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Abstract: The analysis of high-energy particle collisions is an excellent testbed for the non-extensive
statistical approach. In these reactions we are far from the thermodynamical limit. In small colliding
systems, such as electron-positron or nuclear collisions, the number of particles is several orders of
magnitude smaller than the Avogadro number; therefore, finite-size and fluctuation effects strongly
influence the final-state one-particle energy distributions. Due to the simple characterization,
the description of the identified hadron spectra with the Boltzmann–Gibbs thermodynamical
approach is insufficient. These spectra can be described very well with Tsallis–Pareto distributions
instead, derived from non-extensive thermodynamics. Using the q-entropy formula, we interpret
the microscopic physics in terms of the Tsallis q and T parameters. In this paper we give
a view on these parameters, analyzing identified hadron spectra from recent years in a wide
center-of-mass energy range. We demonstrate that the fitted Tsallis-parameters show dependency
on the center-of-mass energy and particle species (mass). Our findings are described well by a QCD
(Quantum Chromodynamics) inspired parton evolution ansatz. Based on this comprehensive study,
apart from the evolution, both mesonic and baryonic components found to be non-extensive (q > 1),
besides the mass ordered hierarchy observed in the parameter T. We also study and compare in
details the theory-obtained parameters for the case of PYTHIA8 Monte Carlo Generator, perturbative
QCD and quark coalescence models.

Keywords: non-extensive; entropy; hadron spectrum

1. Introduction

In Nature we often meet phenomena with a large number of variables where the few-body
approach breaks down. In these cases the standard procedure is to apply tools from statistical physics
and inspect thermodynamical quantities of the system, instead of treating all degrees of freedom
one-by-one. A certain generalization of the standard Boltzmann–Gibbs entropy is promoted by
Constantino Tsallis, introducing the q-entropy formula, central to non-extensive statistical theory [1,2].
Despite its unconventional form, in the last two decades the Tsallis-entropy was found to be a very
general and descriptive notion. Numerous physical observations were successfully explained using
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non-extensive statistical physics [3–7]. From our perspective the field of high-energy physics is
especially important, since that community uses efficiently these tools to describe the results of
high-energy particle and nuclear collisions. It is an experimental finding that the distributions derived
from Tsallis-entropy fit the spectrum of high-energy particles, produced by many systems starting from
electron-positron collisions up to the cosmic rays. In this paper we focus on identified hadron spectra,
measured in proton-proton collisions. We put emphasis on the investigation of the center-of-mass
energy (

√
s) dependence of the Tsallis parameters q and T, assuming a Quantum Chromodynamics

(QCD) inspired logarithmic scaling of these parameters. We use units in which h̄ = c = kB = 1.
The outline of the paper is the following: in the next section we enlist our motivation from high

energy physics and the goals of our analysis. In Section 3 we briefly introduce the mathematical
apparatus we used during our investigation. In Section 4 we show experimental results, while in
Section 5 we compare them to state-of-the-art theoretical models. Finally, in Section 6 we summarize
our work and give a discussion, including our future plans.

2. Connection with High Energy Physics

One of the main goals in high-energy heavy-ion physics is to understand the properties of the
so-called Quark Gluon Plasma (QGP), a particular form of the strongly interacting matter which
existed shortly after the Big Bang. With today’s high-energy particle accelerators we are able to
reach the energy range where this superdense matter of the early Universe can be formed for a short,
O(fm/c)∼ 10−23 s time. The properties of the QGP can be studied in ultra-relativistic heavy-ion
collisions indirectly. Due to the nature of the strong interaction there is no way for direct observation,
only signatures stemming from the final state allow us to draw conclusions. On the other hand,
the reactions occur during a very short time and our information about their nature is very limited.
This is a strong restraint in our possibilities, especially we cannot treat properly the description at the
microscopical level. Nevertheless it is essential to understand the processes in proton-proton collisions,
the baseline for heavy-ion measurements.

To date we still do not have a well established, detailed, and throughout probed theory of the
hadronization, the process where the color degrees of freedom confine into hadrons. This is related
to the Yang–Mills Mass Gap, one of the so-called “Millennium problems” of the Clay Mathematical
Institute [8]. Recent hadronization models are phenomenological, and it is quite typical that their
parameters lack of any clear physical meaning.

Recently, complex detector systems, like ALICE at the Large Hadron Collider (CERN LHC) or
STAR and PHENIX at the Relativistic Heavy Ion Collider (BNL RHIC) are able to measure with high
accuracy the final state particles. The hadron spectra, measured in high-energy collisions, are one of the
most fundamental characteristics of these events and involve both microscopic and collective effects
in high-energy collisions. Identifying their most crucial problems is a key task for understanding
hadronization. A remarkable phenomenon is that these properties occur not only in heavy-ion
collisions, but even for small colliding systems like proton-proton or electron-positron collisions [9–13].

The aim of our study is to find the common source of these similarities and to recognize the driving
mechanisms behind the observations. For this aim, we built a consistent non-extensive approach,
in which fit parameters carry important physical information about the observed system of high-energy
and strongly interacting particles including reactions and collective effects among them.

3. Non-Extensive Statistics in High-Energy Physics

High-energy physics, and in particular high-energy heavy ion physics is an interdisciplinary
topic. It uses the theory of relativistic quantum fields, statistical physics, thermo- and hydrodynamics,
and even the theory of curved space-times. Earlier studies show that non-extensive statistical physics
provides a useful tool to describe particle-particle collisions, where “particle” now stands either for
electron/positron, or for proton or a heavy nucleus. The non-extensivity in high-energy physics
manifests itself both in the non-exponential energy- and non-Poissonian multiplicity distributions.
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The hadron spectra can be characterized with Tsallis–Pareto-like distributions, both at low-,
and high transverse momenta very well [13–24]. The origin of these distributions lies in the assumption
that subsystems are not independent of each other. It makes them a good candidate to investigate
the QGP in heavy ion collisions or the baseline in smaller colliding systems. Recently a number of
systematic analyses have been made in order to find the best form for these distributions [9–12,25–28],
but in this present study we compare theoretical and experimental results in a wide energy range
comprehensively.

3.1. The Description of the Inclusive Hadron Production

The Quantum Chromodynamics is the fundamental theory of the strong interaction. Due to the
energy-scale dependent behavior of the strong coupling, the perturbative QCD (pQCD) based parton
model–initiated by Bjorken and Feynman–works extremely well at high energies [29]. In the framework
of the pQCD-based parton model, all hadrons are made up from partons (bare, nearly massless quarks
and gluons), therefore the inner structure of the initial colliding and the finally produced hadrons
are described by the parton distribution functions (PDF) and by the fragmentation functions (FF),
respectively. These non-perturbative distribution functions are defined in the momentum space and
can be parametrized by a polynomial ansatz. The PDF,

fa/h(xa, Q2) , (1)

gives the distribution of parton a inside the hadron h at the energy scale, Q2, while xa = pa/ph is the
momentum fraction carried by that parton. On the other hand, the confinement of the parton c into the
final state hadron h with the momentum fraction zc = ph/pc can be described at scale, Q̃2 with the
help of fragmentation functions

Dh
c (zc, Q̃2). (2)

In this framework the inclusive cross-section of a given hadron h produced in proton-proton
collisions can be calculated by the following convolution:

Eh
d3σ

pp
h

dp3
h
∼ ∑

a,b,c
fa/p(xa, Q2)⊗ fb/p(xb, Q2)⊗ dσab→cd

dt̂
⊗ Dh

c (zc, Q̃2)

πz2
c

. (3)

Here the parton distribution function of a proton is denoted by fa/p(xa, Q2) and dσ
dt̂ is the

differential cross-section of the ab→ cd partonic process, the variable t̂ is related to the 4-momentum
exchange of the particles.

The hadronization is described within the parton model by the above phenomenological
fragmentation functions, for which several forms of parametrization exist in the literature.
These parametrizations are usually fitted to lepton scattering data, therefore they describe existing
experimental results in a broad-range in the parameter space. In Section 5, after investigating the
energy dependence, we show the latest results of a new fragmentation function parametrization based
on non-extensive phenomena.

3.2. Hadronization Using Non-Extensive Statistics

As we have already mentioned, the transverse energy distribution of the measured hadrons—the
particle yield measured in the y ∈ [−0.5,+0.5] midrapidity region–is an important quantity
accessible to measurement. In practice, the low-energy regime is described by exponential-like
functions, as a thermalized system, while the high pT regime behaves like a power-law, p−n

T .
The Tsallis–Pareto-like distributions handle these two regimes simultaneously.

The technical apparatus in the high-energy physics shows a great advancement, nowadays the
statistics of these spectra is larger than ever. It is no surprise that the Tsallis–Pareto distributions
are widely used by the high-energy community to describe hadron spectra. The STAR and PHENIX



Entropy 2017, 19, 88 4 of 21

collaborations at RHIC BNL (USA) and the European CERN’s ALICE, ATLAS, and CMS collaborations
at the LHC are using the following form to characterize the particle yield [30–35]:

1
2πpT

d2N
dydpT

=
dN
dy

(n− 1)(n− 2)
2πnC (nC + m(n− 2))

(
1 +

mT −m
nC

)−n
, (4)

where n and C are fit parameters and mT =
√

p2
T + m2 is the transverse mass, including the rest mass

m of the given identified hadron species. We note that this formula is based on the QCD-Hagedorn
formula [36–40]. This and other variations of the distribution are exhaustively tested e.g., in [9–15,25,26].
Below we theoretize over the origin of such Tsallis-type formulas. Contrary to the fixed fit parameters
of the Tsallis–Pareto distributions as in Equation (4), we assume that the identified hadron spectra are
characterized with a scaling Tsallis-distribution, where an energy scaling of the Tsallis-parameters is
also present. In the following we refer to these as Tsallis-like distributions.

In extensive systems the entropy is finite in the thermodynamical limit, lim
N→∞

SN
N < ∞. This is the

case with the Boltzmann–Gibbs–Shanon entropy formula, S = −∑
i

Pi ln Pi, where Pi is the probability

of being in state i. In strongly correlated systems, it turns out that the total entropy of the system is not
the sum of the entropy of the subsystems:

S12 6= S1 + S2 . (5)

For our generalization, we use the well established terminology of the thermodynamics, since we
expect to include the classical Boltzmann–Gibbs case too. Let us consider a monotonic, transformed
entropy, L(S), which satisfies additivity ,

L(S12) = L(S1) + L(S2) . (6)

Note, on general terms L(S) is the logarithm of the formal group of phase space factors Ω(S) = eS.
Due to this assumption, applied recursively in ensembles, we arrive at the following general class of
entropies [41]:

L(S) = ∑
i

PiL(− ln Pi) . (7)

Because L(S) is by definition a monotonic function, the most likely state of a heat reservoir and
its subsystem at maximum entropy is equivalently at

L (S1(E∗1 )) + L (S2(E∗2 )) = max , (8)

where E1 is the energy of the subsystem, E2 = E− E1 is the energy of the reservoir. While keeping
E = const in the entropy maximum Equation (8) we obtain

0 =
∂L
∂S1

∣∣∣∣
S1(E∗1 )

× ∂S1

∂E1

∣∣∣∣
E∗1

− ∂L
∂S2

∣∣∣∣
S2(E∗2 )

× ∂S2

∂E2

∣∣∣∣
E∗2

. (9)

It makes the use of the usual definition of thermodynamical temperature expedient,

β1 :=
∂L
∂S1

∣∣∣∣
S1(E∗1 )

× ∂S1

∂E1

∣∣∣∣
E∗1

=
∂L
∂S2

∣∣∣∣
S2(E∗2 )

× ∂S2

∂E2

∣∣∣∣
E∗2

= β2 . (10)

Assuming now E1 � E in high-energy collisions, we consider: E→
√

s and E1 → (mT −m) ≈ pT
of the particle,
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L(S2(E− E1)) ≈ L
(

S2(E)− ∂S2

∂E2

∣∣∣∣
E
× E1

)
≈ L(S2(E))− ∂L

∂S2

∣∣∣∣
S2(E)

× ∂S2

∂E2

∣∣∣∣
E
× E1 . (11)

Inserting this into Equation (10), we arrive at the formula,

β1 ≈
∂L
∂S2

∣∣∣∣
S2(E)

× ∂S2

∂E2

∣∣∣∣
E
−

 ∂2L
∂S2

2

∣∣∣∣∣
S2(E)

×
(

∂S2

∂E2

∣∣∣∣
E

)2
+

∂L
∂S2

∣∣∣∣
S2(E)

× ∂2S2

∂E2
2

∣∣∣∣∣
E

× E1 + . . . . (12)

By looking for an universal termostat, lending to β1 an absolute temperature interpretation,
we assume that the energy of the subsystem is independent from the energy of the reservoir,
i.e., we require the term linear in E1 to vanish. After ordering we obtain:

∂2L
∂S2

2

∣∣∣∣∣
S2(E)

/
∂L
∂S2

∣∣∣∣
S2(E)

= − ∂2S2

∂E2
2

∣∣∣∣∣
E

/(
∂S2

∂E2

∣∣∣∣
E

)2
. (13)

This equality among general functions, L(S) and S(E) is possible only if both are equal with
a constant,

L′′(S)
L′(S)

= − S′′(E)
S′(E)2 =

1
C

:= 1− q , (14)

where C is the heat capacity of the reservoir.
The solution of this differential equation has all desired features:

L(S) =
e(1−q)S − 1

1− q
. (15)

Replacing it into the Equation (7),

L(S) = ∑
i

Pi
e−(1−q) ln Pi − 1

1− q
=

1
1− q ∑

i
Pi

(
Pq−1

i − 1
)
=

1
1− q ∑

i

(
Pq

i − Pi

)
(16)

is the (now additive) Tsallis entropy, while

S =
1

1− q
ln (1 + (1− q)L(S)) =

1
1− q

ln ∑
i

Pq
i , (17)

turns out to be the Rényi entropy.
This argumentation can be used also for microcanonical systems, with S1 = − ln P1 and P1 being

the distribution of the subsystem’s states. Using the previously-defined generalized entropy, L(S),
one arrives at the following energy distribution, which maximizes the q-entropy:

Pi =

(
Z1−q + (1− q)

Ei
T

)− 1
1−q

. (18)

It is a Tsallis–Pareto distribution with the individual energy, Ei and Z is calculated form ∑ pi = 1.
In high-energy collisions we also have to deal with fluctuations event by event. Following the

calculations in references [41,42], one may assume that the multiplicity of the created hadrons follow
a negative-binomial distribution for bosons, a binomial one for fermions. Due to such general reservoir
fluctuations, the q non-extensivity parameter receives a correction [41,42]:

q = 1− 1
C
+

∆β2

〈β〉2
. (19)
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As the average number of created particles can vary in a wide range depending on the studied
system–typically O(102) in proton-proton collisions, while O(103 − 105) in nucleus-nucleus collisions.
We expect this fluctuation effect to overcome the finite heat capacity condition, therefore one observes
q > 1. It is also straightforward to see that enlarging the system results in C → ∞, and if fluctuations
become sufficiently suppressed, we get back the Boltzmann–Gibbs case with exponential distribution.
On the other hand, the assumption q→ 1 leads to a Gaussian distribution for the β values, which can be
an approximation, but never the complete truth. This parameter is used to call the entropic index or the
non-extensivity parameter, present as a measure of the deviation from the Boltzmann–Gibbs case, q = 1.
We note, in high-energy nuclear collisions this value is in the range 1.0 < q < 1.5, which suggests
fluctuations override the system size effects, related to the heat capacity of the reservoir.

The distributions Equations (4) and (18) behave similarly, they both can be regarded as
Tsallis–Pareto-type distributions. The authors in [25,26] investigated how the different types fit
the experimental data. Many further useful readings regarding the thermodynamically consistent
non-extensive approach can be found in the literature. The first possibility is presented in [22–24],
representing the case where the power is proportional to 1

q−1 . An another kind of approach where the

power is q
1−q , as discussed in references [43–46]. For our analysis the chosen form is the following [47]:

1
Nev

d2N
2πpTdpTdy

∣∣∣∣∣
y≈0

= A×
[

1 +
q− 1

T
(mT −m)

]− 1
q−1

(20)

As it was shown in [42,48] the parameters q and T for an ideal case are connected to the mean
multiplicity and its variance:

T =
E
〈N〉 , q =

〈N(N + 1)〉
〈N〉2

. (21)

They also may depend on each other. Since in case of q→ 1 one has T → TBG, the parameter q is
a measure of non-extensitivity (i.e., non-Gaussivity in β fluctuations, non-Poissonity in the multiplicity
distribution P(N)). T is like the kinetic temperature.

Based on Equation (21), for fixed ∆N2/ 〈N〉2 = σ2 one obtains:

T
E

= σ2 + (1− q) . (22)

On the other hand for an NBD (Negative Binomial Distribution) with fixed 〈N〉 /k = f one gets

T = E× f × (q− 1) . (23)

Our aim in the followings is to explore the center-of-mass energy evolution of the parameters
q and T, especially keeping in our mind their physical meaning. Based on the definition of the PDF
and FF of the pQCD-based parton model, we expect a logarithmic scaling. Since this was observed
even in fits of electron-positron data [9], where PDFs do not appear, we connect the non-extensive
features with the hadronization (fragmentation) processes only. The argumentation behind this will be
explained in the next subsection.

3.3. Motivation for Qcd-Like Energy Scaling of the Parameters

Partons, the elementary momentum carriers in the strongly interacting matter, are tagged with
a quantum number named color, which property is not observable directly. The quarks, antiquarks and
gluons together confine into color singlet hadrons during the hadronization process. Hadron formation
can happen at any energy scale, Q2. The dependency on it can be factorized into the running nature of
the strong interaction’s coupling constant, α(Q2). Since any observable quantity should be independent
of the arbitrary fixing of the energy scale appearing in perturbative QCD calculations, the mathematical
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description ought to be (energy-)scale independent at any fixed order. To satisfy this request is not
an easy task, due to the non-perturbative nature of non-Abelian fields at low-energy.

As we presented the hadron production within the pQCD-based parton model in Section 3.1,
the convolution in Equation (3) includes the scale parameter (Q2) in its kernel. However,
the cross-section—being an observable quantity—should be independent of this inner parameter.
Technically, this is achieved with the following method: while calculating the partonic (color) cross
sections at a given order, the scale can be factorized out and merged into the non-perturbative
phenomenological functions. These are the parton distribution and fragmentation functions, and they
must satisfy a proper scale evolution equation for avoiding scale-dependent hadronic yields.

To obtain the scale invariance, the following formula should be fulfilled at any fixed order for any
generic form of such phenomenological functions [49–51]:

∂

∂ ln Q2 R(z, Q2) = 0 , (24)

where R(z, Q2) can be either the PDF or FF, typically at the momentum fraction of the mother and
daughter particles, z. In general, this evolution equation determines the possible form of quantity R,
which naively depends on the current energy scale at a given fixed order. Solving this Callan–Symanzik
equation one can obtain the energy scale dependence of the running coupling at a given order in any
theory [52].

In the perturbative QCD based parton model, the parametrized parton distribution and
fragmentation ansatz functions are typically given in a power-law form [53]. One can get then the proper
scale evolution by solving the Doksitzer–Gribov–Lipatov–Altarelly–Parisi (DGLAP) equations [49–51].
Due to its polynomial power-law form, the predictive power of the calculations gets weaker at low-z.
We expect that a Tsallis-like distribution with the appropriate parameter evolution can resolve this
problem, providing a better description. This motivates us to fit q and T parameters as a function of the
center-of-mass energy Q2 ∼

√
s in a similar fashion, as it was done in reference [54]. Here our aim is to

test the validity of this approach via investigating the energy-evolution dependence of the parameters.

3.4. The Improved Quark-Coalescence Model

Another description of the hadron formation is based on the constituent quark scaling. In the quark
coalescence model the usual underlying assumption is that the hadronization takes place in a thermal
system, where all the participating partons emerge at the same temperature [55,56]. This idea was
developed for the description of hadron production in high-energy heavy-ion collisions, where the
bulk of the hadron yield closely follows the exponential shape. In larger colliding systems, like in
central collisions of large nuclei, this idea worked well, especially for the low transverse momentum
regime, pT < 3–5 GeV/c, with a single temperature parameter.

In the original approach the energy distribution of the partons follow the Boltzmann–Gibbs statistics.
Then, one approximates the formation rate as the multiplication of k such Boltzmann–Gibbs distributions:

Pk = [ fBG(E/k)]k = A′e−βE . (25)

In the present non-extensive framework we still assume that the partons are part of a simple
ensemble, but we replace the Boltzmann–Gibbs exponentials by Tsallis–Pareto distributions. Now the
rate is the following:

Pk = [ fTs(E/k)]k = Ak
[

1 +
q− 1

T
Ek

]− k
q−1

= A′
[

1 +
q′ − 1

T
E
]− 1

q′−1
, (26)
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with (q′ − 1) = (q−1)
k . In order to test this model, we check the fitted q parameters of the identified

hadrons. If the equal-energy quark-coalescence theory is correct for both the quark-antiquark
containing mesons and triple (anti)quark (anti)baryons, then one observes:

(qquark − 1) = 2(qmeson − 1) = 3(qbaryon − 1) . (27)

The meson-baryon ratio for the Tsallis parameters should be around 3/2:

qmeson − 1
qbaryon − 1

=
3
2

. (28)

This idea formulated by Equation (28) can be tested as fitting the hadron spectra and investigating
the ratio of the parameter (qi − 1) for different identified hadron species. As the constituent
quark scaling is getting stronger at larger energies, we expect to reach this theoretical value
only asymptotically.

4. Fitted Parameters

For our analysis we use identified hadron spectra datasets measured in proton-proton collisions
in recent years [34,35,57–65]. The numerical fits of the various datasets were made utilizing the
CERN Root analysis software (https://root.cern.ch/, version 6.06/00). Although we conducted
a comprehensive study, it is worth to note that it is not necessarily meaningful to compare
the fit-parameter values for all existing data, because kinematical ranges may vary and the
multiplicity-classes are also not defined evenly. This especially holds for kaons and protons at high pT ;
this generates some uncertainty in those fits. To circumvent these difficulties, we fixed a recipe for the
fit procedure making it consistently insensitive to the fit program(s), the size of the fit parameter space
and input parameters.

In order to counterbalance the effect of varying ranges we perform the fit procedure in
multipl steps:

1. fit of the high-pT part by fixing T and changing q;
2. fit of the low-pT part by fixing q and changing T;
3. fit of the whole pT range with both parameters, starting from the above obtained q and T.

We define “low-pT” as pT < 4 GeV/c and the “high-pT” part as pT ≥ 2 GeV/c, respectively.
The overlap is intended. In the function defined in Equation (20) the parameter T sets the characteristic
pT scale. In fact, for q −→ 1 one obtains f1(mT) = Ae−(mT−m)/T . The parameter q on the other hand
is linked to the ’power-law like’ tail at high pT . The procedure was evaluated by comparing the
χ2/NDF values.

The investigated spectra and the fitted Tsallis–Pareto functions are shown in Figure 1. Upper panels
of the plots present the fits of experimental data measured in proton-proton collisions at

√
s = 62.4 GeV,

200 GeV, 500 GeV, 900 GeV, 2.76 TeV, and 7 TeV center-of-mass energies. We considered various neutral,
charged and charge-averaged hadron species, π±, π0, K±, p, and p̄. Identified hadron mT spectra are
scaled by constant factors (2n) for better visibility, as indicated in the panels.

In the lower panels “Data/Fit” plots are presented for each case. One can observe how well the
distribution (20) describes the yields in the whole 62.4 GeV ≤

√
s ≤ 7 TeV center-of-mass energy range

in the mT . 20 GeV region. Within the mid mT-regime the overlap with data is excellent, while at the
highest mT values or for heavier hadrons the deviation is somewhat larger.

https://root.cern.ch/


Entropy 2017, 19, 88 9 of 21

 [GeV]Tm
0 1 2 3 4 5 6 7 8

Y
ie

ld
  

7−10

5−10

3−10

1−10

10
=62.4 GeVsPHENIX, 

 [GeV]Tm
0 1 2 3 4 5 6 7 8

D
at

a/
F

it 
   

0

0.5

1

1.5

2
 [GeV]Tm

0 2 4 6 8 10 12 14

Y
ie

ld
  

14−10

11−10

8−10

5−10

2−10

10 =200 GeVsPHENIX, STAR, 

 [GeV]Tm
0 2 4 6 8 10 12 14

D
at

a/
F

it 
   

0

0.5

1

1.5

2
 [GeV]Tm

0 1 2 3 4 5 6 7 8

Y
ie

ld
  

7−10

4−10

1−10

210

510 =900 GeVsALICE, 

 [GeV]Tm
0 1 2 3 4 5 6 7 8

D
at

a/
F

it 
   

0

0.5

1

1.5

2

 [GeV]Tm
0 5 10 15 20

Y
ie

ld
  

10−10

8−10

6−10

4−10

2−10

1
10 =2760 GeVsALICE, 

 [GeV]Tm
0 5 10 15 20

D
at

a/
F

it 
   

0

0.5

1

1.5

2
 [GeV]Tm

0 5 10 15 20

Y
ie

ld
  

10−10

6−10

2−10

210

610 =7000 GeVsALICE, 

 [GeV]Tm
0 5 10 15 20

D
at

a/
F

it 
   

0

0.5

1

1.5

2

 [GeV]Tm
2 4 6 8 10 12 14 16 18 20

Y
ie

ld
  

27−10

21−10

15−10

9−10

3−10

10
Prediction (normalized to 1)

=13000 GeVsALICE, 

0π →pp 

±π →pp 

± K→pp 

± p→pp 

n x 20π →pp )-π (+π →pp 
-π →pp )

-
 (K+ K→pp 

-
 K→pp )p p (→pp 
p →pp 

Figure 1. Upper panels are the identified hadron spectra as the function of the transverse mass, mT

is plotted, measured by the PHENIX [34,57,58,60], STAR [59], and ALICE [35,61–65] at different
center-of-mass energies from 62.4 GeV ≤

√
s ≤ 7 TeV. Experimental data is in comparison with the

fitted Tsallis–Pareto functions is indicated as solid lines. The mT spectra were scaled by constant factors
(2m) for the better visibility as indicated on the graphs. Lower panels are present the Data/Fit ratio plots
including the estimated fit errors.

To determine the center-of-mass energy dependence, we review the
√

s evolution of the fitted qi
and Ti parameters for each hadron species, i ∈

{
π±, π0, K±, p, and p̄

}
. According to the formula (20),

the parameters of the Tsallis–Pareto distribution are plotted in Figure 2 as a function of
√

s. Based on
the motivation presented in Section 3.3, we assumed an energy-evolution for each hadron type i as
follows [66]:

qi(
√

s) = q1i + q2i log
(√

s/mi
)

, (29)

Ti(
√

s) = T1i + T2i log
(√

s/mi
)

. (30)

In these formulae, the mass mi of the identified hadron i is used to set the physically relevant
energy scale. In Equation (30) the parameter T1,i is fixed at T1,i = 50 MeV, as suggested by reference [14].
Hence, the function in Equation (30) is parametrized by T2,i.

In Figure 2a, the fitted qi values are plotted for each
√

s, for given identified hadron spectra
summarized in Table 1. One can see in the graphs, that the qi(

√
s) values are close to each other and all

curves slightly increase with
√

s, following nicely the formula (29). For pions and kaons the increase
is very similar and their evolutions are alike. However, the precise increase seems to be larger for
the kaons.

We note, that charged and neutral pion results should be consistent. Taking π0 and π± together
for the fits, the mesonic components overlap more. This alternative behavior is thought to be the
effect of different kinematical ranges. See more on fitted parameters and χ2/NDF in Table A1 and on
kinematical ranges in Table A2 in the Appendixes A and B.
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Table 1. The
√

s-evolution of the parameters of the fitted Tsallis–Pareto distributions for hadrons,
i ∈ π±, π0, K±, p, and p̄ in the 62.4 GeV ≤

√
s ≤ 7 TeV c.m. energy range.

Hadron, i mi q1i q2i T1i T2i

π0 135.0 MeV 1.03± 0.002 0.011± 0.002 50 MeV 0.006± 0.001 MeV
π± 140.0 MeV 1.04± 0.01 0.009± 0.002 50 MeV 0.009± 0.001 MeV
K± 493.0 MeV 1.00± 0.01 0.016± 0.001 50 MeV 0.018± 0.001 MeV
p( p̄) 938.0 MeV 1.09± 0.01 0.004± 0.001 50 MeV 0.021± 0.001 MeV
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Figure 2. The fitted qi (a) and Ti (b) as a function of
√

s for hadron species, i marked as points. Only the
species of the particles are indicated. The solid color lines are fitted to the pion, kaon, and (anti)proton
points. Vertical lines indicate the place of the

√
s = 13 TeV and 14 TeV data.

Figure 2b presents the evolution of the parameter Ti with the center of mass energy. We applied
an evolution according to ∼ log(

√
s) in the Figure 2 using Formula (30) with the evolution parameters

listed in Table 1. Here the energy evolution of the parameter T(
√

s) shows an increasing trend with
the mass of the hadron species. The obtained parameter values supports the idea of a mass hierarchy
effect: the higher the mass, mi, the larger T2i.

One can realize from Figure 2a,b, by comparing them in the
√

s < 3 TeV regime, that massive
protons and kaons present the smaller change in qi, and their masses are closer to the lattice QCD
crossover temperature T ≈ 170 MeV [67]. Light pions deviate more as increasing the energy, and the
obtained Tπ is smaller, around ≈ 100 MeV. It is consistent with our picture that, lighter particle can
suffer larger fluctuations, which increases the parameter qi following Equation (19).

Based on the
√

s evolution of the experimental fit curves in Figure 2, we could predict the
parameter values for the soon-to-be available LHC-energy collisions at

√
s = 13 TeV and 14 TeV.

These energies are indicated on both panels with vertical lines. According to the the assumptions given
by the ansatz Formulae (29) and (30) and the fit parameters from Table 1 we summarized these values
in Table 2 for

√
s = 13 TeV. These data were used to plot the 13 TeV center-of-mass energy prediction

on the bottom right panel of Figure 1. Note,
√

s = 14 TeV data is expected to have very similar values
within errors.

In Figure 3 we show the fitted qi and Ti values for different hadron species at the center-of-mass
energy values listed above. In agreement with reference [28], we observe that the non-extensivity
parameter qi on Figure 3a is less sensitive to the hadron mass, however the importance of the
center-of-mass energy of the colliding system is remarkable. As we have seen already on Figure 2,
pions have somewhat larger non-extensitivity than more massive hadrons:

qπ(
√

s) & qK(
√

s) & qp(
√

s) . (31)
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Figure 3 also highlights that protons present weaker c.m. energy dependence than mesons.
The parameter Ti reflects an opposite mass-hierarchy ordering, on Figure 3b. The more massive

hadron, the larger Ti value:
Tπ(
√

s) < TK(
√

s) < Tp(
√

s) . (32)

Nevertheless, we observe only a weak center-of-mass energy dependence.

Table 2. Predictions for the Tsallis–Pareto parameters for
√

s = 13 TeV (left) and 14 TeV (right),
for hadrons i ∈ π±, π0, K±, p, and p̄, based on the Formulae (29) and (30).

Hadron, i mi qi Ti (MeV)

π0 135.0 MeV 1.156± 0.001/1.157± 0.001 119.0± 2.0/119.0± 2.0
π± 140.0 MeV 1.143± 0.001/1.144± 0.001 153.0± 2.0/154.0± 2.0
K± 493.0 MeV 1.163± 0.002/1.164± 0.002 233.0± 2.0/234.0± 2.0
p( p̄) 938.0 MeV 1.128± 2.0.003/1.128± 0.003 250.0± 2.0/252.0± 2.0

 

  iq

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

62.4 GeV
200 GeV
500 GeV
900 GeV
2760 GeV
7000 GeV

0π +π -π +K -K p p  

 [G
eV

]
i

T

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

62.4 GeV
200 GeV
500 GeV
900 GeV
2760 GeV
7000 GeV

0π +π -π +K -K p p

(a) (b).

Figure 3. The fitted qi (a) and Ti (b) values for each hadron type, i ∈ π±, π0, K±, K0
s , p, and p̄, c.f. [28]

4.1. The (T, q) Parameter Space for Identified Hadrons

Summarizing our obserations we can conclude that the center-of-mass energy evolution of the fit
parameters works well with our logarithmic evolution ansatz.

• The q2i and T2i parameters are getting slightly larger with the larger hadron mass, mi, and applying
Formulae (29) and (30) the evolution is described nicely in the whole tested energy range,
62.4 GeV ≤

√
s ≤ 7 TeV.

• The obtained qi(
√

s) function increases with
√

s in the range 1.07–1.17 indicating the deviation
from the Boltzmann–Gibbs case where q = 1. The deviation from this “thermodynamical limit”
case grows as the center-of-mass energy gets higher values. However large statistical errorbars
correspond to the lack of statistics in specific particle identification methods of the measurements.
(See more in Appendix B.)

• The Ti(
√

s) kinetical temperature parameters almost keep constant values, with the following
hadron (mass) hierarchy: Tπ = 120–140 MeV, TK = 120–200 MeV, and Tp = 70–240 MeV.

We plot the parameters qi and Ti on the Figure 4. The fitted parameters gather in the Ti ∈ [70, 240]
MeV and qi(

√
s) ∈ [1.07, 1.17] parameter space, which is indicated by the shaded area.

In Figure 4b, while keeping the shaded area, we included the fit-result of theoretical calculations
as well. We used two model to get the identified hadron spectra series, namely PYTHIA8 [68,69] and
kTpQCD_v20 [70]. We chose several c.m. energy values and the pseudorapidity region, |η| < 0.5 for
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our calculations, and finally we applied the same fit procedure as described in Section 5. We plotted
the parameters qi and Ti together with the experimental data-fitted shaded region.
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Figure 4. (a) The parameter space Ti − qi extracted from experimental pT spectra for hadron types
i ∈ π±, π0, K±, p, and p̄; (b) The PYTHIA and kTpQCD_20 calculated spectra fit results on the same
hadron types added to the measurement fit points.

The calculated points are denoted by empty symbols for each identified hadron at several
center-of-mass energies. Theoretical data fits partially overlap with the shaded area defined by the
experimental fits, although several points are deviating.

PYTHIA8

We generated 10M events using PYTHIA8 [68,69] Lund’s high-energy Monte Carlo event
generator to simulate the identified hadron spectra. Points for (charge-averaged) pion, kaon and
protons spread in the qi ∈ [1.08, 1, 23] range, wider than the experimental points. In contrast to
that, the Ti ∈ [80, 150] MeV corresponding to the experimental values on the left panel. Deviating
points of the PYTHIA8 results are those which lack sufficient statistics at the highest transverse
momenta. Here, the tail of the distribution is indefinite, thus qi values fall outside of the experimental
qi(
√

s) ∈ [1.07, 1.17] parameter space. One recognizes that pions deviate less, since they have the
highest statistics among all, followed by kaons and protons. We note that the deviance of qi disappear
as we exclude the low-statistic data at the highest momenta at each energy value, while the consistency
with Ti remains.

kTpQCD_v20

Hadron spectra calculated within the framework of perturbative QCD were also used utilizing
kTpQCD_v20 [70]. These calculations deliver similar results for all hadron species, because of
the similar (polynomial) fragmentation parametrizations. Concerning the correspondence between
perturbative QCD results and experimental data fits, both Ti and qi are running out of the experimental
regime in a similar way. Deviation from the measurement-based data is most remarkable at low c.m.
energies, where the pT range of the spectra is too short due to the limited phase-space. The domain of
pQCD is pT > 1.5 GeV/c and the maximal energy is typically pT <

√
s/2. This limited range makes

the fits more doubtful.

We also investigated the center-of-mass energy dependence of the fit parameters calculated
theoretically from the the PYTHIA8 [68,69] and kTpQCD_v20 [70] models. In Figure 5, we compare the
experimentally observed

√
s-dependence from Figure 2 (solid lines) to these theoretical model results

(data points). Figure 5a is for parameter qi.
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Figure 5. The fitted qi (a) and Ti (b) as a function of
√

s for hadron species, i marked as points. Only the
species of the particles are indicated by points. The solid color lines are fitted to the experimentally
measured pion, kaon, and (anti)proton points.

Non-extensivity, qi:

According to the above observations, the perturbative QCD points are close to each other, due to
the similar fragmentation function parametrization for the hardon species, mostly at the tail of the
distributions at the highest energies and momenta—where experimental and theoretical data meet
each other. With kTpQCD_v20 pions and kaons have similar slopes in log(

√
s). PYTHIA8 results

violate the inequality (31) and are larger: qPYTHIA,i > qEXP,i. However, the log(
√

s) evolution has the
same trend and similar slopes—except for protons.

Temperature-like, Ti:

The kTpQCD_v20 points for each hadron species are close to each other and meet the temperature
values only at the highest-energy regime. In this case the formula (32) represents a trend opposite to the
perturbative QCD calculations. Theoretical fit parameters deviate here appreciably. We count this for
the non-applicability of the pQCD at the low-momentum regime, pT < 1.5 GeV/c, where the spectra
are more thermal-like. On the other hand, PYTHIA8 works well for both the soft and hard regimes for
the light hadrons. The

√
s evolution follows the experimentally observed trend, only a small offset is

present for kaons and protons.
We conclude that these model calculations proved their validity in several ways [71,72].

Nevertheless, these pictures are not fully consistent with the fit parameters obtained from the data.
In other words, comparison of theoretical models should be made with care within their region
of validity.

5. Comparison with the Improved Quark-Coalescence Model

As we have explained in Section 3.4, the quark-coalescence model was developed for heavy-ion
collisions originally, but it was improved by the previously introduced Tsallis distribution. In the
followings we endeavor to extend this idea also for smaller systems, such as proton-proton collisions.

5.1. Connecting Non-Extensivity with the Quark-Coalescence Model

According to the coalescence picture, the observed of (qmeson− 1)/(qbaryon− 1) should be 3/2 [73].
In Figure 6 we plot the ratio χij = (qi − 1)/(qj − 1) as a function of the center-of-mass energy,√

s. Figure 6a presents the ratios of experimental data points compared to the fit curve ratios of π/p,
K/p and K/p listed in Table 1. A monotonic, increasing trend of the ratios is clearly seen at the lower
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energies and saturation can be expected in the most energetic reactions. There are two important
observations that is worth note:

1. the (qmeson − 1)/(qbaryon − 1) fit curves lie below the dashed line with the value of 3/2 within the√
s ∈ [62.4 GeV, 10 TeV] c.m. energy range;

2. the χKπ kaon-pion ratio shoots over the expected value, 1, a bit.
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Figure 6. (a) Ratio of (qmeson − 1)/(qbaryon − 1) plotted in the function of
√

s as data points and fit lines.
(b) The PYTHIA and kTpQCD_20 calculated spectra fit results on the same hadron types added to the
measurement fit lines.

On Figure 6b we plotted the theoretically calculated points along with the experimentally
fitted solid lines. It is not surprising, that theoretical curves present quite flat functions for all
combination of the ratios, since both the PYTHIA8’s Lund fragmentation and the fragmentation
function parametrizations in the kTpQCD_v20 are based on the constituent quark model and the
infinite momentum frame is assumed as well. Thus, there is no room for the evolution apart from
a constant hadron-mass effect. This can result only in a shift of the qi values as we have seen on the
left panel of Figure 5. Deviation from the constancy appears only at the lowest energies, but as we have
seen earlier in Section 4.1, at low energies both PYTHIA8 and kTpQCD_v20 have limited phase space.
The average values of the ratios χij = (qi − 1)/(qj − 1) are summarized in Table 3 for i, j ∈ {π, K, p}.

Table 3. The average values of the hadron spectra parameter ratios, χij = (qi − 1)/(qj − 1), obtained
from theoretical models PYTHIA8 and kTpQCD_v20.

Hadron Ratio PYTHIA8 kTpQCD_v20 Colaescence

χKπ 1.09± 0.01 1.10± 0.01 1.0
χKp 0.95± 0.01 1.06± 0.01 1.5
χπp 0.87± 0.01 0.94± 0.01 1.5

The kTpQCD_v20- and PYTHIA8-calculated (qi − 1)/(qj − 1) points have the same order:

χKπ > χKp > χπp . (33)

For χKπ both models give the same value, 10% larger than the improved coalescence expectation
of 1. For χmeson,baryon kTpQCD_v20 has slightly higher values than PYTHIA8, but both are far below
the expected value 3/2. Comparing the experimental fit curves and the theoretically calculated points,
both theory meets the experimental values of χKπ . However, for χmeson,baryon the kTpQCD_v20 model
agrees with the experimental values only at the highest

√
s c.m. energies.
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In summary the improved quark-coalescence model prediction might be reached only beyond
the LHC energies, now they seem to support the smaller values. Allegedly, constituent-quark scaling
is a high-

√
s property. Experimental data support the trends, the very hadronizaton model needs

further investigation.

5.2. Investigating the TSlope in the Quark-Coalescence Model

In the quark-coalescence model, Thadron = Tparton = T, thus Tmeson = Tbaryon is also assumed,
c.f. Section 3.4. Using the Tsallis distribution we consider the logarithmic slope of Ei spectra:

Tslope =

[
− d

dEi
ln Pi

]−1
= T + (q− 1)Ei . (34)

This may explain the mass ordering found in Equation (32). A possible way to read off this effect
would be to determine the slope of (mT,i −mi) spectra. Estimating Ei by

√
s−mi one obtains results

as seen in Figure 7.
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Figure 7. The Tslope(
√

s) curves defined by Equation (34), fitted on the theoretical PYTHIA8 and
kTpQCD_v20 data (empty points) and on the experimental values (solid points), for all investigated
hadron species.

6. Summary and Discussion

In this study we analyzed identified hadron spectra measured in proton-proton collisions from
RHIC to LHC energies in the range 62.4 GeV ≤

√
s ≤ 7 TeV. We showed that the Tsallis–Pareto

distributions originated from non-extensive thermodynamics describe the spectra very well in wide
mT regions, typically at pT . 10–20 GeV/c using the distribution in the form of Equation (20).

We provided a comprehensive and detailed analysis of the state-of-the-art experimental data
which will be used also to make predictions about the forthcoming 13 TeV and 14 TeV spectra.
The ∼ log(

√
s)-like evolution of the parameters qi and Ti were tested on the identified hadron spectra

data measured for charge averaged π±, π0, K±, p, and p̄. We observed that both the non-extensivity
parameter qi and temperature-like Ti parameters agree with the suggested QCD-inspired evolution
pattern. However, the temperature has almost a constant value within the investigated center-of-mass
energy regime. We found a mass-ordered hierarchy in the evolution parameters of the experimental
fits, i.e., lighter hadron spectra have the more non-extensive qi > 1 and heavier hadron spectra fit with
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larger Ti values. However, we note that the deduced Ti values might be sensitive not just the hadron
mass but also on the chosen distribution function. This might result different values extracted from
similar data, e.g., in reference [27].

We compared the experimental data fit results with theoretical predictions. The c.m. energy
evolution of the fit parameters were calculated by PYTHIA8 [68,69] and kTpQCD_v20 [70]. We found
theoretical fit parameters to be more compact in the (T, q) space than the experimental ones:
Ti ∈ [80, 240] MeV, while non-extensivity is wider than the measurement-based qi ∈ [1.08, 1, 23] region.
The most deviating points arise from limitations of the theoretical models, i.e., where statistics is low
or the phase-space is limited. Energy evolution in the theoretical models were investigated as well.
In agreement with our expectations we conclude that

(i) for the
√

s evolution, kTpQCD_v20 agrees more with the power-law related non-extensivity
parameter qi;

(ii) PYTHIA8 results correspond well with the measured Ti(
√

s) evolution.

The study of these models reflected the lack of the proper handling of the hadron-mass, since all
assumptions fail for more massive hadron species.

At the highest energies and momenta, in the infinite momentum frame, constituent quark
number scaling is assumed to get stronger. To test this idea in the framework of the non-extensive
approach, we applied and investigated an improved quark-coalescence model, inserting Tsallis-like
energy distribution kernels where constituent quark scaling appears explicitly. Experimental data
present a slight monotonic-increase with c.m. energy, but the saturation ridge of the ratio
(qmeson − 1)/(qbaryon − 1) is lower than predicted by the coalescence-theory (3/2) while the reference
ratio (qmeson − 1)/(qmeson′ − 1) is only slightly apart from the expected value 1. The fit parameters
calculated by PYTHIA8 and kTpQCD_v20 models both have almost no

√
s evolution, but only the

ratio values for light mesons are in agreement with the experimental data especially at the highest
LHC energies.

In summary, our detailed analysis aimed to investigate how we can provide physical meaning
for experimentally-fitted parameters, based on well-known theoretical models and phenomena.
Our results motivate us to improve the model of hadronization in high-energy collisions, using
spectra with exponential shape at low-pT , keeps the power-law tail at thigh pT , and takes care of the
meson/baryon spectra ratios and/or the experimentally observed (qmeson − 1)/(qbarion − 1).
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Abbreviations

The following abbreviations are used in this manuscript:

ALICE A Large Ion Colliding Experiment
BNL Brookhave National Laboratory
CERN Conseil Européen pour la Recherche Nucléaire
CM Center-of-mass
DGLAP Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
FF Fragmentation Function
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LHC Large Hadron Collider
NBD Negative Binomial Distribution
NDF Number of Degrees of Freedom
PHENIX A Physics Experiment at RHIC
PDF Parton Distribution Function
RHIC Relativistic Heavy Ion Collider
(p)QCD (perturbative) Quantum Chromo Dynamics
STAR Solenoidal Tracker at RHIC
QGP Quark Gluon Plasma

Appendix A

In Table A1 we show the parameters fitted to all used datasets [34,35,57–65]. The parameters qi, Ti
and Ai from Equation (20). and the χ2/ndf values of the given fit are listed for each identified hadron
and for each

√
s center-of-mass energy value.

Table A1. The fitted q, T and A parameters and the χ2/ndf value of the fit for identified hadrons π0,
π±, K± and pp̄. The values are grouped according to the hadrons such that the change in respect to the
center-of-mass energy can be compared easily.

√
s (GeV) Hadron q T (GeV) A χ2/ndf Experiment

62 π0 1.073 ± 0.011 0.139 ± 0.027 121.252 ± 100.460 7.857/11 PHENIX [57]
200 π0 1.101 ± 0.002 0.133 ± 0.003 149.459 ± 15.459 6.450/14 PHENIX [34]
500 π0 1.128 ± 0.000 0.098 ± 0.000 746.070 ± 0.527 3656.733/25 PHENIX [60]
900 π0 1.132 ± 0.029 0.128 ± 0.046 302183.366 ± 321455.697 0.462/10 ALICE [35]
2760 π0 1.137 ± 0.009 0.141 ± 0.035 4.937 ± 5.116 0.237/15 ALICE [63]
7000 π0 1.146 ± 0.004 0.140 ± 0.010 498950.603 ± 133429.129 1.143/30 ALICE [35]

62 π± 1.106 ± 0.000 0.100 ± 0.000 245.248 ± 0.000 4.276/23 PHENIX [34]
200 π+ 1.112 ± 0.001 0.089 ± 0.005 39.389 ± 14.396 58.248/11 STAR [59]
200 π− 1.110 ± 0.001 0.087 ± 0.005 48.554 ± 18.250 75.053/11 STAR [59]
900 π+ 1.124 ± 0.000 0.133 ± 0.000 4.496 ± 0.000 4.413/12 ALICE [61]
900 π− 1.124 ± 0.002 0.127 ± 0.001 5.240 ± 0.082 10.816/30 ALICE [61]
2760 π± 1.143 ± 0.000 0.129 ± 0.000 12.546 ± 0.000 3.929/60 ALICE [62]
7000 π± 1.152 ± 0.000 0.131 ± 0.000 14.544 ± 0.000 5.750/55 ALICE [64,65]

62 K± 1.090 ± 0.050 0.161 ± 0.033 3.142 ± 1.155 0.192/13 PHENIX [34]
200 K+ 1.109 ± 0.001 0.122 ± 0.002 0.902 ± 0.187 31.664/12 STAR [59]
200 K− 1.083 ± 0.005 0.199 ± 0.116 0.091 ± 0.058 17.189/11 STAR [59]
900 K+ 1.148 ± 0.000 0.167 ± 0.000 0.203 ± 0.000 6.932/24 ALICE [61]
900 K− 1.145 ± 0.000 0.176 ± 0.000 0.186 ± 0.000 19.465/24 ALICE [61]
2760 K± 1.141 ± 0.002 0.192 ± 0.004 0.434 ± 0.022 2.793/55 ALICE [62]
7000 K± 1.151 ± 0.000 0.205 ± 0.000 0.500 ± 0.000 3.756/48 ALICE [64,65]

62 p/ p̄ 1.083 ± 0.022 0.147 ± 0.023 1.240 ± 0.440 4.722/24 PHENIX [34]
200 p 1.118 ± 0.001 0.070 ± 0.001 10.205 ± 13.089 15.983/11 STAR [59]
200 p̄ 1.109 ± 0.001 0.074 ± 0.003 9.945 ± 2.227 26.393/11 STAR [59]
900 p 1.146 ± 0.017 0.178 ± 0.009 0.053 ± 0.003 13.758/21 ALICE [61]
900 p̄ 1.122 ± 0.017 0.190 ± 0.010 0.049 ± 0.002 13.337/21 ALICE [61]
2760 p/ p̄ 1.116 ± 0.006 0.219 ± 0.007 0.110 ± 0.005 2.232/45 ALICE [62]
7000 p/ p̄ 1.127 ± 0.006 0.236 ± 0.007 0.117 ± 0.005 2.556/46 ALICE [64,65]

Appendix B

In Table A2 the used datasets, their kinematical properties and the corresponding references
are listed. As we already mentioned in Section 4. that the spectra were measured in wide range of
kinematical variables, although these values varies in different experiments.
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Table A2. The used datasets and their kinematic properties (including the center-of-mass energy,
the rapidity window and the transverse momentum range) used for fitting, with the reference for the
corresponding article.

√
s (TeV) Rapidity Particle pT Range [GeV/c] Experiment

0.062 |η| < 0.35 π0 0.5 ≤ pT ≤ 7 PHENIX [57]
π± 0.3 ≤ pT ≤ 3 PHENIX [34]
K± 0.5 ≤ pT ≤ 2
p/ p̄ 1 ≤ pT ≤ 4

0.2 |η| < 0.35 π0 1 ≤ pT ≤ 15 PHENIX [58]
|y| < 0.5 π± 3 ≤ pT ≤ 15 STAR [59]

K± 3 ≤ pT ≤ 15
p/ p̄ 3 ≤ pT ≤ 15

0.5 |η| < 0.35 π0 1 ≤ pT ≤ 30 PHENIX [60]

0.9 |y| < 0.5 π0 0.4 ≤ pT ≤ 7 ALICE [35]
π± 0.1 ≤ pT ≤ 2.5 ALICE [61]
K± 0.2 ≤ pT ≤ 2.5
p/ p̄ 0.3 ≤ pT ≤ 2.5

2.76 |η| < 0.8 π0 0.6 ≤ pT ≤ 20 ALICE [63]
π± 0.1 ≤ pT ≤ 20 ALICE [62]
K± 0.1 ≤ pT ≤ 20
p/ p̄ 0.3 ≤ pT ≤ 15

7 |y| < 0.5 π0 0.3 ≤ pT ≤ 25 ALICE [35]
π± 0.1 ≤ pT ≤ 20 ALICE [64,65]
K± 0.2 ≤ pT ≤ 20
p/ p̄ 0.3 ≤ pT ≤ 20
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