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Abstract

We consider the k-folded sine-Gordon model, obtained from the usual version by
identifying the scalar field after k periods of the cosine potential. We examine (1)
the ground state energy split, (2) the lowest lying multi-particle state spectrum and
(3) vacuum expectation values of local fields in finite spatial volume, combining the
Truncated Conformal Space Approach, the method of the Destri-de Vega nonlinear
integral equation (NLIE) and semiclassical instanton calculations. We show that
the predictions of all these different methods are consistent with each other and in
particular provide further support for the NLIE method in the presence of a twist
parameter. It turns out that the model provides an optimal laboratory for examining
instanton contributions beyond the dilute instanton gas approximation. We also
provide evidence for the exact formula for the vacuum expectation values conjectured
by Lukyanov and Zamolodchikov.
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1 Introduction

Completely integrable 2 dimensional quantum field theories are important sources of non-
perturbative information but are rather rare. Thus there is a considerable interest in
modifications or deformations that generate new integrable models from an old one. The
extensively studied examples of such modifications include the integrable deformations of
CFTs [I] and the class of boundary integrable theories [P] where the new boundary condi-
tions preserve integrability.

In this paper we consider a slightly different integrable modification of sine-Gordon
(SG) model, which was first mentioned in [B] and discussed in some detail in [[]. In this
model the period of the sine—-Gordon field ¢ is k times the period of the potential for some
generic k € N|. Thus the new model—which we denote by SG(f, k)—contains the folding
number k as a parameter in addition to the usual coupling constant 8. All properties of
the ordinary SG model (SG(f, 1)) that rely only on the local properties of the field ¢, like
classical integrability, or the existence of conserved higher spin quantities, will also hold
for SG(B, k). Thus we have a rather clear intuitive picture of the various (infinite volume)
excitations of SG(3, k), at least for 3% < 8m. This picture predicts the exact S-matrices
of the scattering among the particles corresponding to these excitations in terms of the
well known S-matrix of SG. Nevertheless the spectrum of SG(, k) is not identical to that
of the ordinary SG, reflecting the importance of the boundary conditions imposed. In
particular the quantum theory SG(S, k) has a k-fold degenerate vacuum corresponding
to the ‘unidentified’ minima of the potential. As a consequence SG(f, k) contains kinks,
i.e. particles that interpolate between different vacua and have nontrivial restrictions on
their multi-particle Hilbert space. Since these restrictions are k dependent they do give
rise to differences between the theories with different k, that can manifest themselves in
their finite volume spectra.

In this paper we investigate SG(3, k) in finite volume. We study three sets of problems
in some detail, namely the split in the vacuum energy levels, the spectrum of the low lying
multi-particle states, and finally the vacuum expectation values of exponential fields. In all
three cases we compare the theoretical predictions with numerical data obtained by using
the Truncated Conformal Space Approach (TCSA) [f].

We derive the split of the vacuum energy levels by two methods, on the one hand we
obtain it from the nonlinear integral equation (NLIE) [B], [[d|] appropriately generalized
to describe SG(f, k), while on the other we perform an instanton calculation. These two
methods give identical results for the leading part of the split, and the TCSA data show
an excellent agreement with this prediction. This agreement confirms the correctness of
the generalized NLIE. We also show that the TCSA data make it possible to extract and
analyze the nonleading part of the split.

We determine the volume dependence of the energy levels of the low lying multi-particle
states by using the formalism of |fll. This method relies heavily on the conjectured S-

! This procedure can be carried out in any scalar field theory—mnot necessarily integrable—in which the
scalar potential is a periodic function.
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matrices describing the mutual scatterings in the multi-particle states. For large volumes
this simpler and approximate method can be shown to give identical results to the exact
NLIE, and we chose it because it has a clear interpretation in terms of the spectrum of the
model. The—Fk dependent—degeneracies and the volume dependence of the multi-particle
energy levels obtained this way agree very well with the TCSA data, and this agreement
confirms that the conjectured S-matrices are indeed the correct ones.

The study of the vacuum expectation values of exponential fields is motivated by the
fact that in [f] an explicit formula was proposed for this quantity at least in the ordinary
sine-Gordon theory in infinite volume. We translate this explicit expression into the fi-
nite volume SG(f, k), and compare it to the expectation values measured in the ground
states found by the TCSA. The TCSA data are good enough to distinguish between the
semiclassical and exact expressions given in [§|, favoring the latter. The agreement we find
proves two things. On the one hand it confirms the expression given in [§], on the other
it shows that the expectation, that everything, which in sine-Gordon theory follows only
from the local properties of the scalar field and the Lagrangian, remains true also in the
k-folded model, is indeed correct.

The paper is organized as follows: in Section 2 we describe the Lagrangian, the sym-
metries and the local operators of SG(f, k), and recall the basic properties of TCSA as
applied to this model. Section 3 contains the generalization of the NLIE. We investigate
the vacuum structure of SG(f, k) in finite volume in Section 4. Section 5 is devoted to the
study of the multi-particle energy levels, and we analyze the vacuum expectation values of
exponential fields in Section 6. We make our conclusions in Section 7. The paper is closed
by an appendix where we describe in detail the computation of a determinant needed to
complete the instanton calculation of the split between the vacuum energy levels.

2 The k-folded sine—Gordon model

2.1 SG(fB,k): Lagrangian and symmetries

The action of sine-Gordon theory in a finite spatial volume L is

o0 L/2 1 112
A= / dt/ dz (—@Lgo@“(p + —g (cos By — 1)) . (2.1)
—00 —L/2 2 ﬁ
For later convenience, we also define a new parameter p with
52
P

To define the k-folded theory SG(f, k) we take the sine-Gordon field ¢ as an angular
variable with the period

9
T

o~ o+ 5 (2.2)
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Figure 1: The potential with the identification (R.9) for k =4

This implies the following quasi-periodic boundary condition for the field:

2
oz + L, t) = p(x,t) + %k‘m, meZ. (2.3)
The classical ground states are easily obtained:
2
@n:%n, n=20,....,k—1 (2.4)

which shows that the condition (2:3) corresponds to identifying the minima of the cosine
potential with a period k (see Fig. [l). All classical solutions of the ordinary SG model
are also solutions of SG(5,k), as the equations of motion are identical. However the
static soliton solution, which, in the pure SG framework, on account of the identification
¢ = ¢+ 271/f, interpolates between the same minimum, is now connecting different,
neighbouring minima; i.e. the SG soliton becomes a kink in SG(3, k).

In the infinite volume (L = oo) quantum theory these ¢, correspond to the vacuum
states [n) which have the property

(0l (. 0) ) = . 2.5)

These states are all degenerate in the classical theory and also at quantum level when
L = oo; however, tunnelling lifts the degeneracy in finite volume L < oo.

Let us now examine the relevant symmetries of the action. One can define a Z; group
action generated by a unitary operator 7" in the following way:

2
T, )T~ = ol 1) = 5 (2.6)
Then we have
T|n) =|n+1 mod k) (2.7)
and the Hamiltonian
ST SR T
H= de | =m* 4+ = (Op)” + 55 (1 — cos Byp) | , m(x,t) = Oyp(x, t) (2.8)
—Lj2 2 2 32
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commutes with 7". The eigenvectors of T" are the “Bloch waves”

1 = o
W) = — e Im , Y, = —n, 2.9
V) R Im) k (2.9)
T|9,) = e ™ |0,) , (2.10)

which are eigenstates of the Hamiltonian as well. In fact, these states can be continued to
finite volume and are eigenstates of H when L < oo, while there are no natural counterparts
of the states |n): for finite L we define them using the inverse formula

= o
Im) = ﬁnz:oe " [0,)
One can also introduce a Z, transformation S which is defined as
So(x,t)S™! = —p(z,t) , St=8"1=3. (2.11)
It acts on the ground states as
Slny = lk—ny = |—n) ,  SIo) = |90 = [94s) . (2.12)

and commutes with the Hamiltonian H. The S and T transformations together generate
the discrete group Dy.

2.2 The spectrum of local operators

As a consequence of (B3, B-J), the exponential fieldsfj
Vi = exp <iﬁ%gp) (2.13)
are well-defined local operators provided m € Z. One can easily compute
TV, T =e %™V, SV.S'=V_. (2.14)

In the short distance limit, the behaviour of the correlation functions is described by a
¢ = 1 compactified free boson with the Lagrangian density

1
L= & X0 X (2.15)

2In writing V,,, we assume that the exponential fields are normal ordered and are normalized such that
the short distance limit of their two point function is

27712
(Vi @)Vom(y)) = |z —y| " ix for |o—y| —0.
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In order to determine the complete spectrum of local operators, let us consider this UV
limiting theory. The field x lives on a circle with compactification radius r

X ~ X+ 2mnr, n ez

where 7 can be determined from (B.3). Taking into account that the normalizations of ¢
and y differ by a factor of v4m we get

o YATy (2.16)

g
The above theory has a E(T)L X ﬁ(T)R Kac-Moody symmetry. The primary fields under
this algebra are vertex operators V, .,y with left/right conformal weights given by

1 /n  wr\2
AE == (— + —) . 2.1
(n,w) 2 \r 9 ( 7)

n is the field momentum quantum number, while w is the so-called winding number. The
local operators V;, correspond to Vo). The sine-Gordon potential can be identified as

1
o8 By = §(V(k,0) + Vicko) - (2.18)

There are only two possible maximal local operator algebras in a ¢ = 1 free boson theory
with compactification radius r []:

Ay = Vow : weZ, nel},
A = Vow) : weEZ, neZ+w/2}. (2.19)

The first one corresponds to a bosonic model, while for the second one the operators
corresponding to w odd are fermions. This gives the complete list of possible local theories
in the “sine-Gordon class” where standard sine-Gordon/massive Thirring corresponds to
choosing k = 1 and the algebra A,/ Ay , respectively.

2.3 Truncated Conformal Space for SG(f, k)

In order to support our theoretical considerations we shall use the well-known Truncated
Conformal Space Approach (TCSA) to obtain numerical data for the model SG(f, k).
This method was developed by Yurov and Zamolodchikov || for perturbations of Virasoro
minimal models and more recently extended to perturbations of ¢ = 1 theories in [[{]
where we refer the interested reader for more detail.

Here we limit ourselves to recalling the basic facts. We can represent the Hamiltonian
(B.8) as an infinite hermitian matrix on the space of states of the ¢ = 1 conformal field
theory built on the algebra A, (B-19):

H= B Fom (2.20)

V(n,m)e-Ab

3From now on we will restrict ourselves to the model based on the algebra Ay, as its fermionic coun-
terpart is very similar.
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where
Fn,m) = span {a_kl S }V(n7m)> Lk, k€ Z+} (2.21)

is the Fock space built over the primary state ’V(n,m)> with the negative frequency modes
of the conformal free boson field x (B-I7). The Hamiltonian takes the form

27 - c L2
H=—|Ly+Ly— =ld+A\———B 2.22
I ( o 1 Lo 192 + (27‘(‘)1_h ) ) ( )

where Ly and Ly are diagonal matrices with their diagonal elements being the left and
right conformal weights, Id is the identity matrix,

2
2

o2 (2.23)

4 p+1

is the scaling dimension of the perturbing potential and the matrix elements of B between

two states |®) and |¥) are

By y = % (@] Vir,oy(1,1) + Vg 0)(1,1) |T) . (2.24)
The parameter A is connected to po in eqn. (B.]) via a known relation [[1]]. The matrix
elements of B can be calculated in closed form. We would like to call attention to the
fact that the matrix elements of all vertex operators V(, ) in the basis (.2I]) are real
numbers. As a result the Hamiltonian is a real symmetric matrix which will be important
in establishing (6.4).
We choose our units in terms of the soliton mass M which is related to the coupling
constant A by the mass gap formula obtained from TBA in [[LI]:

A = w(h)M*, (2.25)

where

r(h) =

or(h/2) (VAT (Z)\
_WF(l—h/2)< ) ' (226)

T ()

4—2h

(Note that we use the same massgap relation in the k-folded model as in ordinary sine-
Gordon, due to our previous argument about the relation between local properties in
the two models). In what follows we normalize the energy scale by taking M = 1 and
denote the dimensionless volume ML by [. For numerical computations, we shall use the
dimensionless Hamiltonian

~

l2_h _
H=—=— (HCFT + H(h)73> ; Hepr = Lo+ Lo — —1d. (2.27)

H
M l (2m) " 12
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We diagonalize the matrix H in a truncated Hilbert space defined as

Hres(s,w, Bew) = {1¥) : (Lo — Lo) [¥) = 5|¥), Qk |¥) = w |¥), Hepr |¥) < Eew [V)}

(2.28)
where, besides imposing an upper bound on conformal energy, we restricted the Hilbert
space to a given value of the conformal spin Ly — Lo and of the topological charge Q. (the
winding number of the free boson x) since these commute with the Hamiltonian H. As
in the repulsive regime (p > 1) the TCSA for the SG theory is plagued by UV problems
[T, in this paper we restrict all of our numerical studies to the attractive regime (p < 1).
For the purposes of producing the numerical data used later in the paper we typically used
values of E., that correspond to roughly 6000-12000 states.

3 SG(f, k) in the NLIE framework

In a finite spatial volume the spectrum (the ground and the excited states) of sine-Gordon
theory (B.I) is described by a nonlinear integral equation (NLIE) [B, []. We shall start
with a more general equation than in the normal sine-Gordon situation by introducing a
twist angle ¥ & la Zamolodchikov [[J], originally motivated by considerations related to
polymers. Later it appeared in the description of the finite volume spectrum of Virasoro
minimal models perturbed by ®; 3) [[3]. It corresponds to switching on a chemical potential
coupled to the topological charge [[4]. The full twisted NLIE reads

Z(A\) = MLsinh A+ g(A[X;) + 0 — Z/ dz G(A — z —in)log (1 + (—l)éeiZ(H"’))

+z’/ dz G(\ — x +in) log (1 + (=1)°e~Z==m) (3.1)

where M is the soliton mass, L is the volume, 7 is a suitably chosen real shift, ¢ is either
0 or 1, and the kernel G reads

1 +o0 ] inh m(p—1k
G\ = — / dieth 02 (3.2)
2w 2sinh 7% cosh &F

The twist angle ¥ can be restricted to lie in the range —m < ¥ < 7 without loss of generality:
this choice simplifies the description of the results of the UV calculations.

The term g(A|);) is the so-called source term, composed of contributions from the holes,
special objects (roots/holes) and complex roots. The form of g is specific to the state in
the spectrum one wants to describe; for states with no particles, g = 0 (at least for L large
enough, where the so-called special objects do not appear). We denote their positions by
the general symbol {\;} = {hs, yx, ¢, wi} (h stands for holes, y for special objects and
¢ (w) for close (wide) complex roots). The source term takes the general form

g(M)‘j):ZX(A_hk)_2ZX(>‘_yk)_ZX — cr) ZX)\ Wi
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where \
X(A) = 27r/ dz G(x) (3.3)
0
and the second determination for any function f(\) is defined by

fA) + f (A — imsign (SmA)) p>1,

LOTES RS it N S R (@4
whenever |ImA| > min(r, 7p).
The source positions \; are determined from the Bethe quantization conditions
1—90
Z()\j)ZQ’ﬂ'[j s ] EZ‘I‘T (35)

where [; are the Bethe quantum numbers (for wide roots one must use the second deter-
mination of Z, defined as in (B.4)).

Given a solution for Z, the energy and momentum of the state can be computed from
the formulae

Ny
E = BEyu+ MZcoshh — QMZcoshy]
Jj=1 J=1
My
—MZcosh ¢ — MZ (coshw;)iy
7j=1

—M/ 2\sm smh(m +in)log(1 + (— 1)562'Z(w+in))] ’

Ny Ng
P = MY sinhh;—2M sinhy;

j=1 j=1
Mc Mw
-M Z sinhe¢; — M Z(Sinh wj)in
P j=1
—M/ 2—x2$m [cosh(z + in) log(1 + (—1)°eZ@Hm)] |
oo 2T

where 1
T
Ebulk = _ZMzL tan ?p .
For more details on the NLIE for excited states we refer to the literature [I0, I3, 5, g].
A detailed calculation of the UV limit of the twisted NLIE (B.J]) was performed in

[[3]. For our case, remembering that the identification of the perturbing potential (2.1§) is

(3.6)
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different from that of Feverati et al., we have to trace the appearance of the sine—-Gordon
twist parameter k in their formulas. Provided one chooses

d = Ny mod 2, (3.7)

the ultraviolet limit is described by states in the conformal family of vertex operators of
the form
kv 1

where 0(x) denotes the Heaviside step function.

Therefore to describe the UV spectrum 4, (B.19) of the k-folded sine-Gordon theory
one must choose the following values for the twist parameter:

19:2”7”, nzl—gﬁ}m (3.8)

which is mod 27 equivalent to the set of ¥J,, values in (B.9).
We also have to restrict

Q:NH—QNS—MC—QMWH(p—l)EkZ. (39)

The quantity Q counts the topological charge in the units of the usual sine-Gordon theory
(SG(B,k = 1)). The formula (B.9) expresses the fact that all states of SG(3,%) which
satisfy the periodic boundary conditions must be compatible with (B.3) as a consequence.

4 Vacuum structure and instantons in finite volume

In this section we investigate the vacuum structure of the k-folded sine-Gordon model
and show that it provides a laboratory to further test the NLIE as well as for analyzing
the higher order corrections to the dilute instanton gas approximation (DIG). We test the
NLIE by comparing its predictions both to the results of the instanton calculus and to the
TCSA data. The second possibility is due to the fact that terms beyond the DIG give
contributions to certain quantities, where they are not suppressed by lower order terms.
First we give a group theoretical, thus qualitative description of the vacuum spectrum, then
we analyse it quantitatively using the NLIE and finally we make the instanton calculation.

4.1 Symmetry considerations

In analyzing the vacuum structure we start with the L — oo limit. In this case Derrick’s
theorem forbids the existence of instantons. We have k different degenerate minima with
the corresponding states given by |m), m = 0,...,k — 1. The symmetry transformations
act on |m) by eqns. (2.7), (B.19) and they commute with the diagonal Hamiltonian.
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Now we consider the theory for finite L. For finite L instantons exist and they lift
the degeneracy of the ground states. As a consequence we have a unique vacuum state
invariant under Dy and the Hamiltonian is no longer diagonal in the basis spanned by |m).
Nevertheless from its symmetry properties we can determine its form. Since it commutes
with the symmetry transformations it must belong to the center of the group algebra of
Dy. The generators of the center can be obtained by summing up all elements of a given
conjugacy class with the same weights. One can show by direct computation that in the
particular representation considered the elements of the center which correspond to the
S transformation can be expanded in terms of those generators which correspond purely
to the T transformation. Consequently, the most general element of the center has the
following form:

H=Ey(L)d+E (LT +T Y +...+ EL)T +T7) +....

We can diagonalize this matrix by diagonalizing its commutant, i.e. the representation
matrices of T itself. The eigenvectors are the states |¢,,,) introduced in eqn. (£9) and the
corresponding eigenvalues of the Hamiltonian are:

[k/2]
2 ~
HmIEO(L)+ZEj(L)cos (%jm) , m=0,....,k—1, 2E;,=1FLE;. (4.1)
j=1

Thus for finite L, instead of the k-fold degenerate ground states we have the following
vacuum structure: there is a nondegenerate lowest eigenvalue, Hy, while the rest of the
eigenvalues come in pairs, H, = Hy_, for 1 < r < [k/2], at least for odd k. For k even
Hy 2 is non-degenerate as well. Clearly from the knowledge of the energy levels H,, we can
recover all the coefficients E;(L).

4.2 Leading finite size corrections to the vacuum energy

The NLIE for the twisted vacuum reads

Z()\) = MLsinhA+19 — Z/ dx G(}x—x—in) log (1+€z‘Z(m+in))
+ Z/ dx G()\—LL’—l—in)log (1_'_6—2'2(90—1'77)) ’ (42)

Q

Here we relax the condition (B-§) on ¢ in order to keep the calculation more general. As
Y — U+ 27 is a symmetry of the NLIE (.3) we can restrict the value of the twist angle ¥
to —m < ¥ < 7. The value ¢ = 0 corresponds to the untwisted sector. The vacuum energy
can be obtained using

E(L) = —2M%m/ 2_x sinh(z + in) log (1 + eZZ(”m)) ; (4.3)
oo 2m
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where the counting function Z(x) is a solution of the vacuum NLIE () and we omitted
the universal bulk energy term (B.6). For large values of the volume L, the solution is

Z(x) ~ 0 + lsinh(z) , | = ML . (4.4)

The value of n must lie inside the analyticity strip for the kernel G, i.e. |n| < min(w, 7p)
(“first determination”). However, there is no singularity whatsoever in the integrand of
E(L) when using the above approximation for Z and the contour can be shifted to n = i /2
for any value of p (in fact, the result is independent of p itself). One obtains

EW, L) = —M/ (Qi_i cosh(z) [log (14 €”71"*) +log (1 + e~*71eosh )] (4.5)

Expanding the term log(1 + ...) in Taylor series, a short computation gives

B, L) = —27]:4 i (_172n_1K1(nl) cosn (4.6)

where K;(z) is a modified Bessel function of the second kind:

dx

Ki(2) :/ 7cosh( x)e Feoshe

We remark that this result is exact at the free fermion point p = 1 (where G = 0 due to
(B.2)) and it can be shown to resum into

EW,L) = —%{1—3(%)2 23; (1—20—210gl)+
g Y (\/((2m—1)7r+19)2+l2—(2m—1)ﬁ_ﬁ>+

_Z( (2m — ) ﬁ)2+12—(2m—1)w—ﬁ)} (4.7)

with C' = 0.57721566. .. being the Euler-Mascheroni constant. This is exactly the result
for a free Dirac fermion with twisted boundary conditions in finite volume L.

4.3 Instantons in finite volume

With the exception of the leading n = 1 term in ([.6]), all the others get further corrections
from the integral term in the NLIE. Therefore for a general value of p the series ([£f) must
be truncated to its first term for consistency. Using the asymptotic behaviour of K;(z) we

obtain
E(9,L) [2
= —\/— cee 4.
7 e cos ) + (4.8)
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N In+1>

~

~— 9y
X

Figure 2: The one-instanton contribution to the vacuum energy

When the twist angle takes the allowed values (B.8) ¥,, = 2wm/k, this result can be
compared to ([.]]), showing that the leading n = 1 term in (f.4) predicts the value of
Ey(L)/M.

It is easy to interpret this result in terms of the usual instanton calculus. The one-
instanton configuration is nothing else but the static one-soliton configuration of sine—
Gordon theory on a cylinder replacing the space variable by the Euclidean time. It is
independent of the spatial coordinate and so satisfies the periodic boundary condition on
the cylinder. The Euclidean action is just the soliton mass M multiplied by the volume L.
This gives us the factor e~! by the normal rules of instanton calculus. The factor /2/(7l) is
composed of two parts: a contribution of \/I/(27) comes from the one (bosonic) zero mode
of the instanton generated by translations and the rest from the determinant of the nonzero
mode oscillations around the soliton, truncated to quadratic terms in the action. One then
gets the result (L.§) from the usual dilute instanton gas calculation (cf. (A.21)). (Since
this determinant is different from the one needed to compute the quantum corrections to
the SG soliton’s mass we spell out the details of the calculation in appendix [A]). Thus
for Ey(L)/M the n = 1 term of the NLIE and the DIG give identical predictions. This is
interesting, as the former one is expected to give reliable results for p ~ 1, while of the
latter we expect this for p ~ 0; however, as we have seen the leading term is independent
of p. Note that this prediction is also independent of the folding number £.

To obtain a theoretical prediction for E;(L), 7 > 1 in (1)), one must go beyond these
approximations. In the NLIE—as mentioned earlier—this would necessitate the inclusion
of the integral term, while in the instanton calculus it would require a handle on the ezact
multi-instanton solutions (as opposed to the approzimate ones in DIG) together with their
determinants in the cylindrical spacetime on Fig. Pl To derive an explicit expression for
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Eq.(4l.8) for Eq

Eq.(4.9) forE; --————-- ]
Eq.(4.9) forEg -------- 1
2-fold  + ]

3-fold  x

4-fold  *

0.1 5-fold ©
C 6-fold =

.om n
B g
0.01 |
[ L AN
|}
0.001 |
- L]
0.0001 -— — i - '
1 2 3 4 5 6

Figure 3: TCSA data versus predictions for Fy, Es and E3 at p =2/7

E;(L) is beyond the scope of the present paper, and we merely note that we expect

Bi(L) . e
7 = C(]apv k) lm(j,p,k)

(1+0(e”Uthh) . (4.9)

Keeping simply the first few terms with higher n in ([-§) predicts

Clip,k) = (—DH/%ﬁ,

and m = 1/2 for j = 2,3,..., and on Fig. B and Fig. [l we used these values for mak-
ing predictions about Es; and FE5. Since the NLIE is an exact description, the constants
C(j,p, k) and the exponents m can in principle be determined exactly (or numerically with
very high accuracy).

To test the NLIE and instanton predictions we determined numerically E;, Es and Ej3
from the first different [k/2] TCSA eigenvalues using eqn. (f.I)). On Fig. B we collected
these quantities for models having the same p = 2/7 but differing in their folding number,
which varied between 2 and 6. The data show a universal behaviour with no folding
number dependence and in case of F; they fit very well to the NLIE /instanton prediction,
eqn. (-§). Please note that the data and the most naive NLIE prediction (f.9) for £y and
Es differ only in the prefactor C(j, p, k) as the predictions run parallel to the data in the
semilogarithmic plot. On Fig. | we compile the numerical values of £} and F5 in 4-folded
models having different values of p. Again the data show a universal behaviour with no



5 MULTI-PARTICLE ENERGY LEVELS IN FINITE VOLUME 15

l o T T T T T T T
p=2/7 X
p=1/7 o
- p=2/23 ©
0.1 p=1/17 + 4
I Eq.(4.8) ——--
Eq.(4.9) ——
0.01 | __
X
X
0.001 . x = 1
X
x X
0.0001 F =R 9
o
B o o o ° ° o
1e-05 | R 4
=
RN
o o o
S +
1e-06 | h R
.
1e-07 ! ! ! I
0 8 10 12 14 16

Figure 4: The p (in)dependence of E; and Fs in various 4-folded models

significant p dependence, and the prediction ([.§) for F; describes the data very well. This
figure also shows that the smaller p is the larger is the [ range where TCSA gives reliable
data.

5 Multi-particle energy levels in finite volume

The finite volume spectra of completely integrable models can be used to test their conjec-
tured exact S-matrices. In particular, the energy levels of multi-kink states satisfying the
periodic boundary conditions can be determined in terms of their S-matrices [[]. These
energy levels then can be compared to the finite volume spectrum obtained by TCSA.
There are three physical effects that contribute to the finite volume energy levels of a
QFT. The ‘tunnelling’ effects are there in any theory—like SG(, k)—which has degenerate
vacua in infinite volume. The corrections due to tunnelling are O(exp(—M L)), where L is
the volume of the compact coordinate and M is a characteristic mass, in our case the mass of
the quantum kink. In any massive theory there are two types of ‘off-shell’ effects due to the
vacuum polarization and the interactions mediated by virtual particles, but both of them
give O(exp(—ML)) corrections only. Finally in finite volume the particles continuously
scatter on each other in a multi-particle state and as a result of these ‘scattering’ effects
the stationary scattering states (i.e. the ones invariant under the mutual scattering of
the constituents) are the true energy eigenstates. The resulting quantization conditions—
called Bethe-Yang equations in [ff]-—can be expressed in terms of the S-matrix if we assume
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that the particles are point-like. The corresponding corrections to the energy levels are
O(L72) and so much larger than in the previous two cases, therefore they provide an ideal
possibility to check the S-matrices.

5.1 Particle spectrum in the classical SG(f, k) in infinite volume

As mentioned above the static soliton solution of the SG theory becomes a kink in the
k-folded model. More precisely the classical kink solutions of SG(f, k), connecting neigh-
bouring minima can be written with the aid of the SG soliton solution as

2nm

B

Thus instead of the single soliton we have & different ‘one kink’ solutions in SG(f, k). (The
antikink solutions are obtained by the ¢ — —¢ reflection). Since a multi-kink solution
corresponds to a sequence of vacua on a line one cannot arbitrarily compose single kinks
to obtain an allowed solution, in contrast to the SG (anti)solitons. This restriction on
the sequence of kinks translates into restrictions on the multi-particle Hilbert space in
the quantized model. Note however that any multi-soliton/antisoliton solution of SG has
a (multi-)kink interpretation in SG(/, k), at least in infinite volume with no boundary
conditions prescribed.

SG(5, k) also has k different breather solutions which oscillate around the k& different
minima of the potential:

4
Kppe1(z,t) = = arctan e?o(@=20) 4 n=0,....k—1;k=0. (5.1)

: vt
4 sin ()
B (x,t) = = arctan E A

, vER, n=0,....k—1. (5.2)
s vcosh<“°x> B

1402

An important characteristic of the SG solutions is their topological charge. It measures
how many times the (¢, x) field winds around its range as x runs from —oo to co. Thus

in SG(f, k) we define it as
_B /°°
Qr = o | Oppdex (5.3)

This implies that the single kink solutions have a fractional 1/k topological charge and to
make @)y integer we have to consider at least a k-kink solution. The fractionally charged
configurations give rise to nonlocal states at the quantum level, which explains the re-
striction (B.9) imposed on the NLIE sources. The quasi-periodic boundary condition (P-3)
excludes all the single kink solutions, but the breathers (p.7) satisfy it, as do the multi-kink
ones with integer topological charge (B.3), at least approximately for L >> M(;;SS where
Mass = 810/ 3% is the classical kink mass.

5.2 The particle spectrum of the quantum SG(f, k)

In infinite volume, as a result of its integrability, the quantized SG model contains particles
corresponding to classical soliton or breather solutions. Since integrability is a consequence
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of the local properties of the Lagrangian as a function of ¢ we expect that the quantized
SG(f, k) also has kink and breather particles. Of course the Dy symmetry requires that in-
stead of the single quantum soliton (antisoliton) of SG in the k-folded model there should be
k quantum kinks (antikinks) degenerate in mass. In addition we expect breather particles
B™ p = 0,1,...k — 1 corresponding to all the k different vacua. Furthermore, contem-
plating e.g. a semiclassical analysis, we expect that the relation between the quantum kink
mass M and the possible breather masses M, is given by the familiar expression

1
Mm:2Msin#, m:1,...,H , (5.4)
p

independently of the ‘vacuum’ index n of B{™ . This expectation is confirmed by Fig.
where, in the 2 folded model, for p = 2/7, we compare the breather masses (horizontal
lines) with the TCSA dataJ] These data are obtained with vanishing total momentum
and vanishing topological charge, and the various dots represent the first eight energy
eigenvalues above the ground state. The data corresponding to single particle states (i.e. to
the first, second and third breathers), tend much faster to their infinite volume values than
the two-particle lines, having 2M; as their asymptotics. The reason is that while in the
single particle masses there are only O(e™!) finite size corrections, in the energy of two-
particle states there are O(I72) corrections coming from the mutual scattering among the
particles.

Denoting the kink of rapidity 6, interpolating between the vacuum «a at x — —oo and
[ at x — oo by K,z(6), we let the amplitude

S15(012)

describe the process
Koy (01) + Kyp(02) = Kas(62) + Ks(61)

where ¢, > 605 and 015 = 0; — 0;. Labelling the vacua by a = 0,1...,k — 1 the model
SG(S, k) has kinks K5 with | — | =1 (or kK —1). It is easy to describe the S-matrices of
these kinks [[]: using the Z; symmetry as well as time reversal and parity invariance one
can show that every nonvanishing kink-kink amplitude is equal to one of the following three
amplitudes: SEIST(0;), SeHot(0),), SEHe=1(6;,), where o + 1, o + 2 are understood
mod k. These (« independent) amplitudes are also independent of the global properties
of ¢ and thus they should be equal to the soliton-soliton (S,s(#)), antisoliton-soliton re-
flection (Sg(0)), and antisoliton-soliton transmission (Sr(#)) amplitudes, respectively, of
the ordinary SG model. To compute multi-kink energy levels we need the explicit form of
588(9):
Su0) = 0 o= [ L A (Gl )
o w cosh (Zw)sinh (Swp)

1On Fig. 5-8 E/M on the vertical axis stands for [E(I) — EY(1)]/M, where EJ(l) is the vacuum energy,
i.e. the ground state energy in the Q = 0 sector.
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Figure 5: Breather masses in the 2-folded model with p =2/7

In a completely analogous way one obtains that the Sf(Lm)(ng) S-matrix, which describes
the possible breather-kink scatterings

B,(Lm)(ﬁl) + Kn,n_H(eg) — Kn,n+1(92) —+ Bf:i)l (91) s ‘91 > ‘92
coincides with the breather-soliton S{™ (A12) S-matrix of the SG model [[[7]:

. . 7r_mpm—1 s 2 (m—2l _p ¥}
S(m)(e)_s1nh9+zcos 5 sin ( 5 TP 4+z§)'

s o _ Tmp 02 (m—2] _p_ ;0
sinh 6 — i cos =5 - sin (—2 ™— 3 2)

(5.5)

In finite volume, when the boundary condition (R.J) is imposed the single kink particles
disappear from the theory and they survive only as the building block constituents of the
multi-kink state with integer topological charge. On the other hand the breather particles
B are there even in finite volume, as they are consistent with (B-3).

5.3 The Bethe—Yang equations

To make a comparison with the TCSA results we need the multi-particle energy levels as
functions of L. While it is possible to get them directly in the NLIE formalism, we shall
use a simpler (and approximate) method which can be shown to give equivalent results for
large volume (ML > 1) but which has a clear interpretation in terms of the spectrum of
the model as it was described above.
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In an integrable theory particle number is conserved, thus the concept of N particle
state with any fixed N is well defined, at least for L > M~! when most of the time
the particles are far from each other. First we consider the ‘pure’ multi-kink states and
envisage the N-kink energy eigenstate in a large volume as a stationary scattering state,
characterized by the set of (conserved) rapidities § = {6, ...,0x}. Any N-kink stationary
wavefunction can be expanded using the independent allowed N-kink in-states (the number
of which we denote by dy)

‘Kn1n2(91)Kn2n3(‘92> .- 'Knan (HN» , 01 >0, > ...>0x

as basis, and let ¥™(f) (n = (n;...ny)) denote its components with respect to this basis.
Then, as a consequence of the periodic boundary conditions ¥ (#) must satisfy the following
Bethe-Yang equations (at least if all particles have the same mass):

zMLsth § :T

where 7}(0) is the N particle transfer matrix [f]:

(5.6)

|
@
.
|
\‘)—‘
=

N
T =TT swnis @ =6

i1

For a given L equs. (b.G) have solutions only for some special 6}, and the total energy and
momentum of the system in a state characterized by these solutions are given by

N N
E=> Mcoshf;, P=> Msinh0;. (5.7)

J=1 J=1

Note however, that while this expression for P is exact even for finite L, the one for E is
only approximate, as we neglect the ‘tunnelling’ and ‘off-shell’ corrections.

It is straightforward to use this formalism to obtain the energy levels of pure multi-
kink states in the @ = n (n > 1) sector of SG(8, k). It is natural to assume, that the
lowest, energy levels in this sector correspond to states with the smallest possible number
of particles. The states with lowest number of particles compatible with the boundary
condition and the topological charge being n contain N = k - n kinks and no breathers
or antikinks. Since the sequence of kinks in these states is necessarily fixed, we have,
independently of n, only £ different basis vectors in this subspace, i.e. dy = k. The basis
vectors can be chosen as

Vo1, k=1 (01, -, Okn)) = Ko (01) ... Ki—1,0 (Ok) Kot (Org1) - - Ki—1,0 (Okn))
[Ve—10,. k=2 (01, ..., 0kn)) = |Ki_10(02) Ko1 (61) ...
Ki—ok—10k) Ki—10 (Okt1) - - - Ko k-1 (Okn))
V1 k1001, .., Okn)) = |Ki12(01)...Ko1 (0k) K12 (Oks1) .- Koa (Okn)) , (5.8)
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where 6 > 0y > ... > 6,,. Using the explicit form of the transfer matrix and the
identification of the various Sgg elements with the SG soliton-soliton S-matrix Sss(#), the
Bethe—Yang equations can finally be written in the following form:

k-n

eiMLSinhGi Hei(s(ei_ej)(_].)k'nde) — _w , Z — 1’ . k, . n’ ,

JFi
where 1 is a column vector made of the ™ coefficients of the basis vectors in eqn. (p.§)
and the k x k matrix T}

0 ... 1

1 0

.= 0 1 0

0O ... 1 0
describes a Cycyc permutation generating Zj. The eigenvectors v, belonging to the various
eigenvalues (e'=™* m =0,...,k—1) of T}, carry the different inequivalent irreducible rep-

resentations of Zj. Choosing the m-th eigenvalue of T}, and introducing the dimensionless
variable [ = M L gives rise to the following Bethe—Yang equations

lsinh9i+25(9i —0;) =2 (N - %) =1, .k-n, (5.9)
JFi
where N; € Z +1/2 for k- n even and N; € Z for k- n odd, and as a result of S, (0) = —1
we must have N; # N, for i # j. The total momentum carried by a solution of (p.9) is
determined solely in terms of the N;:

P 27 -
V-1 (;Ni—m-n> .
The simplest possibility—and the one we investigated by TCSA—is when the total (CM)
momentum vanishes, P = 0. Please note that as a consequence of §(—0) = —d(0)
and e?2rk—m)/k — g=i2mm/k the Bethe-Yang equations guarantee that the P = 0 states
(Y, Yk—m), which carry complex conjugate representations of Dy, are degenerate in en-
ergy.

It is also possible to arrive at this result directly from the NLIE discussed in Section .
In the infrared limit ML > 1 the integral term in the NLIE (B.1]) becomes negligible and
for a state with k - n holes the equation simplifies to

k-n
Z(0) =9 +1snh0+ Y x(0—0;).
j=1
Observing that x(6) = §(#) and remembering that the allowed values of ¥ (B.§) are exactly

equivalent to selecting
m

9, =2t
Tk



5 MULTI-PARTICLE ENERGY LEVELS IN FINITE VOLUME 21

the Bethe quantization rules reduce to eqn. (b.9) while the energy/momentum formulas
turn into (f.7). Note that the quantization rule (B.7]) which selects the local operator
algebra A, from (B-T9) is exactly the one observed above for the N;: for k-n even it assigns
half-integer, while for k-n odd integer Bethe quantum numbers I;. We remark here that in
general the large volume limit of the NLIE coincides with the Bethe-Yang equations (p-§)
in their scalar form, i.e. evaluated on the eigenvectors of the transfer matrix Tf(g)

5.3.1 Comparison with the TCSA data

To compare with the TCSA results we consider a few sectors of the models with £ = 2 and
k = 3 in more detail. The simplest of them is the ) = 1 sector of SG(f3,2). In this case
1y describes the symmetric and v; the antisymmetric wave functions of Ky; and Kjg, the
latter one being allowed as the two kinks are different (bosonic) particles. P = 0 implies
in this case that 6, = —0, = 0 and (B.9) simplify to

NOGZ‘I’%,

=0,
N1€Z\{0}, 1

(5.10)

Isinh 6 + 6(26) :27r{ B
From this equation 6§ = (I, N,,) can be determined using e.g. an iterative procedure, or
alternatively the volume dependence of the 2-kink energy levels can be given in parametric

form as s 27N, — 6(26)
TNy —

This makes it clear that on the (I, E/M) plane the 2-particle lines cannot intersect each
other for 0 < [ < oco. These findings make it possible to distinguish clearly between the
solitons of sine-Gordon theory and the kinks in the 2-folded model, i.e. to argue that
the @ = 2 sector of SG(3,1) (denoted as SG(f3,1)s) is different from the ) = 1 sector
of SG(8,2) (SG(B,2)1). Indeed it is straightforward to derive the Bethe—Yang equations
for the pure 2-soliton states in SG([,1)y; since these solitons are identical particles these
Bethe—Yang equations are given by the first line in eqn. (p.I(). Therefore the number
of 2-soliton states in SG(/3, 1) is half the number of the 2-kink ones in SG(f,2);. On
Fig. fl the continuous lines are given by the interpolated TCSA data obtained in SG(/, 2),
with p = 2/7, while the dots represent the TCSA data obtained in SG(f3, 1)s; they clearly
correspond to every second line onlyf].

On Fig. [] the continuous lines depending on one quantum number only are given by
eqn. (p-I0) and the dots now correspond to the TCSA data in SG(/,2);. On this figure
we find data lines that cannot be interpreted as pure 2-kink states, as they apparently do
intersect some of the other lines. Since the large | behaviour of these lines is compatible
with £ — 2M + M, for | — oo, it is natural to try to interpret them as describing
3-particle states containing one ‘first’ (m = 1) breather in addition to the two kinks.
Since M; # M the transfer matrix formalism worked out in [f] does not apply directly.

5This is also true for the two lines which cannot be interpreted as two-particle ones due to their
(multiple) intersections with the other levels.
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Nevertheless following the original line of thought, namely by ‘commuting around’ any of
the particles using the appropriate S-matrices one can derive the Bethe—Yang equations
for the stationary scattering states.

Deleting the sequential or ‘upper’ (m) index of the breathers (since we consider only
the first one) but keeping their ‘vacuum’ index the basis vectors in this 3-particle subspace
can be chosen as

1/101h = |Kun (61) K10 (02) Bo (63))
1/110h = |[Kio(61) Ko1 (62) B1 (03)) , 61> 62> 05,

plus 4 other states corresponding to the breathers being ‘in the middle’ or in the ‘front’.
(The index h signals that the breathers are the last). Introducing the notation Sél)(ﬁ) =
—e O ML =ml and Y* = %(@Z)Olh + %) one can convert the Bethe—Yang equations
derived by the ‘commuting around’ procedure into the following form:

[ sinh 91 + 5(91 — 92) + (1/(91 - 93) = 27TN£Y (5.12)
[ sinh 92 + 5(92 — 91) + (1/(92 — 93) = 27TN; (513)
mlsinh 05 + (05 — 0,) + a(fs —0y) = 27K7, (5.14)

where v = +, Nfz € Z, Ni, € Z+ 1/2, K7 € Z. Once again, an equivalent system of
equations can be derived from the NLIE in the ML > 1 (infrared) region.

In the P = 0 system there are solutions with the breather at rest and the two kinks
moving in opposite directions: K7 = 0 = 63, NJ = =N 65 = —0;. Then the (p-13-p-19)
system simplifies to the single equation

[sinh 6y + 0(260) + «(6,) = 27N/, (5.15)

which admits the parametric solution

FE 27TN’Y—(5(291) —a(@l)
lL,—)(0) = - 2 cosh § : 1
(’M)( ) ( = ,2cosh; +m (5.16)
It is easy to understand how the N = —N, = 1/2, K~ = 0 state tends to the N; = 1

2-kink state (eqn. (B.10)) in the UV limit: in this limit a(§) — —7 and this effectively
converts the 1/2 on the right hand side of (p.I3) into 1. The lines depending on three
quantum numbers on Fig. [ correspond to the first two possibilities given by eqn. (b.17), and
the agreement with the TCSA data is excellent. Note also that the line with N} = N =1,
K* =0 is also present in SG(f3,1)s, consistently with the data on Fig. ff.

The @ = 1 sector of SG(f, 3) is interesting, as the representations belonging to m = 1
and m = 2 = —1 are complex conjugate ones. The Bethe-Yang equations in this case take
the form

1 =1,2,3 and

h | - .
WHCTC NG 2 N9 for i #

3 (@) —
lsinh9i+z5(9i—9j):277 N%z’)EZ’ 1 m=0
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Figure 8: Bethe-Yang curves and TCSA data for SG (ﬁ = %ﬁ, 3)1

For the symmetric states (i.e. when m = 0) with P = 0 there are special solutions with
03 = —01, 6, = 0 (when N3 = —Ng = —N, N2 = 0); and for them the volume dependence
of the energy levels can be given in parametric form similar to eqn. (B.11), but apart from
these special cases we have to rely on numerical procedures to get %(l, N!). On Fig. B,
for p = 2/7, we show how well the predictions of these Bethe—Yang equations describe the
TCSA data, regarding both the degeneracies and the volume dependence.

6 Vacuum expectation values of local fields

In this section we analyze the vacuum expectation values of exponential fields. Some time
ago an explicit expression was given for this quantity by Lukyanov and Zamolodchikov [f].
Here we compare this prediction with the data extracted from TCSA, and by doing so we
give further evidence that everything which in sine-Gordon theory follows only from the
local properties of the scalar field and the Lagrangian remains true in the k-folded model
as well.

6.1 Symmetries and vacuum expectation values

In this subsection we will isolate the independent amplitudes which characterize the vacuum
expectation values of exponential fields in SG(f, k):

.m
(Un| Vi [9r) » Vin = Vim,0) = exp (zﬁ? ) )
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Our considerations will be valid for any value of the volume L.
As a consequence of the action of 7" on the vacua [¢,,) (B.10) and on the local fields V;,

(P-I4) we have
(0] Vi |9:) = Ana(P)0nmmr s (0| Vin |7 = Bon(rr — n)e’ & ™ (6.1)

where A,,(r) are certain (unknown) amplitudes and

k—
L
B (r) = (0| Vi |1) = Eg A, (6.2)
Reality of the field ¢ yields
Vi=V_,,
and so ,
By(r)” = B ().

The transformation properties of the field ¢ under S imply
B, (r) = B_,,(—r).
This allows us to determine the phase of the amplitude B,,(r) up to a sign:
Bu(r) = €™ Fu(r), Fn(r) €R. (6.3)

It turns out that the real amplitudes F,,(r) are not all independent. Indeed, as it was
already remarked in subsection 2.3, in the usual basis (R.21) of the (ultraviolet) free bo-
son Hilbert space all the V},, have real matrix elements. Therefore the Hamiltonian (P-§)
as a matrix is real and symmetric, and as a consequence all its eigenvectors have real
components. This implies

(Un| Vin [9,) € R

and as a result
F(r) = (—1)"F(k=7), 7=1,..,k=1. (6.4)

Note that there is no constraint on F,,(0) = (0| V;,,|0). The vacuum expectation values
can therefore be characterized by the independent amplitudes

&m,rﬂng] (6.5)

all of which are real.
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6.2 The Lukyanov—Zamolodchikov formula

In [§] Lukyanov and Zamolodchikov proposed an exact formula for the vacuum expectation
values of exponential fields in the ordinary sine-Gordon model in infinite volume. Here we
briefly recall their result. We normalize the exponential fields so that the short distance
asymptotics of the non-vanishing two-point functions reads

. . 1
(0] elar(z) —iap(y) 0) = ’
|z — y[?2e
where A, = £ is the conformal weight of ¢*?®) and |0) denotes the state |n) for n = 0

(see eqn. (@%7)r Let us define
G(a) = (0] # |0) .

The authors of |§] conjecturef]

a2
L

o = [0

exp /OO dt sinh” (%t) — a—26_2t (6.6)
ot |2sinh (I%t) sinh(#) cosh (ﬁt) Am

which is valid for
B <8t and [Reaf)| < 4r, (6.7)

and where M is the soliton (kink) mass. Recalling now our basic idea, namely that every-
thing which depends only on the local properties of ¢ and the SG Lagrangian also holds
for the k-folded model SG(f, k), we can identify G(a) and F,,(0):

g (%ﬁ) = F,,(0) when [= ML = co.

The TCSA data allow us to extract at finite [ the expectation value of €@, _; (where
w = eT? is the map from the cylinder to the plane) in the ground states found by the

numerical diagonalization, i.e. we can measure A,,(n) as functions of I, A,,(n)[l]. Thus
introducing the dimensionless function g(a) = M~22<G(a) we obtain for finite [:

[2Ra mp

Fa(0)l] = £ 3 Al = yal@N (D), o= "1 (65)

| =

where N(I) is a finite size “correction” factor of which we know N(I) — 1+ O(e7!) for
[ — o0.

5Qur normalization for the field ¢ and the coupling constant 3 differs from that of |E] by a factor of

V8.
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The amplitudes F,(r) are in general not known for r # 0. However, one can derive
their leading behaviour for large volume using the following consideration. First note that
the matrix elements

(O Vi I1)

vanish in infinite volume since there is a super-selection rule making the vacua |n) lie in
physically disconnected Hilbert spaces with no local operators connecting them. It is clear
that in finite volume the non-vanishing contribution to these matrix elements comes from
the vacuum tunnelling described by instanton effects, whose magnitude we calculated for
large [ in section f]. Therefore we expect

(0| Vip|r) ~e™ when I>1 and r#0.

6.3 Comparison to TCSA

We tested the Lukyanov—Zamolodchikov formula in a 3-folded model with p = 2/7. Using
the eigenvectors belonging to the three ground states found by the TCSA algorithm we
determined numerically the various amplitudes A,,(n)[l] for all the values of m (m =
1,...,5) satisfying the conditions (6.7). Then, recalling eqn. (6.8), we plotted F,,(0)[l]l=2Am
where 22

4k

as a function of [. The result is shown on Fig. ], where the horizontal lines correspond to

(27) g (%ﬁ) |

The agreement between the measured values and the predicted ones is very good, though
for higher values of m the data are somewhat below the horizontal lines indicating that
the TCSA data should be extrapolated as in the discussion that follows. The 3-folded
model provides a good laboratory as it makes possible to extract F,,(1)[l] from the data
as well. The result F;(1)[l] can be seen on a semilogarithmic plot on Fig. [[0. Clearly this
behaviour is consistent with the expected exponential fall-off.

The exact expression for G(a) was obtained in [§] by a clever interpolation between
various limits, where the corresponding expressions were known from other sources. One
important such limit was the semiclassical one. Since our numerical study is for p < 1,
we investigated whether using our data one can make a distinction between the exact
and semiclassical expressions of ||, i.e. whether one can justify the exact or merely the
semiclassical formula.

We carried this out by zooming in on the vicinity of the uppermost (m = 1) line
on Fig. f, and the results are compiled on Fig. [1. Here the upper/lower horizontal
line corresponds to a g(a, ) obtained by the exact/semiclassical expressions in [f|, and
the TCSA data displayed were taken at four different F.., values. At each fixed [ the
data apparently converge monotonously with increasing E.,. The validity of the exact

2A,,
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Figure 11: Comparing TCSA with the semiclassical and full quantum formulae

expression over the semiclassical one is supported by the fact that these monotonously
convergent data exceed the semiclassical expression in a certain range, while they always
stay below the exact one. To strengthen this conclusion, at each fixed [, we extrapolated
the data by fitting their F.,; dependence with an expression

oy o ).
B +b(0)

and the extrapolated points on Fig. [T correspond to the coefficients a(l).f] These extrap-
olated points show a monotonously increasing behaviour in [ and they significantly exceed
the semiclassical expression while always stay below the exact one. In the final step, re-
calling eqn. (B.8), we fitted the extrapolated points by A — Be~!/l, where e~! is motivated
by the instanton contribution, and the [=! by the fluctuation determinant without a zero
mode. This ‘instanton fit” describes the extrapolated data with a very small variance, and
though the A obtained this way is somewhat smaller than the exact expression, it is much
closer to the exact than to the semiclassical one. To sum up, we can say that our data
indeed favour the exact expression of [§] over the semiclassical one.

We remark that a similar calculation of vacuum expectation values from TCSA was
performed in [[§ for the case of ® 3y perturbations of Virasoro minimal models. These

"This extrapolating formula is consistent with the monotonous increase and the power of E . in it is
motivated by the observation, that envisaging the determination of G(a) in pCFT the effective expansion
parameter would be A? rather than .
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models are restrictions of sine-Gordon theory at rational values of p and as a consequence
one can derive a formula for the vacuum expectation values of local fields starting from
(B-6) [B]- Similarly to our case, they find that the respective formula agrees with the TCSA
results. In contrast to their approach, however, we checked the prediction (B.0) directly in
the case of sine-Gordon theory.

There is another important implication of this result. The Lukyanov—Zamolodchikov
conjecture for the vacuum expectation values of local fields is connected to (and can be
derived from) the conjecture for the so-called Liouville reflection factor [[9, RO]. The above
verification of the formula (B.6) therefore lends an indirect support to the conjectured
expression for the reflection factor and considerations based on it.

7 Conclusions

In this paper we investigated the k-folded sine-Gordon model SG(f, k) in finite volume.
The aim of this study is to give support to the idea that the k-folded boundary conditions
which make SG(f, k) different from the ordinary sine-Gordon theory do indeed preserve
the integrability of the model, while changing the spectrum in a well defined manner.

We analyzed three major problems in some detail and showed in all of them, that the
consequences one can draw from this expectation are indeed correct. In particular we found
that the leading part of the split in the ground state energy levels, for which the NLIE
and the instanton calculus gave identical results, does indeed coincide with the numerical
data obtained by using TCSA. Furthermore, we provided evidence that the k dependent
degeneracies and the volume dependence of the multi-particle energy levels can indeed be
described by the formalism of ||, thus indirectly we verified the conjectured S-matrices.
Last but not least we showed that the vacuum expectation value of the exponential field
can be measured in the & folded model and we gave evidence supporting the validity of the
formula proposed in [f].
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A Instanton calculus in finite volume

In this appendix we perform a standard instanton calculation based on the dilute instanton
gas approximation, following the outlines of |2]]|. Here we shall work in a k = oo theory
which means that we drop the identification of the field in (£.4). We will comment on this
issue later.

A.1 The dilute instanton gas approximation

The Euclidean action of sine-Gordon theory is

- > L2 1 2 1 2 Ng
Soid = [ ar [ ar (G007 + 300+ B0 —eonip) ) (A

The equations of motion following from the action ([A.1l) admit the one-instanton solution

4
P = 3 arctan exp (o (T — 70)) (A.2)
with action g
SE [QpiHSt] = %L = MclassLa (A3)

where M. is the classical soliton mass. Using the usual rules of instanton calculus, the
saddle-point evaluation of the Euclidean path integral yields the following result for the
level splitting as a function of the twist angle 9 labelling the energy eigenstates |¢):

det' M |2 / Sp [©inst] 1/2
AE(Y) = =2 o ~Seleinst] A4
0) = —2e0s(0)|Joa | (Zgd) et (A4
where M and M, are the operators
M=—-0>=+V"(nst) , My=—0*—=0>+V"(0) (A.5)

describing the fluctuations around the instanton to quadratic order, det’ M denotes the
determinant of M without its zero mode and the factor

(%) 12 (A.6)

comes from the one translational zero mode 7 of the instanton solution ([A.d). The cos
dependence arises from Fourier transforming the dilute instanton gas summation according
to the relation between the vacua |n) and |9):

o0

W)=Y " n) . (A7)

n=—oo
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Here ¥ can take any value: the physically inequivalent choices are —7m < ¢ < 7. For
SG(f, k), the result of the dilute instanton gas calculation is similar to ([A.4) with the only
difference that ¥ can only take the discrete values

ﬁn:%Tn mod 27 .

A.2 The heat kernel representation for the determinant

Let us define the heat kernel for a positive hermitian operator A in the following way:
Ky(A) = Tre ™, (A.8)

from which the determinant can be reconstructed:

dt
logdet A = Trlog A = —/ 7Kt(A) . (A.9)
0

As the determinant is divergent (the divergence comes from the lower end of the integration
over t), we shall compute the difference

K(M) = K(M) — K, (M,)

using (-function regularisation. We define the (-function

1 o ~
M)=—— [ date! (K M —1) . A.10
Then the determinant can be expressed as
det’ M |72

(A.11)

1d
ety P (MW M>)

We can separate the x and 7 dependence and rewrite the heat kernel in the following form:

f(t(M) = K (—Q%) (Kt (Q) - K (QO)) )

. - 2 2 - 2
Q= 8T+“°(1 cosh2<uo<r—ro>>)’

z=0

Qo = —02 4.

The heat kernels for the three operators that appear above are

©© _ zlnz L ©© _nsz
Kt(—ﬁﬁ) = Z e (L )t: \/mn;we -

n=—oo

K(Q = 1+ / " dpp(pe i)

Ki(Qo) = /_ ) dppo(p)e8+77). (A.12)

where p, po are the spectral densities for the operators @), )y and the additive 1 in K;(Q)
comes from the zero mode.
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A.3 Evaluation of the spectral densities

The spectral density of the operator

_ 92 2 _ 2
Q - a'r + /"LO (1 COSh2 (,u07—>) (A13)

can be evaluated by solving the spectral problem:

s(s + 1)

g
cosh? (po7)

U+ pgW =\ | (A.14)

where for our case s = 1. This problem can be solved exactly by mapping the above
equation to a hypergeometric one |27].

A.3.1 The discrete spectrum

The discrete spectrum of (AI4) corresponds to 0 < A < p2. The condition for square

integrability reads
w/l—%—s:—n, neN. (A.15)
Ho

For our case (s = 1) the only solution of ([AI3) is n = 0 which corresponds to A = 0
i.e. exactly the unique zero mode of the operator () mentioned before. (The other possibility
n =1 means A = p? which is where the continuous spectrum starts.)

A.3.2 The continuous spectrum

The continuous spectrum covers the range p2 < A < oo. In this domain we define a solution
with the following asymptotic property:

U(r —o00)=eP" | A= pu+p°.
Then one can compute

-z o r(Eren)
[~ ts) * +F<—%—5>F(1+5_i_¥’>e . (A16)

U(r — —o0) =

Ko

For s € N the first term vanishes, which means that the potential is reflectionless. For
s =1 we obtain

U(r = —o00) = WH0) o) _ P T M0 (A17)
p— Ho
To get a well-defined spectral density, we must put the system in a large box of size T
Then periodic boundary condition on ¥ implies

pT —d6(p) =27rN, NE€EZ.
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For the size T'— oo the density of states with a given p is

1 94 (p)
=—|T-—= A.18
pp) =5 ( o ) (A.18)
which gives
1 240
=—|T— . A19
o) = 5 (7= 200 (219
A similar, but much simpler reasoning for )y yields
T
S A2
po(p) = 5 (A.20)

so the divergent parts linear in 7" drop out from the difference.

A.4 The instanton contribution

Substituting the results (A.19,A20) into (A.12), the final result for the (-regularized heat
kernel (A.10) is

g(Z, M) = Cl(zv M) +C2(Zv M) +g3(zv M)?

where
QM) = i [ L) (4(Q) ~ K Qo) - )
Colz M) = F(lz) /Ooodttz‘l (K, (—-2) — 1) .
Gz, M) = F(lz) /0 QT (Kt (—ag)—L(zm)—l/z) (K,(Q) — K, (Qo) — 1) .

(1 and (3 correspond to renormalizing the classical soliton mass M.s to the quantum one.
The interesting contribution to the determinant comes from the term (5 which gives

da(z, M) L? , /°° dt [4mt 9
— = —log— +1I"(1) -2 — |1 — | (K (—0;) —1
dz 0 Og47r+ (1) + Lt + 12 (K (=0;) = 1)
L2
= B —log—.
8 o

Numerical evaluation of the integral gives

to very high precision. Collecting all terms we get

AE(W) = —My/ %e‘l cos V. (A.21)
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