due to the presence of λ0 in Eq. (44), M̂2 diverges as Λ → Λ−

p . For the same reason, the sensitivities

of V̄ and V̂ with respect to Λ are different. One possible way out is to argue, in a way similar to [46], that if one

considers Λ ≪ Λp, but much larger than all other scales in the problem, the additional sensitivity of M̂2 and V̂ as
compared to M̄2 and V̄ is a very mild one. Here we follow a different approach,7 in line with the general presentation
in [35], which is generalizable to higher order approximations. Since the difference of sensitivity with respect to Λ

comes from the fact that the two definitions V̄ and V̂ of the four-point function differ within a given approximation,
it is natural to introduce a bare coupling λ4 different from λ0 in such a way that the original 2PI functional reads

γ[φ,G] =
m2

0

2
φ2 +

λ4

4!
φ4 +

1

2

∫ T

Q<Λ

lnG−1 +
1

2

∫ T

Q<Λ

(Q2 +m2
0)G

+
λ0

4
φ2

∫ T

Q<Λ

G+
λ0

8

(

∫ T

Q<Λ

G

)2

. (47)

Clearly λ0 enters the definition of V̄ , as before, whereas λ4 appears as a tree level contribution to V̂ . With this
modification, using the same steps as those leading to Eqs. (44) and (46) we obtain

M̂2 = M̄2 + V̄ φ2 +
1

2
(λ4 − 3λ0)φ

2 , (48)

V̂φ=0 = 3V̄φ=0 + (λ4 − 3λ0) . (49)

We can now adjust λ4 such that V̂ is as insensitive to Λ as V̄ , that is up to terms of order 1/Λ2. This however does
not fix the finite part of λ4. In order to fix the later without introducing additional parameters, and following [35, 44],
we impose the consistency condition:

V̂φ=0, T⋆
= V̄φ=0, T⋆

, (50)

at the renormalization point φ = 0 and T = T⋆, condition which should hold automatically if no approximation was
considered. This condition translates into a particular choice of the bare parameter λ4:

λ4 − 3λ0 = −2λ⋆ . (51)

Using this particular choice, the derivatives of the effective potential become then

M̂2 = M̄2 + (V̄ − λ⋆)φ
2 , (52)

V̂φ=0 = 3V̄φ=0 − 2λ⋆ . (53)

Notice that M̂2 and V̂ are now both cut-off insensitive: the renormalization of V̂ automatically took into account
the renormalization of M̂2. We stress that this is only specific to certain approximations. In general, one would need
to introduce a second bare mass which one would fix by imposing another consistency condition. Notice also that,
if we expand the bare couplings in powers of the renormalized coupling λ⋆ using Eqs. (22) and (51), we find that
λ4 − λ0 = O(λ2

⋆), in line with the fact that the artifacts that the introduction of a second bare coupling λ4 is meant
to cure lie beyond the accuracy of the Hartree approximation. As a final remark, recall that, as we have shown in the
previous section, M̄2 ≥ m2

⋆ > 0 and V̄ ≥ λ⋆ > 0 at T = T⋆ and for any φ2. It follows that M̂2 ≥ m2
⋆ > 0 at T = T⋆

and for any φ2. This means that the effective potential at the initial temperature T = T⋆ is strictly convex.

B. Renormalized effective potential

We are now in a position to derive a finite expression for the effective potential. Using Eq. (7) in Eq. (47) the
effective potential γ(φ) ≡ γ[φ, Ḡ] reads

γ(φ) =
1

4!
(λ4 − 3λ0)φ

4 +
M̄4 −m4

0

2λ0

+
1

2

∫ T

Q<Λ

ln Ḡ−1 +
1

2

∫ T

Q<Λ

Q2 Ḡ . (54)

7 Despite this different point of view, our conclusions regarding the order of the phase transition will be the same as those in [46].
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Using Eqs. (36) and (51), we arrive at

γ(φ) = −
m4

0

2λ0

−
λ⋆

12
φ4 +

M̄4

2V̄
+

1

2

∫ T

Q<Λ

[

ln Ḡ−1 +Q2 Ḡ−
1

2
M̄4 Ḡ2

]

. (55)

Expanding the integrand for large Q we observe that it has no quadratic or logarithmic divergence, only a quartic

one of the form
∫ T

Q<Λ
(lnQ2 + 1). We can thus write

γ(φ) = −
m4

0

2λ0

−
λ⋆

12
φ4 +

M̄4

2V̄
+

1

2

∫ T

Q<Λ

[

ln(Q2 + M̄2)− lnQ2 − M̄2 Ḡ−
1

2
M̄4 Ḡ2

]

+
1

2

∫ T

Q<Λ

[

lnQ2 + 1
]

. (56)

The first integral is convergent. The second is divergent, but one can convince oneself that its divergence is T -
and φ-independent. Then, if we subtract the effective potential evaluated at T⋆ and φ = 0, we obtain an explicitly
convergent expression

γ(φ)− γ⋆(0) = −
λ⋆

12
φ4 +

M̄4

2V̄
−

m4
⋆

2λ⋆
+

1

2

∫

q<Λ

[

εq − q −
M̄2

2εq
−

M̄4

8ε3q

]

−
1

2

∫

q<Λ

[

ε⋆q − q −
m2

⋆

2ε⋆q
−

m4
⋆

8ε⋆q
3

]

−
1

2

∫

q<Λ

[

−2T ln(1− e−εq/T ) + M̄2 nεq

εq
+ M̄4

nεq − εq n
′
εq

4ε3q

]

+
1

2

∫

q<Λ

[

−2T⋆ ln(1 − e−ε⋆q/T⋆) +m2
⋆

n⋆
ε⋆q

ε⋆q
+m4

⋆

n⋆
ε⋆q

− ε⋆q n
⋆′
ε⋆q

4ε⋆q
3

]

, (57)

which is our final form for the renormalized effective potential.8 This formula for the effective potential differs from
that in [46] in that we have used the additional bare parameter λ4. The approach we have followed here to obtain a
finite effective potential can be generalized to higher orders of approximation, see for instance [40].

C. Extrema of the effective potential

At any temperature, the extrema of the effective potential (47) are given by the field equation:

0 =
δγ

δφ

∣

∣

∣

∣

φ̄

. (58)

In making this equation explicit one can take advantage of the stationarity condition (3). In the Hartree approximation,
and taking into account the newly introduced bare coupling λ4, we arrive at:

0 = φ̄

(

m2
0 +

λ4

6
φ̄2 +

λ0

2

∫ T

Q<Λ

Ḡφ̄

)

. (59)

Using the relation (51) as well as the gap equation (7), we finally arrive at the system of equations:

0 = φ̄

(

λ⋆

3
φ̄2 − M̄2

φ̄

)

and 0 = gΛ(M̄
2
φ̄ , φ̄

2) , (60)

where we have made explicit the dependence of gΛ(M
2) with respect to φ. Notice that this system of equations is

explicitly finite. This is not surprising for, once the second and fourth derivatives of the effective potential have been
renormalized, the effective potential is renormalized (up to an overall constant), and so is any information that can
be extracted from it such as the location of its extrema.9

8 The first two integrals can be done analytically with the result (M̄4 −m4
⋆
)/(128π2) in the limit Λ → ∞.

9 Notice that the way we have obtained an explicitly renormalized field equation differs in spirit from that followed in [56] for the case
of the O(N) model. There, the field equation was similar to the one in Eq. (60) with λ⋆ replaced by the bare coupling (denoted by
λ in Ref. [56]). Since the latter had no divergence to absorb in the field equation, it was then identified to the renormalized coupling
(although this identification was not possible at the level of the gap equation). Even though this result is correct and agrees with
Eq. (60), its justification in [56] hides the origin of the difficulty, namely the existence of multiple definitions for n-point functions and
does not allow a generalization to higher orders of approximation. For a discussion of similar issues, see also [57].
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According to Eq. (60), the trivial extremum φ̄ = 0 only makes sense as long as the gap equation at φ = 0 has a
solution. This ceases to be true if φ2

c(T ) is strictly positive, that is when C⋆ < 0 and T < Tc, see our earlier discussion.
On the other hand, the non trivial extrema obey the system:

0 =
λ⋆

3
φ̄2 − M̄2

φ̄ and 0 = gΛ(M̄
2
φ̄, φ̄

2) , (61)

which we rewrite conveniently as

φ̄2 =
3

λ⋆
M̄2

φ̄ and 0 = hΛ(M̄
2
φ̄) , (62)

where the function hΛ(M
2) does not depend on the field and is given by

hΛ(M
2) ≡ gΛ

(

M2,
3

λ⋆
M2

)

=
3

2
M2 + gΛ(M

2, φ2 = 0) , (63)

with first and second derivatives equal to

h′
Λ(M

2) =
3

2
+ g′Λ(M

2) , (64)

h′′
Λ(M

2) = g′′Λ(M
2) . (65)

The non trivial extrema of the effective potential can thus be obtained from the zeros of hΛ(M
2), which we discuss

below. Notice that, from Eq. (52), the curvature of the effective potential at the non-trivial extrema is given by

M̂2 =

(

V̄φ̄ −
2λ⋆

3

)

φ̄2 = −λ⋆

(

1

g′Λ(M̄
2
φ̄
)
+

2

3

)

φ̄2 = −
2λ⋆

3

h′
Λ(M̄

2
φ̄
)

g′Λ(M̄
2
φ̄
)
φ̄2 . (66)

Because g′Λ(M̄
2) < 0 when Λ < Λp, see Appendix B, the sign of the curvature is the sign of h′

Λ(M̄
2).

D. Temperature dependence of the effective potential

Let us now discuss the zeros of hΛ(M
2) and the corresponding curvature encoded in Eq. (66) and deduce the shape

of the effective potential as we decrease the temperature from T⋆ down to T = 0. Because h′′
Λ(M

2) > 0, the function
h′
Λ(M

2) increases strictly from h′
Λ(0) = −∞ to

h′
Λ(∞) =

3

2
+ g′Λ(∞) =

3

2
−

λ⋆

λ0

=
1

2
+

λ⋆

2

∫ T⋆

Q<Λ

G2
⋆ > 0 , (67)

where we have used g′Λ(∞) = −λ⋆/λ0, see Appendix B, and Eq. (22). The function h′
Λ(M

2) has to vanish for some
M̄2

e . It follows that the function hΛ(M
2) has a minimum at M2 = M̄2

e : hΛ(M
2) decreases strictly from hΛ(0)

to hΛ(M̄
2
e ) and then increases towards hΛ(∞) = ∞. The number of non-trivial extrema of the effective potential

depends thus on the signs of hΛ(0) and hΛ(M̄
2
e ) which we now discuss.

Let us consider hΛ(0) first. It is nothing but gΛ(0) at φ = 0, see Eq. (63), and thus from the discussion above
Eq. (B6):

hΛ(0) = −
λ⋆

2
φ2
c(T,Λ) = C⋆ +

λ⋆

2

∫

q<Λ

nq

q
, (68)

where C⋆ was defined in Eq. (27) and depends on the parameters. As we have seen below Eq. (28), φ2
c(T,Λ) is strictly

negative for T = T⋆. It follows that hΛ(0) is strictly positive for T = T⋆. Moreover, the previous formula shows that
hΛ(0) decreases strictly as we lower T and reaches C⋆ at T = 0. If the parameters are such that C⋆ > 0, then hΛ(0)
remains strictly positive down to T = 0. If C⋆ = 0, hΛ(0) remains strictly positive down to T > 0 and vanishes at
T = 0. If C⋆ < 0, hΛ(0) remains strictly positive while T > Tc (0 < Tc < T⋆), vanishes at T = Tc, changes sign and
remains strictly negative down to T = 0. The same type of analysis needs to be done for hΛ(M̄

2
e ). Using Eq. (21),

we obtain

hΛ(M̄
2
e ) =

1

2
M̄2

e +m2
⋆ +

λ⋆

2

[

∫

q<Λ

δ⋆nεeq

εeq
+ (M̄2

e −m2
⋆)

2

∫ T⋆

Q<Λ

G2
⋆ Ḡe

]

. (69)
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FIG. 3: The temperature evolution of the effective potential obtained for m2
⋆
/T 2

⋆
= 0.1, λ⋆ = 3 in the limit Λ → ∞ by evaluating

Eq. (57) with M̄2 calculated at T⋆ using the φ2-flow Eq. (35) and at T 6= 0 using the T -flow Eq. (38). On each plot, a constant
has been subtracted for convenience, without affecting the physical interpretation.

Clearly, hΛ(M̄e) > 0 at T = T⋆. Moreover, because h′
Λ(M̄e) = 0, the thermal dependence of h(M̄e) is the explicit

one, encoded in the tadpole integral. It follows that hΛ(M̄
2
e ) decreases as one decreases T . We shall denote by D⋆ its

value at T = 0. If the parameters are such that D⋆ > 0, hΛ(M̄
2
e ) remains strictly positive all the way down to T = 0.

If D⋆ = 0, it remains strictly positive down to T > 0 and vanishes at T = 0. If D⋆ < 0, hΛ(M̄
2
e ) remains strictly

positive while T > Ts (0 < Ts < T⋆), vanishes at T = Ts, changes sign and remains strictly negative down to T = 0.

A priori, discussing the signs of hΛ(0) and hΛ(M̄
2
e ) involves nine cases, depending on the values of C⋆ and D⋆, and

thus nine regions in parameter space. However, because C⋆ and D⋆ are the values of hΛ(0) and hΛ(M̄
2
e ) at T = 0

and hΛ(0) > hΛ(M̄
2
e ), we have necessarily C⋆ > D⋆, which reduces the number of regions to five:

1. Region corresponding to C⋆ < 0: For such parameters, hΛ(M̄
2
e ) changes sign at Ts and hΛ(0) changes sign at

Tc < Ts. The evolution of the effective potential as we decrease T from T⋆ down to T = 0 goes as follows:

− For Ts < T ≤ T⋆, both hΛ(0) and hΛ(M̄
2
e ) are strictly positive and the effective potential has only a trivial

extremum at φ = 0. It is a minimum because M̂2 = M̄2 > 0 at φ = 0. The effective potential is convex, see
Fig. 3(a).

− At T = Ts, hΛ(0) is still strictly positive but h(M̄2
e ) vanishes: in addition to the trivial minimum at φ = 0, a

non trivial extremum appears. According to Eq. (66), its curvature is zero. The only possibility is that it is an
inflection point of the effective potential, see Fig. 3(b).

− For Tc < T < Ts, hΛ(0) is still strictly positive and h(M̄2
e ) is strictly negative: in addition to the trivial minimum

at φ = 0, two non-trivial extrema are present. According to Eq. (66), the non-trivial extremum closest to φ = 0
is a maximum and the other one is a minimum, see Fig. 3(c). As it will become clear in the next point, it
turns out that in this temperature interval there is a temperature Tt (Tc < Tt < Ts) at which the minima are
degenerate and below which the non trivial minimum becomes the absolute minimum, see Fig. 3(d).

− At T = Tc, hΛ(0) vanishes and hΛ(M̄
2
e ) is strictly negative: the non-trivial extremum which corresponded to

a maximum is at φ = 0 and merges with the trivial minimum. The curvature at φ = 0 is zero. Because there
is still a non-trivial minimum at φ 6= 0, the only possibility is that at T = Tc the effective potential presents a
maximum at φ = 0, see Fig. 3(e), with the consequence that there was a temperature Tt (Tc < Tt < Ts) below
which the non-trivial minimum became the absolute minimum.

− For T < Tc, the gap equation has no solution at φ = 0: the trivial extremum disappears. The effective potential
is defined only for φ2 ≥ φ2

c(T ) and has a single non-trivial minimum, see Fig. 3(f).
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2. Region corresponding to C⋆ = 0: It is just a line in parameter space. The same analysis as above applies except
from the fact that Tc = 0. The final shape of the potential is that of Fig. 3(e).

3. Region corresponding to C⋆ > 0 and D⋆ < 0: The same analysis applies except from the fact that there is no
Tc. The final shape of the potential at T = 0 is either that of Fig. 3(d) or that of Fig. 3(c), but without evaluating
the potential we cannot decide whether or not the non-trivial minimum became the absolute one at some temperature.

4. Region corresponding to C⋆ > 0 and D⋆ = 0: It is just a line in parameter space. The same analysis applies
except from the fact that there is no Tc and Ts = 0. The final shape of the potential is that of Fig. 3(b).

5. Region corresponding to C⋆ > 0 and D⋆ > 0: There are no Tc or Ts. The final shape of the potential is convex,
see Fig. 3(a).

The previous discussion shows that, if there is a phase transition, it is first order due to the finite jump in the loca-
tion of the absolute minimum of the effective potential (see Fig. 3). The transition occurs at T = Tt while Tc and Ts

correspond to the upper and lower spinodal temperatures at which a maximum and a minimum of the potential merge.
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FIG. 4: Parameter space and order of the phase transition. The labels on the curves indicate the value of ln(Λp/m⋆). We focus
on the region ln(Λp/m⋆) > 5 which is such our results can be considered cut-off insensitive for a cut-off Λ below the Landau
scale. Note that this region lies below the dot-dashed curve that is in the region of validity of the condition (B12) which played
a role in part of our analysis of the gap equation.

These conclusions are valid for a given value of the cut-off Λ < Λp. As we have explained in the previous section, if
we want the results to be independent of the cut-off Λ we need to choose the parameters such that Λp ≫ m⋆, T⋆, T
so that it is possible to choose Λ below the Landau scale but larger with respect to all other scales.10 In what follows
we choose T⋆ = 1 which sets the mass unit. Since we are only interested in values of T below T⋆, it is then enough to
choose m⋆ and λ⋆ such that Λp/m⋆ ≫ 1. For definiteness, we choose to work in the region of parameter space such
that ln(Λp/m⋆) > 5. Note that, in this regime

M̄2
e (T = 0)

m2
⋆

=
m⋆e

2Λp

exp

(

−24π2

∫

q

n⋆
ε⋆q

− ε⋆qn
⋆′
ε⋆q

2ε⋆q
3

)

≪ 1 , (70)

10 For practical purposes, it is then enough to compute the effective potential for Λ = ∞ without introducing any substantial difference
as compared to the effective potential at Λ < Λp. One can also perform an analytical study of the effective potential for Λ > Λp. The
only subtlety is that g′(M2) can be positive for M2 > M̄2

p and the discussion around Eq. (66) needs to be revisited. One can convince

oneself that the zeros of h(M2) are all low scales, lying below the high scale M̄2
p , and correspond thus to negative values of g′(M2).



17

which we obtained from the equation h′
Λ(M̄

2
e ) = 0 at T = 0 and for Λ ≫ m⋆, T⋆. One can show in the same way that

D⋆, which is defined as hΛ(M̄
2
e ) at T = 0, is given by

D⋆ = C⋆ −
λ⋆

32π2
M̄2

e (T = 0) . (71)

Since regions 2., 3. and 4. are such that C⋆ ≥ 0 and D⋆ ≤ 0, it follows that 0 ≤ C⋆ ≤ λ⋆M̄
2
e (T = 0)/(32π2) and they

form a very narrow band, indistinguishable from the line C⋆ = 0 whose equation is11

λ⋆(m⋆) = 2m2
⋆

[

∫

q

n⋆
q

q
−m4

⋆

∫ T⋆

Q

G2
⋆

Q2

]−1

. (72)

The parameter space is then essentially divided in two regions, see Fig. 4. The lower (grey) region, corresponding
to region 5. of the analysis above, is such that no phase transition occurs between T = T⋆ and T = 0. The
upper (white) region, corresponding to region 1. of the analysis above, is such that a first order phase transition
occurs at T = Tt. The temperatures Tt and Ts can only be accessed numerically. We find that for moderate
values of the parameters λ⋆ and m2

⋆ the first order phase transition is rather weak, that is for reasonable values
of the parameters the difference between Tc and Ts is small and also for Tc < T < Ts the non-trivial minimum
is close to the trivial one. The first order nature of the phase transition is an artifact of the Hartree approxi-
mation which corresponds to a O(λ) truncation of the 2PI functional at skeleton level. Since this effect is rather
weak, an improvement of the truncation by including the order-λ2 and field-dependent skeleton contribution to
the 2PI functional seems to turn the phase transition into second order [40], in accordance with universality arguments.

For phenomenological applications a parametrization of the model is needed, which is usually done at zero temper-
ature. For this reason it is interesting to know which values of the parameters m2

⋆ and λ⋆ at T⋆ are of interest. In the
region of the parameter space where there is a phase transition Tc increases steeply with λ⋆. Therefore, in order for
the phase transition to occur at a reasonable value of temperature compared to T⋆ one needs to restrict the possible
values of the parameters in the m2

⋆ − λ⋆ space. The accessible values of φ̄(T = 0) and M̄(T = 0) when the restriction
Tc/T⋆ ≤ 0.3 is imposed can be seen Fig. (5). This means that the region of the parameter space which is interesting
in practice is a relatively narrow one, close to the curve given in Eq. (72). Setting T⋆ = 1 GeV, these values are in
the range of the pion decay constant, pion masses, and the transition temperature in the O(4) linear sigma model.
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11 For practical purposes this curve can be approximated using the high temperature expansion: λ⋆(m⋆) = 2m2
⋆
/(T 2

⋆
/12 −m⋆T⋆/(8π)).
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V. CONCLUSIONS AND DISCUSSION

We have studied the phase transition of a real scalar ϕ4 theory in four dimensions at lowest order in the 2PI
formalism. Due to the existence of the Landau pole, this model needs to be considered in the presence of a cut-off
lying below the scale of the Landau pole. For values of the parameters such that the Landau pole is much larger
than all other scales, renormalization ensure insensitivity of the results with respect to the cut-off scale already below
the Landau scale. We have illustrated these questions at the level of the gap equation by investigating under which
conditions the cut-off can be continued above the Landau pole to infinity without noticing any sensible change in
the solution of the gap equation. We have also studied the effective potential and proven analytically that if there
is a phase transition, it is weakly first order, confirming earlier studies based on a numerical evaluation or a high
temperature expansion of the effective potential.

Let us end by emphasizing that even though we imposed the renormalization and consistency conditions in the
symmetric phase, we could have imposed them in the broken phase as well. Because φ = 0 is not always accessible
we need to impose these conditions at φ = v 6= 0 (where v is arbitrary for the moment). The bare mass m2

0 and the
bare coupling λ0 are used to impose the renormalization conditions

M̄2
φ=v, T=0 = m2 > 0 and V̄φ=v, T=0 = λ > 0 . (73)

Unlike what happened at φ = 0 in the symmetric phase, the curvature M̂2
φ=v, T=0 is not equal to M̄2

φ=v, T=0. This
truncation artifact can be overcome by using the bare coupling λ4 to impose the consistency condition:

M̂2
φ=v, T=0 = M̄2

φ=v, T=0 . (74)

Notice then that the consistency condition:

V̂φ=v, T=0 = V̄φ=v, T=0 , (75)

fixes the value of v in terms of m2 and λ. An explicit calculation leads to:12

x2 ≡
v2

m2
=

6

λ− 3λ2/(32π2)
, (76)

One can then check that v cannot be interpreted as the value of φ̄ (minimum of the potential) at T = 0 which, given
the renormalization and consistency conditions, is such that φ̄2

T=0/m
2 = 3/λ. Reversely, if one chooses v as the value

of φ̄ at T = 0, which is the usual choice, then v2/m2 = 3/λ and one cannot impose the consistency condition (75).
In this later case, we have checked using similar arguments as above, that the transition cannot be second order.

The impossibility to impose simultaneously the consistency conditions (74) and (75) at the minimum of the po-
tential needs to be regarded as a truncation artifact. It can be cured by exploiting the fact that in higher orders
of approximation of the 2PI effective action, two bare masses m2

0 and m2
2 are usually needed to renormalize differ-

ent quadratic divergences in M̂2 and M̄2, see for instance [40]. It is true that in the Hartree approximation these
quadratic divergences are equal, but we could still allow for different finite parts to m2

0 and m2
2 and use them to

impose both consistency conditions at the minimum of the effective potential. Notice that this approach and the one
involving only one bare mass are not completely equivalent. They both agree at leading order in λ but differ beyond
this order: in the first approach, some of the consistency conditions, which reflect an exact property of the theory are
sacrificed, whereas in the second approach, what is sacrificed is the fact that in the exact theory there is only one bare
mass. The second approach can be viewed as a renormalization improvement over the first one, for exact properties
of the theory are reflected at the level of the renormalized quantities not at the level of the bare ones. It is then
interesting to wonder how such an improvement affects the order of the transition. Interestingly, before exploiting
the consistency condition (75) a second order phase transition is possible for parameters such that v2/m2 < 1/λ.
However, the consistency condition (75) leads once again to a relation between v2/m2 and λ:

0 =
λ4

32π2

(

3λ

32π2
− 1

)

v6

m6
+

3λ3

16π2

v4

m4
− λ

v2

m2
+ 3 . (77)

12 This shows in particular that λ < 32π2/3 ≈ 105.
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For positive λ, this equation has a positive solution v2/m2 only for λ < 32π2/3. Moreover, it is possible to show that
v2/m2 > 3/λ and thus the region v2/m2 < 1/λ cannot be accessed. For parameters such that v2/m2 > 3/λ, it is
again possible to convince oneself that the transition cannot be of second order. Then, our conclusions on the nature
of the phase transition in the Hartree approximation remain unchanged even within this extended renormalization
scheme. The impossibility of a second order phase transition is an artifact of the Hartree approximation. Therefore,
it would be of interest to see to what extend one could apply the analysis and methods of the current work to more
complicated approximations of the 2PI functional, in which there exist in the literature numerical evidence for the
occurrence of a second order phase transition [40]. Investigations in this direction are under way.
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We would like to thank J.-P. Blaizot, G. Fejős and J. Serreau for useful discussions on related topics.

Appendix A: Useful identities

With a three dimensional and rotation invariant regularization, the tadpole integral can be written as

∫ T

Q<Λ

Ḡ =

∫

q<Λ

1 + 2nεq

2 εq
=

∫ T⋆

Q<Λ

Ḡ+

∫

q<Λ

δ⋆nεq

εq
, (A1)

with εq ≡ (q2 + M̄2)1/2, nε ≡ 1/(eβε − 1) and δ⋆nε ≡ nε − n⋆
ε, with n⋆

ε the thermal factor at temperature T⋆. The
infinitesimal version of Eq. (A1) is also useful and is obtained after taking a derivative with respect to T in Eq. (A1)
followed by the limit T⋆ → T . We obtain

∂

∂T

(

∫ T

Q<Λ

Ḡ

)

=

∫ T

Q<Λ

∂Ḡ

∂T
+

(

∂

∂T

∫ T

Q<Λ

)

Ḡ , (A2)

with:
(

∂

∂T

∫ T

Q<Λ

)

Ḡ ≡

∫

q<Λ

ṅεq

εq
> 0 , (A3)

and where the dot in ṅε represents a derivative with respect to the explicit thermal dependence, so that ṅε =
(ε/T 2)nε(1 + nε) > 0. Similar formulae can be obtained for the bubble integral, for instance:

∫ T

Q<Λ

Ḡ2 =

∫

q<Λ

1 + 2(nεq − εqn
′
εq )

4 ε3q
=

∫ T⋆

Q<Λ

Ḡ2 +

∫

q<Λ

δ⋆nεq − εqδ⋆n
′
εq

2 ε3q
, (A4)

where the prime in n′
ε denotes a derivative with respect to energy, so that n′

ε = −(1/T )nε(1+nε) < 0. The infinitesimal
form of Eq. (A4) reads

∂

∂T

(

∫ T

Q<Λ

Ḡ2

)

=

∫ T

Q<Λ

∂Ḡ2

∂T
+

(

∂

∂T

∫ T

Q<Λ

)

Ḡ2 , (A5)

with:
(

∂

∂T

∫ T

Q<Λ

)

Ḡ2 ≡

∫

q<Λ

ṅεq − εqṅ
′
εq

2 ε3q
> 0 . (A6)

Appendix B: Solutions of the renormalized gap equation

In order to discuss the solutions of the gap equation 0 = gΛ(M̄
2), we study the zeros of

gΛ(M
2) ≡ −M2 +m2

⋆ +
λ⋆

2

[

φ2 +

∫ T

Q<Λ

G−

∫ T⋆

Q<Λ

G⋆ + (M2 −m2
⋆)

∫ T⋆

Q<Λ

G2
⋆

]

, (B1)
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with first and second derivatives given by

g′Λ(M
2) = −1−

λ⋆

2

[

∫ T

Q<Λ

G2 −

∫ T⋆

Q<Λ

G2
⋆

]

, (B2)

g′′Λ(M
2) = λ⋆

∫ T

Q<Λ

G3 . (B3)

It is useful to notice that gΛ(M
2) and g′Λ(M

2) can be written as

gΛ(M
2) = −

λ⋆

λ0

(M2 −m2
⋆) +

λ⋆

2

[

φ2 +

∫ T

Q<Λ

G−

∫ T⋆

Q<Λ

G⋆

]

, (B4)

g′Λ(M
2) = −λ⋆

[

1

λ0

+
1

2

∫ T

Q<Λ

G2

]

. (B5)

We shall also use the explicitly renormalized form of gΛ(M
2) given in Eq. (21). As explained at the beginning of

Section IIID, we perform our analysis in the regime of interest, that is where Λ and Λp are much larger than all the
other scales T⋆, m⋆, φ, and T . Moreover, we are only interested in positive solutions M̄2 of the gap equation.

1. Solution for Λ < Λp

The function g′′Λ(M
2) is strictly positive, see Eq. (B3). It follows that g′Λ(M

2) increases strictly from g′Λ(0) = −∞
(the bubble integral in Eq. (B5) diverges positively as M2 → 0) to g′Λ(∞) = −λ⋆/λ0 (the bubble integral in Eq. (B5)
is suppressed as M2 ≫ Λ2, T 2). Because Λ < Λp, it follows from Eq. (22) and the definition of Λp given in Eq. (23)
that λ0 > 0 and therefore g′Λ(∞) < 0. In consequence g′Λ(M

2) < 0 and the function gΛ(M
2) decreases strictly from

gΛ(0) ≡ λ⋆(φ
2 − φ2

c(T,Λ))/2 where

φ2
c(T,Λ) = −

2m2
⋆

λ⋆
−

∫ T

Q<Λ

1

Q2
+

∫ T⋆

Q<Λ

G⋆ +m2
⋆

∫ T⋆

Q<Λ

G2
⋆ , (B6)

to gΛ(∞) = −∞ (the tadpole integral in Eq. (B4) is suppressed as M2 ≫ Λ2, T 2). Then, the existence of a solution
to the gap equation depends on the sign of gΛ(0) or, in other words, on the value of φ2 as compared to φ2

c(T,Λ): if
φ2 > φ2

c(T,Λ), the gap equation admits a unique and strictly positive solution; if φ2 = φ2
c(T,Λ), the unique solution

to the gap equation is equal to zero; if φ2 < φ2
c(T,Λ), the gap equation has no solution.

Notice that, so far, φ2
c(T,Λ) does not need to be positive. In practice however, we shall consider only positive values

of φ2 and it is useful to determine when φ2
c(T,Λ) is positive as well. Using the explicitly convergent form of gΛ(M

2)
given in Eq. (21), it is convenient to write

φ2
c(T,Λ) = −

2C⋆

λ⋆
−

∫

q<Λ

nq

q
, (B7)

with

C⋆ ≡ m2
⋆ +

λ⋆

2

[

−

∫

q<Λ

n⋆
q

q
+m4

⋆

∫ T⋆

Q<Λ

G2
⋆

Q2

]

. (B8)

If the parameters Λ, T⋆, m⋆, and λ⋆ are such that C⋆ ≥ 0, it is clear that φ2
c(T,Λ) is negative for any value of T and

therefore, it is of no relevance in practice because the gap equation admits a solution for any value of φ2 ≥ 0 and T .
On the contrary, when C⋆ < 0, then φ2

c(T,Λ) becomes strictly positive for T < Tc with the “critical” temperature Tc

defined by
∫

q<Λ

nc
q

q
= −

2C⋆

λ⋆
. (B9)

In this case, φ2
c(T,Λ) becomes relevant because the gap equation admits a (positive) solution only for φ2 ≥ φ2

c(T,Λ).
Moreover, in the regime of interest, one can neglect the dependence of C⋆ and of the thermal integrals with respect
to Λ. The critical value φ2

c(T,Λ) is then independent of Λ and one has φ2
c(T ) = (T 2

c − T 2)/12 with T 2
c = −24C⋆/λ⋆.
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2. Solution for Λ = Λp

From the definition of Λp in Eq. (23), this case corresponds formally to 1/λ0 = 0. The function g′Λ(M
2) increases

strictly from g′Λ(0) = −∞ to g′Λ(∞) = −λ⋆/λ0 = 0. It follows that g′Λ(M
2) < 0 and the function gΛ(M

2) decreases
strictly from gΛ(0) ≡ λ⋆(φ

2 − φ2
c(T ))/2 to gΛ(∞) ≡ λ⋆(φ

2 − φ2
p)/2 (the tadpole integral in Eq. (B4) is suppressed as

M2 ≫ Λ2), with

φ2
p =

∫ T⋆

Q<Λp

G⋆ > 0 . (B10)

The existence of a solution to the gap equation now depends on the signs of gΛ(0) and gΛ(∞) or, in other words,
on the value of φ2 as compared to φ2

c(T ) an φ2
p. Notice that, because gΛ(0) > gΛ(∞), we have φ2

p > φ2
c(T ). We can

thus distinguish three different regimes: if φ2 ≥ φ2
p, the gap equation has no solution; if φ2

p > φ2 ≥ φ2
c(T ), the gap

equation admits a unique solution, which vanishes for φ2 = φ2
c(T ); if φ

2 < φ2
c(T ), the gap equation has again no

solution. Notice that, in the regime of interest, φ2
p ∼ Λ2

p/(8π
2) is a large scale.

It is important to stress that the behavior of the solution M̄2 of the gap equation as Λ → Λ−
p is rather different

depending on the value of φ2. To see this, note that for a given µ, the limit of gΛ(µ
2) as Λ → Λ−

p is λ⋆(φ
2 − φ2

p +
∫ T

Q<Λp
Gµ)/2, see Eq. (B4). Clearly, if φ2 ≥ φ2

p, this limit is strictly positive for any µ, which means that for any

µ, there exists a value of Λ < Λp above which gΛ(µ
2) ≥ 0 and thus M̄2 ≥ µ2. This shows that the solution of the

gap equation diverges as Λ → Λ−
p when φ2 ≥ φ2

p. If φ2 < φ2
p, nothing of this kind happens and the solution can be

extended beyond the Landau scale. We now study what happens beyond this scale.

3. Solutions for Λ > Λp

This case corresponds to λ0 < 0. The function g′Λ(M
2) increases strictly from g′Λ(0) = −∞ to g′Λ(∞) = −λ⋆/λ0 > 0.

It follows that g′Λ(M
2) vanishes for some M̄2

p(T,Λ) (in view of Eq. (B5) this mass does not depend on φ2). Then,

the function gΛ(M̄
2) has a minimum at M2 = M̄2

p(T,Λ): it decreases strictly from gΛ(0) ≡ λ⋆(φ
2 − φ2

c(T ))/2 to

gΛ(M̄
2
p(T,Λ)) ≡ λ⋆(φ

2 − φ2
p(T,Λ))/2 and then increases towards gΛ(∞) = ∞ (the tadpole integral in Eq. (B4)

is suppressed as M2 ≫ Λ2). The existence of solutions to the gap equation depends now on the signs of gΛ(0)
and gΛ(M̄

2
p(T,Λ)) or, in other words, on the value of φ2 as compared to φ2

c(T ) and φ2
p(T,Λ). Notice that because

gΛ(0) > gΛ(M̄
2
p(T,Λ)), we have φ2

p(T,Λ) > φ2
c(T ). We can thus distinguish four different regimes concerning the

number of solutions to the gap equation: if φ2 > φ2
p(T,Λ), there is no solution; if φ2 = φ2

p(T,Λ), there is one solution,

equal to M̄2
p(T,Λ); if φ

2
p(T,Λ) > φ2 ≥ φ2

c(T ), there are two solutions, one smaller than M̄2
p(T,Λ), the other larger

than M̄2
p(T,Λ); if φ

2 < φ2
c(T ), there is again one solution, larger than M̄2

p(T,Λ).

It is useful to study the dependence of M̄2
p(T,Λ) and φ2

p(T,Λ) on Λ. Let us consider M̄2
p(T,Λ) first. It is defined

by g′Λ(M̄
2
p(T,Λ)) = 0. Using Eq. (B5), it follows already that M̄2

p(T,Λ) → ∞ as Λ → Λ+
p , because −1/λ0 → 0+. Let

us now show that, in the regime of interest, M̄2
p(T,Λ) > m2

⋆ or, in other words that g′Λ(m
2
⋆) < 0. From Eq. (B2), we

write

g′Λ(m
2
⋆) = −1−

λ⋆

2

[

∫ T

Q<Λ

G2
⋆ −

∫ T⋆

Q<Λ

G2
⋆

]

≤ −1−
λ⋆

2

[

∫ T=0

Q<Λ

G2
⋆ −

∫ T⋆

Q<Λ

G2
⋆

]

≤ −1 +
λ⋆

2

∫

q

n⋆
ε⋆q

− ε⋆qn
⋆′
ε⋆q

2ε⋆q
3

, (B11)

where we have used Eq. (A4) and the fact that the bubble integral increases with T and Λ. Then g′Λ(m
2
⋆) < 0 if we

require that

2

λ⋆
>

∫

q

n⋆
ε⋆q

− ε⋆qn
⋆′
ε⋆q

2ε⋆q
3

. (B12)
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In terms of the Landau pole this condition reads

1

16π2



Arcsinh

(

Λp

m⋆

)

−
Λp

√

Λ2
p +m2

⋆



 ≥

∫

q>Λp

n⋆
ε⋆q

− ε⋆qn
⋆′
ε⋆q

4ε⋆q
3

, (B13)

which is clearly fulfilled in the regime of interest. Finally, in order to study the Λ-dependence of M̄2
p(T,Λ), let us take

a derivative with respect to Λ in the defining equation 0 = g′Λ(M̄
2
p(T,Λ)). We arrive at

∂M̄2
p

∂Λ
= −

1

g′′Λ(M̄
2
p)

∂g′Λ
∂Λ

. (B14)

Using Eqs. (B2) and (A4), this reads more explicitly:

∂M̄2
p

∂Λ
=

λ⋆

2g′′Λ(M̄
2
p )

Λ2

2π2

[

1 + 2(nεp
Λ
− εpΛn

′
εp
Λ

)

4εpΛ
3

−
1 + 2(n⋆

ε⋆
Λ
− ε⋆Λn

⋆′
ε⋆
Λ
)

4ε⋆Λ
3

]

. (B15)

Now, because T ≤ T⋆ and M̄2
p(T,Λ) > m2

⋆, the right-hand-side of this last equation is strictly negative and M̄2
p(T,Λ)

decreases strictly with Λ. Because it is bounded from below, it has a limiting value M̄2
p(T,∞) which one could

determine from Eq. (B2). In the regime of interest, one obtains M̄2
p(T,∞) ∼ 4Λ2

p/e
2.

Consider finally φ2
p(T,Λ) which is defined as the particular value of φ2 such that gΛ(M̄

2
p(T,Λ)) is equal to zero.

Making the field dependence of gΛ(M
2) explicit we can then write

0 = gΛ(M̄
2
p(T,Λ), φ

2
p(T,Λ)) . (B16)

Taking a field derivative with respect to Λ and using the fact that g′Λ(M̄
2
p(T,Λ)) = 0, we obtain:

0 =
∂gΛ
∂φ2

∂φ2
p

∂Λ
+

∂gΛ
∂Λ

. (B17)

A straightforward calculation using the explicitly convergent form of gΛ(M
2) given in Eq. (21) leads to:

∂φ2
p

∂Λ
= −

Λ2

2π2
(M̄2

p −m2
⋆)

2

∫

q4

G2
⋆ Ḡp + thermal , (B18)

where Ḡp ≡ 1/(Q2 + M̄2
p), the propagators are evaluated for q2 = Λ2 and q4 denotes the continuous Euclidean

frequency at T = 0. In the regime of interest M̄2
p(T,Λ) > M̄2

p(T,∞) ≫ m2
⋆. One can thus neglect the thermal

contribution in the previous formula. It follows that φ2
p(T,Λ) decreases strictly with Λ. For Λ → Λ+

p , the minimum

M̄2
p(T,Λ) of gΛ(M

2) is sent to ∞. Thus gΛ(M̄
2
p) = λ⋆(φ

2 − φ2
p(T,Λ))/2 → gΛp

(∞) = λ⋆(φ
2 − φ2

p)/2 and thus

φ2
p(Λ

+
p ) = φ2

p. Moreover, using Eqs. (B1) and (B2) with g′∞(M̄2
p(∞)) = 0, we obtain

φ2
p(∞) = −

∫

q

δ⋆nε⋆q

ε⋆q
+ (M̄2

p (∞)−m2
⋆)

2

∫ T

Q

Ḡ2
p(∞)G⋆ , (B19)

which is strictly positive for T ≤ T⋆. In the regime of interest, only the zero temperature contribution of the second
term dominates and we find

φ2
p(∞) ∼

M̄2
p(∞)

8π2

∫ ∞

0

dQ
Q3

(Q2 + 1)2(Q2 +m2/M̄2
p(∞))

∼
Λ2
p

4π2e2
. (B20)

Notice finally that :

∂M̄2

∂φ2
= −

λ

2

1

g′Λ(M̄
2)

. (B21)

This shows that, as one increases φ2, one of the solutions increases while the other decreases. They both become
equal to M̄2

p(T,Λ) when φ2 = φ2
p(T,Λ). This applies in particular to the case Λ = ∞.
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