
ar
X

iv
:h

ep
-t

h/
00

04
18

1v
2 

 8
 M

ay
 2

00
0

ITP�Budapest Report No. 557

KCL�MTH�00�21

The k-folded sine�Gordon model in �nite volume

Z. Bajnok

(a)
, L. Palla

(a)∗
, G. Takás

(b)
and F. Wágner

(a)

19th April 2000

(a)
Institute for Theoretial Physis

Eötvös University

H-1117 Budapest, Pázmány P. sétány 1/A, Hungary

(b)
Department of Mathematis

Kings College London,

Strand, London WC2R 2LS, UK

Abstrat

We onsider the k-folded sine�Gordon model, obtained from the usual version by

identifying the salar �eld after k periods of the osine potential. We examine (1)

the ground state energy split, (2) the lowest lying multi-partile state spetrum and

(3) vauum expetation values of loal �elds in �nite spatial volume, ombining the

Trunated Conformal Spae Approah, the method of the Destri�de Vega nonlinear

integral equation (NLIE) and semilassial instanton alulations. We show that

the preditions of all these di�erent methods are onsistent with eah other and in

partiular provide further support for the NLIE method in the presene of a twist

parameter. It turns out that the model provides an optimal laboratory for examining

instanton ontributions beyond the dilute instanton gas approximation. We also

provide evidene for the exat formula for the vauum expetation values onjetured

by Lukyanov and Zamolodhikov.
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1 INTRODUCTION 2

1 Introdution

Completely integrable 2 dimensional quantum �eld theories are important soures of non-

perturbative information but are rather rare. Thus there is a onsiderable interest in

modi�ations or deformations that generate new integrable models from an old one. The

extensively studied examples of suh modi�ations inlude the integrable deformations of

CFTs [1℄ and the lass of boundary integrable theories [2℄ where the new boundary ondi-

tions preserve integrability.

In this paper we onsider a slightly di�erent integrable modi�ation of sine�Gordon

(SG) model, whih was �rst mentioned in [3℄ and disussed in some detail in [4℄. In this

model the period of the sine�Gordon �eld φ is k times the period of the potential for some

generi k ∈ N1

. Thus the new model�whih we denote by SG(β, k)�ontains the folding

number k as a parameter in addition to the usual oupling onstant β. All properties of

the ordinary SG model (SG(β, 1)) that rely only on the loal properties of the �eld φ, like
lassial integrability, or the existene of onserved higher spin quantities, will also hold

for SG(β, k). Thus we have a rather lear intuitive piture of the various (in�nite volume)

exitations of SG(β, k), at least for β2 < 8π. This piture predits the exat S-matries

of the sattering among the partiles orresponding to these exitations in terms of the

well known S-matrix of SG. Nevertheless the spetrum of SG(β, k) is not idential to that
of the ordinary SG, re�eting the importane of the boundary onditions imposed. In

partiular the quantum theory SG(β, k) has a k-fold degenerate vauum orresponding

to the `unidenti�ed' minima of the potential. As a onsequene SG(β, k) ontains kinks,
i.e. partiles that interpolate between di�erent vaua and have nontrivial restritions on

their multi-partile Hilbert spae. Sine these restritions are k dependent they do give

rise to di�erenes between the theories with di�erent k, that an manifest themselves in

their �nite volume spetra.

In this paper we investigate SG(β, k) in �nite volume. We study three sets of problems

in some detail, namely the split in the vauum energy levels, the spetrum of the low lying

multi-partile states, and �nally the vauum expetation values of exponential �elds. In all

three ases we ompare the theoretial preditions with numerial data obtained by using

the Trunated Conformal Spae Approah (TCSA) [5℄.

We derive the split of the vauum energy levels by two methods, on the one hand we

obtain it from the nonlinear integral equation (NLIE) [6℄, [7℄ appropriately generalized

to desribe SG(β, k), while on the other we perform an instanton alulation. These two

methods give idential results for the leading part of the split, and the TCSA data show

an exellent agreement with this predition. This agreement on�rms the orretness of

the generalized NLIE. We also show that the TCSA data make it possible to extrat and

analyze the nonleading part of the split.

We determine the volume dependene of the energy levels of the low lying multi-partile

states by using the formalism of [4℄. This method relies heavily on the onjetured S-

1

This proedure an be arried out in any salar �eld theory�not neessarily integrable�in whih the

salar potential is a periodi funtion.



2 THE K-FOLDED SINE�GORDON MODEL 3

matries desribing the mutual satterings in the multi-partile states. For large volumes

this simpler and approximate method an be shown to give idential results to the exat

NLIE, and we hose it beause it has a lear interpretation in terms of the spetrum of the

model. The�k dependent�degeneraies and the volume dependene of the multi-partile

energy levels obtained this way agree very well with the TCSA data, and this agreement

on�rms that the onjetured S-matries are indeed the orret ones.

The study of the vauum expetation values of exponential �elds is motivated by the

fat that in [8℄ an expliit formula was proposed for this quantity at least in the ordinary

sine�Gordon theory in in�nite volume. We translate this expliit expression into the �-

nite volume SG(β, k), and ompare it to the expetation values measured in the ground

states found by the TCSA. The TCSA data are good enough to distinguish between the

semilassial and exat expressions given in [8℄, favoring the latter. The agreement we �nd

proves two things. On the one hand it on�rms the expression given in [8℄, on the other

it shows that the expetation, that everything, whih in sine�Gordon theory follows only

from the loal properties of the salar �eld and the Lagrangian, remains true also in the

k-folded model, is indeed orret.

The paper is organized as follows: in Setion 2 we desribe the Lagrangian, the sym-

metries and the loal operators of SG(β, k), and reall the basi properties of TCSA as

applied to this model. Setion 3 ontains the generalization of the NLIE. We investigate

the vauum struture of SG(β, k) in �nite volume in Setion 4. Setion 5 is devoted to the

study of the multi-partile energy levels, and we analyze the vauum expetation values of

exponential �elds in Setion 6. We make our onlusions in Setion 7. The paper is losed

by an appendix where we desribe in detail the omputation of a determinant needed to

omplete the instanton alulation of the split between the vauum energy levels.

2 The k-folded sine�Gordon model

2.1 SG(β, k): Lagrangian and symmetries

The ation of sine�Gordon theory in a �nite spatial volume L is

A =

∫ ∞

−∞
dt

∫ L/2

−L/2

dx

(

1

2
∂µϕ∂

µϕ+
µ2
0

β2
(cos βϕ− 1)

)

. (2.1)

For later onveniene, we also de�ne a new parameter p with

p =
β2

8π − β2
.

To de�ne the k-folded theory SG(β, k) we take the sine�Gordon �eld ϕ as an angular

variable with the period

ϕ ∼ ϕ+
2π

β
k . (2.2)
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Figure 1: The potential with the identi�ation (2.2) for k = 4

This implies the following quasi-periodi boundary ondition for the �eld:

ϕ(x+ L, t) = ϕ(x, t) +
2π

β
km , m ∈ Z . (2.3)

The lassial ground states are easily obtained:

ϕn =
2π

β
n , n = 0, . . . , k − 1 (2.4)

whih shows that the ondition (2.2) orresponds to identifying the minima of the osine

potential with a period k (see Fig. 1). All lassial solutions of the ordinary SG model

are also solutions of SG(β, k), as the equations of motion are idential. However the

stati soliton solution, whih, in the pure SG framework, on aount of the identi�ation

ϕ ≡ ϕ + 2π/β, interpolates between the same minimum, is now onneting di�erent,

neighbouring minima; i.e. the SG soliton beomes a kink in SG(β, k).
In the in�nite volume (L = ∞) quantum theory these ϕn orrespond to the vauum

states |n〉 whih have the property

〈n|ϕ(x, t) |n〉 = 2π

β
n . (2.5)

These states are all degenerate in the lassial theory and also at quantum level when

L = ∞; however, tunnelling lifts the degeneray in �nite volume L <∞.

Let us now examine the relevant symmetries of the ation. One an de�ne a Zk group

ation generated by a unitary operator T in the following way:

Tϕ(x, t)T−1 = ϕ(x, t)− 2π

β
. (2.6)

Then we have

T |n〉 = |n + 1 mod k〉 (2.7)

and the Hamiltonian

H =

∫ L/2

−L/2

dx

(

1

2
π2 +

1

2
(∂xϕ)

2 +
µ2
0

β2
(1− cos βϕ)

)

, π(x, t) = ∂tϕ(x, t) (2.8)
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ommutes with T . The eigenvetors of T are the �Bloh waves�:

|ϑn〉 =
1√
k

k−1
∑

m=0

eimϑn |m〉 , ϑn =
2π

k
n , (2.9)

T |ϑn〉 = e−iϑn |ϑn〉 , (2.10)

whih are eigenstates of the Hamiltonian as well. In fat, these states an be ontinued to

�nite volume and are eigenstates ofH when L <∞, while there are no natural ounterparts

of the states |n〉: for �nite L we de�ne them using the inverse formula

|m〉 = 1√
k

k−1
∑

n=0

e−imϑn |ϑn〉 .

One an also introdue a Z2 transformation S whih is de�ned as

Sϕ(x, t)S−1 = −ϕ(x, t) , S† = S−1 = S . (2.11)

It ats on the ground states as

S |n〉 = |k − n〉 = |−n〉 , S |ϑl〉 = |−ϑl〉 = |ϑk−l〉 , (2.12)

and ommutes with the Hamiltonian H . The S and T transformations together generate

the disrete group Dk.

2.2 The spetrum of loal operators

As a onsequene of (2.2, 2.3), the exponential �elds

2

Vm = exp
(

iβ
m

k
ϕ
)

(2.13)

are well-de�ned loal operators provided m ∈ Z. One an easily ompute

TVmT
−1 = e−

2πi
k

mVm , SVmS
−1 = V−m . (2.14)

In the short distane limit, the behaviour of the orrelation funtions is desribed by a

c = 1 ompati�ed free boson with the Lagrangian density

L =
1

8π
∂µχ∂

µχ . (2.15)

2

In writing Vm we assume that the exponential �elds are normal ordered and are normalized suh that

the short distane limit of their two point funtion is

〈Vm(x)V−m(y)〉 → |x− y|−
β2m2

k24π for |x− y| → 0 .



2 THE K-FOLDED SINE�GORDON MODEL 6

In order to determine the omplete spetrum of loal operators, let us onsider this UV

limiting theory. The �eld χ lives on a irle with ompati�ation radius r

χ ∼ χ+ 2πnr , n ∈ Z

where r an be determined from (2.2). Taking into aount that the normalizations of ϕ
and χ di�er by a fator of

√
4π we get

r =

√
4π

β
k . (2.16)

The above theory has a Û(1)L × Û(1)R Ka-Moody symmetry. The primary �elds under

this algebra are vertex operators V(n,w) with left/right onformal weights given by

∆±
(n,w) =

1

2

(n

r
± wr

2

)2

. (2.17)

n is the �eld momentum quantum number, while w is the so-alled winding number. The

loal operators Vm orrespond to V(m,0). The sine�Gordon potential an be identi�ed as

: cos βϕ :≡ 1

2
(V(k,0) + V(−k,0)) . (2.18)

There are only two possible maximal loal operator algebras in a c = 1 free boson theory

with ompati�ation radius r [9℄:

Ab = {V(n,w) : w ∈ Z, n ∈ Z} ,
Af = {V(n,w) : w ∈ Z, n ∈ Z+ w/2} . (2.19)

The �rst one orresponds to a bosoni model, while for the seond one the operators

orresponding to w odd are fermions. This gives the omplete list of possible loal theories

in the �sine�Gordon lass� where standard sine�Gordon/massive Thirring orresponds to

hoosing k = 1 and the algebra Ab/Af , respetively.

2.3 Trunated Conformal Spae for SG(β, k)

In order to support our theoretial onsiderations we shall use the well-known Trunated

Conformal Spae Approah (TCSA) to obtain numerial data for the model SG(β, k).
This method was developed by Yurov and Zamolodhikov [5℄ for perturbations of Virasoro

minimal models and more reently extended to perturbations of c = 1 theories in [10℄

where we refer the interested reader for more detail.

Here we limit ourselves to realling the basi fats. We an represent the Hamiltonian

(2.8) as an in�nite hermitian matrix on the spae of states of the c = 1 onformal �eld

theory built on the algebra Ab (2.19)
3

:

H =
⊕

V(n,m)∈Ab

F(n,m) , (2.20)

3

From now on we will restrit ourselves to the model based on the algebra Ab, as its fermioni oun-

terpart is very similar.
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where

F(n,m) = span
{

a−k1 . . . a−kl

∣

∣V(n,m)

〉

, k1, . . . , kl ∈ Z+

}

(2.21)

is the Fok spae built over the primary state

∣

∣V(n,m)

〉

with the negative frequeny modes

of the onformal free boson �eld χ (2.15). The Hamiltonian takes the form

H =
2π

L

(

L0 + L̄0 −
c

12
Id + λ

L2−h

(2π)1−h
B

)

, (2.22)

where L0 and L̄0 are diagonal matries with their diagonal elements being the left and

right onformal weights, Id is the identity matrix,

h =
β2

4π
=

2p

p+ 1
(2.23)

is the saling dimension of the perturbing potential and the matrix elements of B between

two states |Φ〉 and |Ψ〉 are

BΦ,Ψ =
1

2
〈Φ| V(k,0)(1, 1) + V(−k,0)(1, 1) |Ψ〉 . (2.24)

The parameter λ is onneted to µ0 in eqn. (2.1) via a known relation [11℄. The matrix

elements of B an be alulated in losed form. We would like to all attention to the

fat that the matrix elements of all vertex operators V(n,m) in the basis (2.21) are real

numbers. As a result the Hamiltonian is a real symmetri matrix whih will be important

in establishing (6.4).

We hoose our units in terms of the soliton mass M whih is related to the oupling

onstant λ by the mass gap formula obtained from TBA in [11℄:

λ = κ(h)M2−h, (2.25)

where

κ(h) =
2Γ(h/2)

πΓ(1− h/2)

(√
πΓ
(

1
2−h

)

2Γ
(

h
4−2h

)

)2−h

. (2.26)

(Note that we use the same massgap relation in the k-folded model as in ordinary sine�

Gordon, due to our previous argument about the relation between loal properties in

the two models). In what follows we normalize the energy sale by taking M = 1 and

denote the dimensionless volume ML by l. For numerial omputations, we shall use the

dimensionless Hamiltonian

Ĥ =
H

M
=

2π

l

(

HCFT + κ(h)
l2−h

(2π)1−h
B

)

, HCFT = L0 + L̄0 −
c

12
Id . (2.27)
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We diagonalize the matrix Ĥ in a trunated Hilbert spae de�ned as

HTCS(s, w, Ecut) =
{

|Ψ〉 :
(

L0 − L̄0

)

|Ψ〉 = s |Ψ〉 , Qk |Ψ〉 = w |Ψ〉 , HCFT |Ψ〉 ≤ Ecut |Ψ〉
}

,
(2.28)

where, besides imposing an upper bound on onformal energy, we restrited the Hilbert

spae to a given value of the onformal spin L0 − L̄0 and of the topologial harge Qk (the

winding number of the free boson χ) sine these ommute with the Hamiltonian H . As

in the repulsive regime (p > 1) the TCSA for the SG theory is plagued by UV problems

[10℄, in this paper we restrit all of our numerial studies to the attrative regime (p < 1).
For the purposes of produing the numerial data used later in the paper we typially used

values of Ecut that orrespond to roughly 6000�12000 states.

3 SG(β, k) in the NLIE framework

In a �nite spatial volume the spetrum (the ground and the exited states) of sine�Gordon

theory (2.1) is desribed by a nonlinear integral equation (NLIE) [6, 7℄. We shall start

with a more general equation than in the normal sine�Gordon situation by introduing a

twist angle ϑ á la Zamolodhikov [12℄, originally motivated by onsiderations related to

polymers. Later it appeared in the desription of the �nite volume spetrum of Virasoro

minimalmodels perturbed by Φ(1,3) [13℄. It orresponds to swithing on a hemial potential

oupled to the topologial harge [14℄. The full twisted NLIE reads

Z(λ) =ML sinh λ+ g(λ|λj) + ϑ− i

∫ ∞

−∞
dx G(λ− x− iη) log

(

1 + (−1)δeiZ(x+iη)
)

+i

∫ ∞

−∞
dx G(λ− x+ iη) log

(

1 + (−1)δe−iZ(x−iη)
)

,(3.1)

where M is the soliton mass, L is the volume, η is a suitably hosen real shift, δ is either
0 or 1, and the kernel G reads

G(λ) =
1

2π

∫ +∞

−∞
dk eikλ

sinh π(p−1)k
2

2 sinh πpk
2

cosh πk
2

. (3.2)

The twist angle ϑ an be restrited to lie in the range−π < ϑ ≤ π without loss of generality:
this hoie simpli�es the desription of the results of the UV alulations.

The term g(λ|λj) is the so-alled soure term, omposed of ontributions from the holes,

speial objets (roots/holes) and omplex roots. The form of g is spei� to the state in

the spetrum one wants to desribe; for states with no partiles, g = 0 (at least for L large

enough, where the so-alled speial objets do not appear). We denote their positions by

the general symbol {λj} = {hk , yk , ck , wk} (h stands for holes, y for speial objets and

c (w) for lose (wide) omplex roots). The soure term takes the general form

g(λ|λj) =
NH
∑

k=1

χ(λ− hk)− 2

NS
∑

k=1

χ(λ− yk)−
MC
∑

k=1

χ(λ− ck)−
MW
∑

k=1

χ(λ− wk)II ,
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where

χ(λ) = 2π

∫ λ

0

dxG(x) (3.3)

and the seond determination for any funtion f(λ) is de�ned by

f(λ)II =

{

f(λ) + f (λ− iπsign (ℑmλ)) , p > 1 ,
f(λ)− f (λ− iπsign (ℑmλ) p) , p < 1 ,

(3.4)

whenever |ℑmλ| > min(π, πp).
The soure positions λi are determined from the Bethe quantization onditions

Z(λj) = 2πIj , Ij ∈ Z+
1− δ

2
, (3.5)

where Ij are the Bethe quantum numbers (for wide roots one must use the seond deter-

mination of Z, de�ned as in (3.4)).

Given a solution for Z, the energy and momentum of the state an be omputed from

the formulae

E = Ebulk +M

NH
∑

j=1

cosh hj − 2M

NS
∑

j=1

cosh yj

−M
MC
∑

j=1

cosh cj −M

MW
∑

j=1

(coshwj)II

−M
∫ ∞

−∞

dx

2π
2ℑm

[

sinh(x+ iη) log(1 + (−1)δeiZ(x+iη))
]

,

P = M

NH
∑

j=1

sinh hj − 2M

NS
∑

j=1

sinh yj

−M
MC
∑

j=1

sinh cj −M

MW
∑

j=1

(sinhwj)II

−M
∫ ∞

−∞

dx

2π
2ℑm

[

cosh(x+ iη) log(1 + (−1)δeiZ(x+iη))
]

,

where

Ebulk = −1

4
M2L tan

πp

2
. (3.6)

For more details on the NLIE for exited states we refer to the literature [10, 13, 15, 16℄.

A detailed alulation of the UV limit of the twisted NLIE (3.1) was performed in

[13℄. For our ase, remembering that the identi�ation of the perturbing potential (2.18) is
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di�erent from that of Feverati et al., we have to trae the appearane of the sine�Gordon

twist parameter k in their formulas. Provided one hooses

δ = NH mod 2 , (3.7)

the ultraviolet limit is desribed by states in the onformal family of vertex operators of

the form

V(n,m) , n ∈ kZ+
kϑ

2π
, m =

1

k
(NH − 2NS −MC − 2MW θ(p− 1)) ,

where θ(x) denotes the Heaviside step funtion.

Therefore to desribe the UV spetrum Ab (2.19) of the k-folded sine�Gordon theory

one must hoose the following values for the twist parameter:

ϑ =
2πn

k
, n =

[

−k
2
+ 1

]

, . . . ,

[

k

2

]

(3.8)

whih is mod 2π equivalent to the set of ϑn values in (2.9).

We also have to restrit

Q = NH − 2NS −MC − 2MW θ(p− 1) ∈ kZ . (3.9)

The quantity Q ounts the topologial harge in the units of the usual sine�Gordon theory

(SG(β, k = 1)). The formula (3.9) expresses the fat that all states of SG(β, k) whih

satisfy the periodi boundary onditions must be ompatible with (2.3) as a onsequene.

4 Vauum struture and instantons in �nite volume

In this setion we investigate the vauum struture of the k-folded sine�Gordon model

and show that it provides a laboratory to further test the NLIE as well as for analyzing

the higher order orretions to the dilute instanton gas approximation (DIG). We test the

NLIE by omparing its preditions both to the results of the instanton alulus and to the

TCSA data. The seond possibility is due to the fat that terms beyond the DIG give

ontributions to ertain quantities, where they are not suppressed by lower order terms.

First we give a group theoretial, thus qualitative desription of the vauum spetrum, then

we analyse it quantitatively using the NLIE and �nally we make the instanton alulation.

4.1 Symmetry onsiderations

In analyzing the vauum struture we start with the L → ∞ limit. In this ase Derrik's

theorem forbids the existene of instantons. We have k di�erent degenerate minima with

the orresponding states given by |m〉, m = 0, . . . , k − 1. The symmetry transformations

at on |m〉 by eqns. (2.7), (2.12) and they ommute with the diagonal Hamiltonian.
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Now we onsider the theory for �nite L. For �nite L instantons exist and they lift

the degeneray of the ground states. As a onsequene we have a unique vauum state

invariant under Dk and the Hamiltonian is no longer diagonal in the basis spanned by |m〉.
Nevertheless from its symmetry properties we an determine its form. Sine it ommutes

with the symmetry transformations it must belong to the enter of the group algebra of

Dk. The generators of the enter an be obtained by summing up all elements of a given

onjugay lass with the same weights. One an show by diret omputation that in the

partiular representation onsidered the elements of the enter whih orrespond to the

S transformation an be expanded in terms of those generators whih orrespond purely

to the T transformation. Consequently, the most general element of the enter has the

following form:

H = E0(L)Id + Ẽ1(L)(T + T−1) + . . .+ Ẽi(L)(T
i + T−i) + . . . .

We an diagonalize this matrix by diagonalizing its ommutant, i.e. the representation

matries of T itself. The eigenvetors are the states |ϑm〉 introdued in eqn. (2.9) and the

orresponding eigenvalues of the Hamiltonian are:

Hm = E0(L) +

[k/2]
∑

j=1

Ej(L) cos

(

2π

k
jm

)

, m = 0, . . . , k − 1 , 2Ẽj = Ej . (4.1)

Thus for �nite L, instead of the k-fold degenerate ground states we have the following

vauum struture: there is a nondegenerate lowest eigenvalue, H0, while the rest of the

eigenvalues ome in pairs, Hr = Hk−r for 1 ≤ r ≤ [k/2], at least for odd k. For k even

Hk/2 is non-degenerate as well. Clearly from the knowledge of the energy levels Hm we an

reover all the oe�ients Ej(L).

4.2 Leading �nite size orretions to the vauum energy

The NLIE for the twisted vauum reads

Z(λ) =ML sinh λ+ ϑ − i

∫ ∞

−∞
dx G(λ− x− iη) log

(

1 + eiZ(x+iη)
)

+ i

∫ ∞

−∞
dx G(λ− x+ iη) log

(

1 + e−iZ(x−iη)
)

, (4.2)

Here we relax the ondition (3.8) on ϑ in order to keep the alulation more general. As

ϑ → ϑ+2π is a symmetry of the NLIE (4.2) we an restrit the value of the twist angle ϑ
to −π < ϑ ≤ π. The value ϑ = 0 orresponds to the untwisted setor. The vauum energy

an be obtained using

E(L) = −2Mℑm
∫ ∞

−∞

dx

2π
sinh(x+ iη) log

(

1 + eiZ(x+iη)
)

, (4.3)
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where the ounting funtion Z(x) is a solution of the vauum NLIE (4.2) and we omitted

the universal bulk energy term (3.6). For large values of the volume L, the solution is

Z(x) ≈ ϑ+ l sinh(x) , l =ML . (4.4)

The value of η must lie inside the analytiity strip for the kernel G, i.e. |η| < min(π, πp)
(��rst determination�). However, there is no singularity whatsoever in the integrand of

E(L) when using the above approximation for Z and the ontour an be shifted to η = iπ/2
for any value of p (in fat, the result is independent of p itself). One obtains

E(ϑ, L) = −M
∫ ∞

−∞

dx

2π
cosh(x)

[

log
(

1 + eiϑ−l coshx
)

+ log
(

1 + e−iϑ−l coshx
)]

. (4.5)

Expanding the term log(1 + . . .) in Taylor series, a short omputation gives

E(ϑ, L) = −2M

π

∞
∑

n=1

(−1)n−1

n
K1(nl) cosnϑ , (4.6)

where K1(z) is a modi�ed Bessel funtion of the seond kind:

K1(z) =

∫ ∞

−∞

dx

2
cosh(x)e−z coshx .

We remark that this result is exat at the free fermion point p = 1 (where G = 0 due to

(3.2)) and it an be shown to resum into

E(ϑ, L) = − π

6L

{

1− 3

(

ϑ

π

)2

− 3l2

2π2

(

1− 2C − 2 log
l

π

)

+

6

π

∞
∑

m=1

(

√

((2m− 1)π + ϑ)2 + l2 − (2m− 1)π − l2

2(2m− 1)π

)

+

6

π

∞
∑

m=1

(

√

((2m− 1)π − ϑ)2 + l2 − (2m− 1)π − l2

2(2m− 1)π

)

}

(4.7)

with C = 0.57721566 . . . being the Euler-Masheroni onstant. This is exatly the result

for a free Dira fermion with twisted boundary onditions in �nite volume L.

4.3 Instantons in �nite volume

With the exeption of the leading n = 1 term in (4.6), all the others get further orretions

from the integral term in the NLIE. Therefore for a general value of p the series (4.6) must
be trunated to its �rst term for onsisteny. Using the asymptoti behaviour of K1(z) we
obtain

E(ϑ, L)

M
= −

√

2

πl
e−l cosϑ+ . . . . (4.8)
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τ
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|n+1>

Figure 2: The one-instanton ontribution to the vauum energy

When the twist angle takes the allowed values (3.8) ϑm = 2πm/k, this result an be

ompared to (4.1), showing that the leading n = 1 term in (4.6) predits the value of

E1(L)/M .

It is easy to interpret this result in terms of the usual instanton alulus. The one-

instanton on�guration is nothing else but the stati one-soliton on�guration of sine�

Gordon theory on a ylinder replaing the spae variable by the Eulidean time. It is

independent of the spatial oordinate and so satis�es the periodi boundary ondition on

the ylinder. The Eulidean ation is just the soliton mass M multiplied by the volume L.
This gives us the fator e−l

by the normal rules of instanton alulus. The fator

√

2/(πl) is

omposed of two parts: a ontribution of

√

l/(2π) omes from the one (bosoni) zero mode

of the instanton generated by translations and the rest from the determinant of the nonzero

mode osillations around the soliton, trunated to quadrati terms in the ation. One then

gets the result (4.8) from the usual dilute instanton gas alulation (f. (A.21)). (Sine

this determinant is di�erent from the one needed to ompute the quantum orretions to

the SG soliton's mass we spell out the details of the alulation in appendix A). Thus

for E1(L)/M the n = 1 term of the NLIE and the DIG give idential preditions. This is

interesting, as the former one is expeted to give reliable results for p ∼ 1, while of the

latter we expet this for p ∼ 0; however, as we have seen the leading term is independent

of p. Note that this predition is also independent of the folding number k.
To obtain a theoretial predition for Ej(L), j > 1 in (4.1), one must go beyond these

approximations. In the NLIE�as mentioned earlier�this would neessitate the inlusion

of the integral term, while in the instanton alulus it would require a handle on the exat

multi-instanton solutions (as opposed to the approximate ones in DIG) together with their

determinants in the ylindrial spaetime on Fig. 2. To derive an expliit expression for
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Figure 3: TCSA data versus preditions for E1, E2 and E3 at p = 2/7

Ej(L) is beyond the sope of the present paper, and we merely note that we expet

Ej(L)

M
= C(j, p, k)

e−jl

lm(j,p,k)

(

1 +O(e−(j+k)l)
)

. (4.9)

Keeping simply the �rst few terms with higher n in (4.6) predits

C(j, p, k) = (−1)j
√

2

πj3
,

and m = 1/2 for j = 2, 3, . . . , and on Fig. 3 and Fig. 4 we used these values for mak-

ing preditions about E2 and E3. Sine the NLIE is an exat desription, the onstants

C(j, p, k) and the exponents m an in priniple be determined exatly (or numerially with

very high auray).

To test the NLIE and instanton preditions we determined numerially E1, E2 and E3

from the �rst di�erent [k/2] TCSA eigenvalues using eqn. (4.1). On Fig. 3 we olleted

these quantities for models having the same p = 2/7 but di�ering in their folding number,

whih varied between 2 and 6. The data show a universal behaviour with no folding

number dependene and in ase of E1 they �t very well to the NLIE/instanton predition,

eqn. (4.8). Please note that the data and the most naive NLIE predition (4.9) for E2 and

E3 di�er only in the prefator C(j, p, k) as the preditions run parallel to the data in the

semilogarithmi plot. On Fig. 4 we ompile the numerial values of E1 and E2 in 4-folded

models having di�erent values of p. Again the data show a universal behaviour with no
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Figure 4: The p (in)dependene of E1 and E2 in various 4-folded models

signi�ant p dependene, and the predition (4.8) for E1 desribes the data very well. This

�gure also shows that the smaller p is the larger is the l range where TCSA gives reliable

data.

5 Multi-partile energy levels in �nite volume

The �nite volume spetra of ompletely integrable models an be used to test their onje-

tured exat S-matries. In partiular, the energy levels of multi-kink states satisfying the

periodi boundary onditions an be determined in terms of their S-matries [4℄. These

energy levels then an be ompared to the �nite volume spetrum obtained by TCSA.

There are three physial e�ets that ontribute to the �nite volume energy levels of a

QFT. The `tunnelling' e�ets are there in any theory�like SG(β, k)�whih has degenerate

vaua in in�nite volume. The orretions due to tunnelling are O(exp(−ML)), where L is

the volume of the ompat oordinate andM is a harateristi mass, in our ase the mass of

the quantum kink. In any massive theory there are two types of `o�-shell' e�ets due to the

vauum polarization and the interations mediated by virtual partiles, but both of them

give O(exp(−ML)) orretions only. Finally in �nite volume the partiles ontinuously

satter on eah other in a multi-partile state and as a result of these `sattering' e�ets

the stationary sattering states (i.e. the ones invariant under the mutual sattering of

the onstituents) are the true energy eigenstates. The resulting quantization onditions�

alled Bethe�Yang equations in [4℄�an be expressed in terms of the S-matrix if we assume
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that the partiles are point-like. The orresponding orretions to the energy levels are

O(L−2) and so muh larger than in the previous two ases, therefore they provide an ideal

possibility to hek the S-matries.

5.1 Partile spetrum in the lassial SG(β, k) in in�nite volume

As mentioned above the stati soliton solution of the SG theory beomes a kink in the

k-folded model. More preisely the lassial kink solutions of SG(β, k), onneting neigh-

bouring minima an be written with the aid of the SG soliton solution as

Kn,n+1(x, t) =
4

β
arctan eµ0(x−x0) +

2nπ

β
n = 0, . . . , k − 1; k ≡ 0 . (5.1)

Thus instead of the single soliton we have k di�erent `one kink' solutions in SG(β, k). (The
antikink solutions are obtained by the ϕ 7→ −ϕ re�etion). Sine a multi-kink solution

orresponds to a sequene of vaua on a line one annot arbitrarily ompose single kinks

to obtain an allowed solution, in ontrast to the SG (anti)solitons. This restrition on

the sequene of kinks translates into restritions on the multi-partile Hilbert spae in

the quantized model. Note however that any multi-soliton/antisoliton solution of SG has

a (multi-)kink interpretation in SG(β, k), at least in in�nite volume with no boundary

onditions presribed.

SG(β, k) also has k di�erent breather solutions whih osillate around the k di�erent

minima of the potential:

B(v)
n (x, t) =

4

β
arctan

sin
(

µ0vt√
1+v2

)

v cosh
(

µ0x√
1+v2

) +
2nπ

β
, v ∈ R , n = 0, . . . , k − 1 . (5.2)

An important harateristi of the SG solutions is their topologial harge. It measures

how many times the ϕ(t, x) �eld winds around its range as x runs from −∞ to ∞. Thus

in SG(β, k) we de�ne it as

Qk =
β

2kπ

∫ ∞

−∞
∂xϕdx . (5.3)

This implies that the single kink solutions have a frational 1/k topologial harge and to

make Qk integer we have to onsider at least a k-kink solution. The frationally harged

on�gurations give rise to nonloal states at the quantum level, whih explains the re-

strition (3.9) imposed on the NLIE soures. The quasi-periodi boundary ondition (2.3)

exludes all the single kink solutions, but the breathers (5.2) satisfy it, as do the multi-kink

ones with integer topologial harge (5.3), at least approximately for L ≫ M−1
class where

Mclass = 8µ0/β
2
is the lassial kink mass.

5.2 The partile spetrum of the quantum SG(β, k)

In in�nite volume, as a result of its integrability, the quantized SG model ontains partiles

orresponding to lassial soliton or breather solutions. Sine integrability is a onsequene
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of the loal properties of the Lagrangian as a funtion of ϕ we expet that the quantized

SG(β, k) also has kink and breather partiles. Of ourse the Dk symmetry requires that in-

stead of the single quantum soliton (antisoliton) of SG in the k-folded model there should be

k quantum kinks (antikinks) degenerate in mass. In addition we expet breather partiles

B
(m)
n n = 0, 1, . . . k − 1 orresponding to all the k di�erent vaua. Furthermore, ontem-

plating e.g. a semilassial analysis, we expet that the relation between the quantum kink

mass M and the possible breather masses Mm is given by the familiar expression

Mm = 2M sin
πpm

2
, m = 1, . . . ,

[

1

p

]

, (5.4)

independently of the `vauum' index n of B
(m)
n . This expetation is on�rmed by Fig. 5

where, in the 2 folded model, for p = 2/7, we ompare the breather masses (horizontal

lines) with the TCSA data.

4

These data are obtained with vanishing total momentum

and vanishing topologial harge, and the various dots represent the �rst eight energy

eigenvalues above the ground state. The data orresponding to single partile states (i.e. to

the �rst, seond and third breathers), tend muh faster to their in�nite volume values than

the two-partile lines, having 2M1 as their asymptotis. The reason is that while in the

single partile masses there are only O(e−l) �nite size orretions, in the energy of two-

partile states there are O(l−2) orretions oming from the mutual sattering among the

partiles.

Denoting the kink of rapidity θ, interpolating between the vauum α at x → −∞ and

β at x→ ∞ by Kαβ(θ), we let the amplitude

Sγδ
αβ(θ12)

desribe the proess

Kαγ(θ1) +Kγβ(θ2) → Kαδ(θ2) +Kδβ(θ1) ,

where θ1 > θ2 and θ12 = θ1 − θ2. Labelling the vaua by α = 0, 1 . . . , k − 1 the model

SG(β, k) has kinks Kαβ with |α−β| = 1 (or k−1). It is easy to desribe the S-matries of

these kinks [4℄: using the Zk symmetry as well as time reversal and parity invariane one

an show that every nonvanishing kink-kink amplitude is equal to one of the following three

amplitudes: Sα+1α+1
αα+2 (θ12), S

α+1α+1
αα (θ12), S

α+1α−1
αα (θ12), where α ± 1, α + 2 are understood

mod k. These (α independent) amplitudes are also independent of the global properties

of ϕ and thus they should be equal to the soliton-soliton (Sss(θ)), antisoliton-soliton re-

�etion (SR(θ)), and antisoliton-soliton transmission (ST (θ)) amplitudes, respetively, of

the ordinary SG model. To ompute multi-kink energy levels we need the expliit form of

Sss(θ):

Sss(θ) = −eiδ(θ) , δ(θ) =

∫ ∞

0

dω

ω

sin(θω) sinh
(

π
2
ω(p− 1)

)

cosh
(

π
2
ω
)

sinh
(

π
2
ωp
) .

4

On Fig. 5-8 E/M on the vertial axis stands for [E(l)−Ev
0
(l)]/M , where Ev

0
(l) is the vauum energy,

i.e. the ground state energy in the Q = 0 setor.
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Figure 5: Breather masses in the 2-folded model with p = 2/7

In a ompletely analogous way one obtains that the S
(m)
n (θ12) S-matrix, whih desribes

the possible breather-kink satterings

B(m)
n (θ1) +Kn,n+1(θ2) → Kn,n+1(θ2) +B

(m)
n+1(θ1) , θ1 > θ2

oinides with the breather-soliton S
(m)
s (θ12) S-matrix of the SG model [17℄:

S(m)
s (θ) =

sinh θ + i cos πmp
2

sinh θ − i cos πmp
2

m−1
∏

l=1

sin2
(

m−2l
2
πp− p

4
+ iθ

2

)

sin2
(

m−2l
2
πp− p

4
− iθ

2

) . (5.5)

In �nite volume, when the boundary ondition (2.3) is imposed the single kink partiles

disappear from the theory and they survive only as the building blok onstituents of the

multi-kink state with integer topologial harge. On the other hand the breather partiles

B
(m)
n are there even in �nite volume, as they are onsistent with (2.3).

5.3 The Bethe�Yang equations

To make a omparison with the TCSA results we need the multi-partile energy levels as

funtions of L. While it is possible to get them diretly in the NLIE formalism, we shall

use a simpler (and approximate) method whih an be shown to give equivalent results for

large volume (ML ≫ 1) but whih has a lear interpretation in terms of the spetrum of

the model as it was desribed above.
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In an integrable theory partile number is onserved, thus the onept of N partile

state with any �xed N is well de�ned, at least for L ≫ M−1
when most of the time

the partiles are far from eah other. First we onsider the `pure' multi-kink states and

envisage the N-kink energy eigenstate in a large volume as a stationary sattering state,

haraterized by the set of (onserved) rapidities

~θ = {θ1, . . . , θN}. Any N-kink stationary

wavefuntion an be expanded using the independent allowedN-kink in-states (the number

of whih we denote by dN)

|Kn1n2(θ1)Kn2n3(θ2) . . .KnNn1(θN )〉 , θ1 > θ2 > . . . > θN

as basis, and let ψn(~θ) (n = (n1 . . . nN)) denote its omponents with respet to this basis.

Then, as a onsequene of the periodi boundary onditions ψn(~θ)must satisfy the following
Bethe�Yang equations (at least if all partiles have the same mass):

eiML sinh θj
∑

n

Tj(~θ)
m

n
ψn(~θ) = −ψm(~θ) , j = 1, . . . , N , (5.6)

where Tj(~θ) is the N partile transfer matrix [4℄:

Tj(~θ)
m

n
=

N
∏

i=1

Snimi+1
mini+1

(θj − θi) .

For a given L eqns. (5.6) have solutions only for some speial θj , and the total energy and

momentum of the system in a state haraterized by these solutions are given by

E =

N
∑

j=1

M cosh θj , P =

N
∑

j=1

M sinh θj . (5.7)

Note however, that while this expression for P is exat even for �nite L, the one for E is

only approximate, as we neglet the `tunnelling' and `o�-shell' orretions.

It is straightforward to use this formalism to obtain the energy levels of pure multi-

kink states in the Q = n (n ≥ 1) setor of SG(β, k). It is natural to assume, that the

lowest energy levels in this setor orrespond to states with the smallest possible number

of partiles. The states with lowest number of partiles ompatible with the boundary

ondition and the topologial harge being n ontain N = k · n kinks and no breathers

or antikinks. Sine the sequene of kinks in these states is neessarily �xed, we have,

independently of n, only k di�erent basis vetors in this subspae, i.e. dN = k. The basis
vetors an be hosen as

|ψ0,1,...,k−1 (θ1, . . . , θk·n)〉 = |K01 (θ1) . . .Kk−1,0 (θk)K01 (θk+1) . . . Kk−1,0 (θk·n)〉
|ψk−1,0,...,k−2 (θ1, . . . , θk·n)〉 = |Kk−1,0 (θ2)K01 (θ1) . . .

Kk−2,k−1 (θk)Kk−1,0 (θk+1) . . .Kk−2,k−1 (θk·n)〉
|ψ1,...,k−1,0 (θ1, . . . , θk·n)〉 = |K1,2 (θ1) . . .K0,1 (θk)K1,2 (θk+1) . . .K0,1 (θk·n)〉 , (5.8)
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where θ1 > θ2 > . . . > θk·n. Using the expliit form of the transfer matrix and the

identi�ation of the various Sγδ
αβ elements with the SG soliton-soliton S-matrix Sss(θ), the

Bethe�Yang equations an �nally be written in the following form:

eiML sinh θi

k·n
∏

j 6=i

eiδ(θi−θj)(−1)k·nTkψ = −ψ , i = 1, . . . , k · n, ,

where ψ is a olumn vetor made of the ψn
oe�ients of the basis vetors in eqn. (5.8)

and the k × k matrix Tk

Tk =















0 . . . 1
1 . . . 0
0 1 . . . 0
.

.

.

0 . . . 1 0















desribes a yli permutation generating Zk. The eigenvetors ψm belonging to the various

eigenvalues (ei
2
π
m/k

, m = 0, . . . , k−1) of Tk arry the di�erent inequivalent irreduible rep-

resentations of Zk. Choosing the m-th eigenvalue of Tk and introduing the dimensionless

variable l =ML gives rise to the following Bethe�Yang equations

l sinh θi +
∑

j 6=i

δ(θi − θj) = 2π
(

N̂i −
m

k

)

, i = 1, . . . k · n , (5.9)

where N̂i ∈ Z+ 1/2 for k · n even and N̂i ∈ Z for k · n odd, and as a result of Sss(0) = −1
we must have N̂i 6= N̂j for i 6= j. The total momentum arried by a solution of (5.9) is

determined solely in terms of the N̂i:

P

M
=

2π

l

(

∑

i

N̂i −m · n
)

.

The simplest possibility�and the one we investigated by TCSA�is when the total (CM)

momentum vanishes, P = 0. Please note that as a onsequene of δ(−θ) = −δ(θ)
and ei2π(k−m)/k = e−i2πm/k

the Bethe�Yang equations guarantee that the P = 0 states

(ψm, ψk−m), whih arry omplex onjugate representations of Dk, are degenerate in en-

ergy.

It is also possible to arrive at this result diretly from the NLIE disussed in Setion 3.

In the infrared limit ML ≫ 1 the integral term in the NLIE (3.1) beomes negligible and

for a state with k · n holes the equation simpli�es to

Z(θ) = ϑ+ l sinh θ +
k·n
∑

j=1

χ(θ − θj) .

Observing that χ(θ) ≡ δ(θ) and remembering that the allowed values of ϑ (3.8) are exatly

equivalent to seleting

ϑm = 2π
m

k
, k = 0, . . . , m− 1 ,
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the Bethe quantization rules redue to eqn. (5.9) while the energy/momentum formulas

turn into (5.7). Note that the quantization rule (3.7) whih selets the loal operator

algebra Ab from (2.19) is exatly the one observed above for the N̂i: for k ·n even it assigns

half-integer, while for k ·n odd integer Bethe quantum numbers Ii. We remark here that in

general the large volume limit of the NLIE oinides with the Bethe�Yang equations (5.6)

in their salar form, i.e. evaluated on the eigenvetors of the transfer matrix Tm

n
(~θ).

5.3.1 Comparison with the TCSA data

To ompare with the TCSA results we onsider a few setors of the models with k = 2 and
k = 3 in more detail. The simplest of them is the Q = 1 setor of SG(β, 2). In this ase

ψ0 desribes the symmetri and ψ1 the antisymmetri wave funtions of K01 and K10, the

latter one being allowed as the two kinks are di�erent (bosoni) partiles. P = 0 implies

in this ase that θ1 = −θ2 = θ and (5.9) simplify to

l sinh θ + δ(2θ) = 2π

{

N0 ∈ Z+ 1
2
, m = 0 ,

N1 ∈ Z \ {0} , m = 1 .
(5.10)

From this equation θ = θ(l, Nm) an be determined using e.g. an iterative proedure, or

alternatively the volume dependene of the 2-kink energy levels an be given in parametri

form as

(

l,
E

M

)

(θ) =

(

2πNm − δ(2θ)

sinh θ
, 2 cosh θ

)

. (5.11)

This makes it lear that on the (l, E/M) plane the 2-partile lines annot interset eah
other for 0 < l < ∞. These �ndings make it possible to distinguish learly between the

solitons of sine�Gordon theory and the kinks in the 2-folded model, i.e. to argue that

the Q = 2 setor of SG(β, 1) (denoted as SG(β, 1)2) is di�erent from the Q = 1 setor

of SG(β, 2) (SG(β, 2)1). Indeed it is straightforward to derive the Bethe�Yang equations

for the pure 2-soliton states in SG(β, 1)2; sine these solitons are idential partiles these
Bethe�Yang equations are given by the �rst line in eqn. (5.10). Therefore the number

of 2-soliton states in SG(β, 1)2 is half the number of the 2-kink ones in SG(β, 2)1. On

Fig. 6 the ontinuous lines are given by the interpolated TCSA data obtained in SG(β, 2)1
with p = 2/7, while the dots represent the TCSA data obtained in SG(β, 1)2; they learly

orrespond to every seond line only

5

.

On Fig. 7 the ontinuous lines depending on one quantum number only are given by

eqn. (5.10) and the dots now orrespond to the TCSA data in SG(β, 2)1. On this �gure

we �nd data lines that annot be interpreted as pure 2-kink states, as they apparently do

interset some of the other lines. Sine the large l behaviour of these lines is ompatible

with E → 2M + M1 for l → ∞, it is natural to try to interpret them as desribing

3-partile states ontaining one `�rst' (m = 1) breather in addition to the two kinks.

Sine M1 6= M the transfer matrix formalism worked out in [4℄ does not apply diretly.

5

This is also true for the two lines whih annot be interpreted as two-partile ones due to their

(multiple) intersetions with the other levels.
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Nevertheless following the original line of thought, namely by `ommuting around' any of

the partiles using the appropriate S-matries one an derive the Bethe�Yang equations

for the stationary sattering states.

Deleting the sequential or `upper' (m) index of the breathers (sine we onsider only

the �rst one) but keeping their `vauum' index the basis vetors in this 3-partile subspae
an be hosen as

ψ01h = |K01 (θ1)K10 (θ2)B0 (θ3)〉
ψ10h = |K10 (θ1)K01 (θ2)B1 (θ3)〉 , θ1 > θ2 > θ3 ,

plus 4 other states orresponding to the breathers being `in the middle' or in the `front'.

(The index h signals that the breathers are the last). Introduing the notation S
(1)
s (θ) =

−eiα(θ), M1L = ml and ψ± = 1√
2
(ψ01h ± ψ10h), one an onvert the Bethe�Yang equations

derived by the `ommuting around' proedure into the following form:

l sinh θ1 + δ(θ1 − θ2) + α(θ1 − θ3) = 2πNγ
1 (5.12)

l sinh θ2 + δ(θ2 − θ1) + α(θ2 − θ3) = 2πNγ
2 (5.13)

ml sinh θ3 + α(θ3 − θ1) + α(θ3 − θ2) = 2πKγ, (5.14)

where γ = ±, N+
1,2 ∈ Z, N−

1,2 ∈ Z + 1/2, Kγ ∈ Z. One again, an equivalent system of

equations an be derived from the NLIE in the ML≫ 1 (infrared) region.

In the P = 0 system there are solutions with the breather at rest and the two kinks

moving in opposite diretions: Kγ = 0 = θ3, N
γ
2 = −Nγ

1 θ2 = −θ1. Then the (5.12�5.14)

system simpli�es to the single equation

l sinh θ1 + δ(2θ1) + α(θ1) = 2πNγ
1 , (5.15)

whih admits the parametri solution

(

l,
E

M

)

(θ) =

(

2πNγ
1 − δ(2θ1)− α(θ1)

sinh θ1
, 2 cosh θ1 +m

)

. (5.16)

It is easy to understand how the N−
1 = −N−

2 = 1/2, K− = 0 state tends to the N1 = 1
2-kink state (eqn. (5.10)) in the UV limit: in this limit α(θ) → −π and this e�etively

onverts the 1/2 on the right hand side of (5.15) into 1. The lines depending on three

quantum numbers on Fig. 7 orrespond to the �rst two possibilities given by eqn. (5.15), and

the agreement with the TCSA data is exellent. Note also that the line with N+
1 = N+

2 = 1,
K+ = 0 is also present in SG(β, 1)2, onsistently with the data on Fig. 6.

The Q = 1 setor of SG(β, 3) is interesting, as the representations belonging to m = 1
and m = 2 ≡ −1 are omplex onjugate ones. The Bethe�Yang equations in this ase take

the form

l sinh θi +
3
∑

j 6=i

δ (θi − θj) = 2π

{

N
(i)
0 ∈ Z , m = 0 ,

N
(i)
±1 ∈ Z± 1

3
, m = ±1 ,

where
i = 1, 2, 3 and

N
(i)
m 6= N

(j)
m for i 6= j

.
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For the symmetri states (i.e. when m = 0) with P = 0 there are speial solutions with

θ3 = −θ1, θ2 = 0 (when N3
0 = −N1

0 = −N , N2
0 = 0); and for them the volume dependene

of the energy levels an be given in parametri form similar to eqn. (5.11), but apart from

these speial ases we have to rely on numerial proedures to get

E
M
(l, N i

m). On Fig. 8,

for p = 2/7, we show how well the preditions of these Bethe�Yang equations desribe the

TCSA data, regarding both the degeneraies and the volume dependene.

6 Vauum expetation values of loal �elds

In this setion we analyze the vauum expetation values of exponential �elds. Some time

ago an expliit expression was given for this quantity by Lukyanov and Zamolodhikov [8℄.

Here we ompare this predition with the data extrated from TCSA, and by doing so we

give further evidene that everything whih in sine�Gordon theory follows only from the

loal properties of the salar �eld and the Lagrangian remains true in the k-folded model

as well.

6.1 Symmetries and vauum expetation values

In this subsetion we will isolate the independent amplitudes whih haraterize the vauum

expetation values of exponential �elds in SG(β, k):

〈ϑn| Vm |ϑr〉 , Vm = V(m,0) = exp
(

iβ
m

k
ϕ
)

.
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Our onsiderations will be valid for any value of the volume L.
As a onsequene of the ation of T on the vaua |ϑn〉 (2.10) and on the loal �elds Vm

(2.14) we have

〈ϑn| Vm |ϑr〉 = Am(r)δn,m+r , 〈n| Vm |r〉 = Bm(r − n)e
2πi
k

mn , (6.1)

where Am(r) are ertain (unknown) amplitudes and

Bm(r) = 〈0|Vm |r〉 = 1

k

k−1
∑

n=0

e−
2πi
k

nrAm(n) . (6.2)

Reality of the �eld ϕ yields

V †
m = V−m

and so

Bm(r)
∗ = e

2πi
k

rmB−m(−r) .
The transformation properties of the �eld ϕ under S imply

Bm(r) = B−m(−r) .

This allows us to determine the phase of the amplitude Bm(r) up to a sign:

Bm(r) = e
πi
k
rmFm(r) , Fm(r) ∈ R . (6.3)

It turns out that the real amplitudes Fm(r) are not all independent. Indeed, as it was

already remarked in subsetion 2.3, in the usual basis (2.21) of the (ultraviolet) free bo-

son Hilbert spae all the Vm have real matrix elements. Therefore the Hamiltonian (2.8)

as a matrix is real and symmetri, and as a onsequene all its eigenvetors have real

omponents. This implies

〈ϑn|Vm |ϑr〉 ∈ R

and as a result

Fm(r) = (−1)mFm(k − r) , r = 1, . . . , k − 1 . (6.4)

Note that there is no onstraint on Fm(0) = 〈0|Vm |0〉. The vauum expetation values

an therefore be haraterized by the independent amplitudes

Fm(r) , r = 0, . . . ,

[

k

2

]

(6.5)

all of whih are real.
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6.2 The Lukyanov�Zamolodhikov formula

In [8℄ Lukyanov and Zamolodhikov proposed an exat formula for the vauum expetation

values of exponential �elds in the ordinary sine�Gordon model in in�nite volume. Here we

brie�y reall their result. We normalize the exponential �elds so that the short distane

asymptotis of the non-vanishing two-point funtions reads

〈0| eiaϕ(x)e−iaϕ(y) |0〉 = 1

|x− y|2∆a
,

where ∆a = a2

8π
is the onformal weight of eiaϕ(x), and |0〉 denotes the state |n〉 for n = 0

(see eqn. (2.5)). Let us de�ne

G(a) = 〈0| eiaϕ(x) |0〉 .
The authors of [8℄ onjeture

6

G(a) =

[

M
√
πΓ
(

p+1
2

)

2Γ
(

p
2

)

]
a2

4π

×

exp







∫ ∞

0

dt

t





sinh2
(

aβ
4π
t
)

2 sinh
(

p
p+1

t
)

sinh(t) cosh
(

1
p+1

t
) − a2

4π
e−2t











, (6.6)

whih is valid for

β2 < 8π and |ℜe aβ| < 4π , (6.7)

and where M is the soliton (kink) mass. Realling now our basi idea, namely that every-

thing whih depends only on the loal properties of ϕ and the SG Lagrangian also holds

for the k-folded model SG(β, k), we an identify G(a) and Fm(0):

G
(

mβ

k

)

= Fm(0) when l =ML = ∞.

The TCSA data allow us to extrat at �nite l the expetation value of eiaϕ(w,w̄)||w|=1 (where

w = e
2π
L
z
is the map from the ylinder to the plane) in the ground states found by the

numerial diagonalization, i.e. we an measure Am(n) as funtions of l, Am(n)[l]. Thus

introduing the dimensionless funtion g(a) =M−2∆aG(a) we obtain for �nite l:

Fm(0)[l] =
1

k

k−1
∑

n=0

Am(n)[l] =
l2∆a

(2π)2∆a
g(a)N(l) , a =

mβ

k
, (6.8)

where N(l) is a �nite size �orretion� fator of whih we know N(l) → 1 + O(e−l) for

l → ∞.

6

Our normalization for the �eld ϕ and the oupling onstant β di�ers from that of [8℄ by a fator of√
8π.
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The amplitudes Fm(r) are in general not known for r 6= 0. However, one an derive

their leading behaviour for large volume using the following onsideration. First note that

the matrix elements

〈0|Vm |r〉
vanish in in�nite volume sine there is a super-seletion rule making the vaua |n〉 lie in
physially disonneted Hilbert spaes with no loal operators onneting them. It is lear

that in �nite volume the non-vanishing ontribution to these matrix elements omes from

the vauum tunnelling desribed by instanton e�ets, whose magnitude we alulated for

large l in setion 4. Therefore we expet

〈0|Vm |r〉 ∼ e−l when l ≫ 1 and r 6= 0 .

6.3 Comparison to TCSA

We tested the Lukyanov�Zamolodhikov formula in a 3-folded model with p = 2/7. Using
the eigenvetors belonging to the three ground states found by the TCSA algorithm we

determined numerially the various amplitudes Am(n)[l] for all the values of m (m =
1, . . . , 5) satisfying the onditions (6.7). Then, realling eqn. (6.8), we plotted Fm(0)[l]l

−2∆m

where

2∆m =
m2β2

4k2π

as a funtion of l. The result is shown on Fig. 9, where the horizontal lines orrespond to

(2π)−2∆mg

(

mβ

k

)

.

The agreement between the measured values and the predited ones is very good, though

for higher values of m the data are somewhat below the horizontal lines indiating that

the TCSA data should be extrapolated as in the disussion that follows. The 3-folded

model provides a good laboratory as it makes possible to extrat Fm(1)[l] from the data

as well. The result F1(1)[l] an be seen on a semilogarithmi plot on Fig. 10. Clearly this

behaviour is onsistent with the expeted exponential fall-o�.

The exat expression for G(a) was obtained in [8℄ by a lever interpolation between

various limits, where the orresponding expressions were known from other soures. One

important suh limit was the semilassial one. Sine our numerial study is for p < 1,
we investigated whether using our data one an make a distintion between the exat

and semilassial expressions of [8℄, i.e. whether one an justify the exat or merely the

semilassial formula.

We arried this out by zooming in on the viinity of the uppermost (m = 1) line

on Fig. 9, and the results are ompiled on Fig. 11. Here the upper/lower horizontal

line orresponds to a g(a, β) obtained by the exat/semilassial expressions in [8℄, and

the TCSA data displayed were taken at four di�erent Ecut values. At eah �xed l the
data apparently onverge monotonously with inreasing Ecut. The validity of the exat
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expression over the semilassial one is supported by the fat that these monotonously

onvergent data exeed the semilassial expression in a ertain range, while they always

stay below the exat one. To strengthen this onlusion, at eah �xed l, we extrapolated
the data by �tting their Ecut dependene with an expression

a(l)
E

2(2−h)
cut + c(l)

E
2(2−h)
cut + b(l)

,

and the extrapolated points on Fig. 11 orrespond to the oe�ients a(l).7 These extrap-

olated points show a monotonously inreasing behaviour in l and they signi�antly exeed

the semilassial expression while always stay below the exat one. In the �nal step, re-

alling eqn. (6.8), we �tted the extrapolated points by A−Be−l/l, where e−l
is motivated

by the instanton ontribution, and the l−1
by the �utuation determinant without a zero

mode. This `instanton �t' desribes the extrapolated data with a very small variane, and

though the A obtained this way is somewhat smaller than the exat expression, it is muh

loser to the exat than to the semilassial one. To sum up, we an say that our data

indeed favour the exat expression of [8℄ over the semilassial one.

We remark that a similar alulation of vauum expetation values from TCSA was

performed in [18℄ for the ase of Φ(1,3) perturbations of Virasoro minimal models. These

7

This extrapolating formula is onsistent with the monotonous inrease and the power of Ecut in it is

motivated by the observation, that envisaging the determination of G(a) in pCFT the e�etive expansion

parameter would be λ2
rather than λ.
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models are restritions of sine�Gordon theory at rational values of p and as a onsequene

one an derive a formula for the vauum expetation values of loal �elds starting from

(6.6) [8℄. Similarly to our ase, they �nd that the respetive formula agrees with the TCSA

results. In ontrast to their approah, however, we heked the predition (6.6) diretly in

the ase of sine�Gordon theory.

There is another important impliation of this result. The Lukyanov�Zamolodhikov

onjeture for the vauum expetation values of loal �elds is onneted to (and an be

derived from) the onjeture for the so-alled Liouville re�etion fator [19, 20℄. The above

veri�ation of the formula (6.6) therefore lends an indiret support to the onjetured

expression for the re�etion fator and onsiderations based on it.

7 Conlusions

In this paper we investigated the k-folded sine�Gordon model SG(β, k) in �nite volume.

The aim of this study is to give support to the idea that the k-folded boundary onditions

whih make SG(β, k) di�erent from the ordinary sine�Gordon theory do indeed preserve

the integrability of the model, while hanging the spetrum in a well de�ned manner.

We analyzed three major problems in some detail and showed in all of them, that the

onsequenes one an draw from this expetation are indeed orret. In partiular we found

that the leading part of the split in the ground state energy levels, for whih the NLIE

and the instanton alulus gave idential results, does indeed oinide with the numerial

data obtained by using TCSA. Furthermore, we provided evidene that the k dependent

degeneraies and the volume dependene of the multi-partile energy levels an indeed be

desribed by the formalism of [4℄, thus indiretly we veri�ed the onjetured S-matries.

Last but not least we showed that the vauum expetation value of the exponential �eld

an be measured in the k folded model and we gave evidene supporting the validity of the

formula proposed in [8℄.
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A Instanton alulus in �nite volume

In this appendix we perform a standard instanton alulation based on the dilute instanton

gas approximation, following the outlines of [21℄. Here we shall work in a k = ∞ theory

whih means that we drop the identi�ation of the �eld in (2.2). We will omment on this

issue later.

A.1 The dilute instanton gas approximation

The Eulidean ation of sine�Gordon theory is

SE[ϕ] =

∫ ∞

−∞
dτ

∫ L/2

−L/2

dx

(

1

2
(∂τϕ)

2 +
1

2
(∂xϕ)

2 +
µ2
0

β2
(1− cos βϕ)

)

. (A.1)

The equations of motion following from the ation (A.1) admit the one-instanton solution

ϕinst =
4

β
arctan exp (µ0 (τ − τ0)) (A.2)

with ation

SE [ϕinst] =
8µ0

β2
L =MclassL , (A.3)

where Mclass is the lassial soliton mass. Using the usual rules of instanton alulus, the

saddle-point evaluation of the Eulidean path integral yields the following result for the

level splitting as a funtion of the twist angle ϑ labelling the energy eigenstates |ϑ〉:

∆E(ϑ) = −2 cos (ϑ)

∣

∣

∣

∣

det′M

detM0

∣

∣

∣

∣

−1/2(
SE [ϕinst]

2π

)1/2

e−SE [ϕinst] , (A.4)

where M and M0 are the operators

M = −∂2τ − ∂2x + V ′′ (ϕinst) , M0 = −∂2τ − ∂2x + V ′′ (0) (A.5)

desribing the �utuations around the instanton to quadrati order, det′M denotes the

determinant of M without its zero mode and the fator

(

SE [ϕinst]

2π

)1/2

(A.6)

omes from the one translational zero mode τ0 of the instanton solution (A.2). The cos ϑ
dependene arises from Fourier transforming the dilute instanton gas summation aording

to the relation between the vaua |n〉 and |ϑ〉:

|ϑ〉 =
∞
∑

n=−∞
einϑ |n〉 . (A.7)
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Here ϑ an take any value: the physially inequivalent hoies are −π < ϑ ≤ π. For

SG(β, k), the result of the dilute instanton gas alulation is similar to (A.4) with the only

di�erene that ϑ an only take the disrete values

ϑn =
2πn

k
mod 2π .

A.2 The heat kernel representation for the determinant

Let us de�ne the heat kernel for a positive hermitian operator A in the following way:

Kt(A) = Tr e−tA , (A.8)

from whih the determinant an be reonstruted:

log detA = Tr logA = −
∫ ∞

0

dt

t
Kt(A) . (A.9)

As the determinant is divergent (the divergene omes from the lower end of the integration

over t), we shall ompute the di�erene

K̃t(M) = Kt(M)−Kt (M0)

using ζ-funtion regularisation. We de�ne the ζ-funtion

ζ(z,M) =
1

Γ(z)

∫ ∞

0

dt tz−1
(

K̃t(M)− 1
)

. (A.10)

Then the determinant an be expressed as

∣

∣

∣

∣

det′M

detM0

∣

∣

∣

∣

−1/2

= exp

(

1

2

d

dz
ζ(z,M)

)∣

∣

∣

∣

z=0

. (A.11)

We an separate the x and τ dependene and rewrite the heat kernel in the following form:

K̃t(M) = Kt

(

−∂2x
)

(Kt (Q)−Kt (Q0)) ,

Q = −∂2τ + µ2
0

(

1− 2

cosh2 (µ0(τ − τ0))

)

,

Q0 = −∂2τ + µ2
0 .

The heat kernels for the three operators that appear above are

Kt

(

−∂2x
)

=

∞
∑

n=−∞
e−(

2π
L
n)

2
t =

L√
4πt

∞
∑

n=−∞
e−

n2L2

4t ,

Kt(Q) = 1 +

∫ ∞

−∞
dpρ(p)e−t(µ2

0+p2) ,

Kt (Q0) =

∫ ∞

−∞
dpρ0(p)e

−t(µ2
0+p2) . (A.12)

where ρ, ρ0 are the spetral densities for the operators Q, Q0 and the additive 1 in Kt(Q)
omes from the zero mode.
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A.3 Evaluation of the spetral densities

The spetral density of the operator

Q = −∂2τ + µ2
0

(

1− 2

cosh2 (µ0τ)

)

(A.13)

an be evaluated by solving the spetral problem:

−Ψ′′ − s(s+ 1)µ2
0

cosh2 (µ0τ)
Ψ + µ2

0Ψ = λΨ , (A.14)

where for our ase s = 1. This problem an be solved exatly by mapping the above

equation to a hypergeometri one [22℄.

A.3.1 The disrete spetrum

The disrete spetrum of (A.14) orresponds to 0 ≤ λ < µ2
0. The ondition for square

integrability reads

√

1− λ

µ2
0

− s = −n , n ∈ N . (A.15)

For our ase (s = 1) the only solution of (A.15) is n = 0 whih orresponds to λ = 0
i.e. exatly the unique zero mode of the operatorQmentioned before. (The other possibility

n = 1 means λ = µ2
0 whih is where the ontinuous spetrum starts.)

A.3.2 The ontinuous spetrum

The ontinuous spetrum overs the range µ2
0 ≤ λ <∞. In this domain we de�ne a solution

with the following asymptoti property:

Ψ(τ → ∞) = eipτ , λ = µ2
0 + p2 .

Then one an ompute

Ψ(τ → −∞) =
Γ
(

ip
µ0

)

Γ
(

1− ip
µ0

)

Γ(−s)Γ(1 + s)
e−ipτ +

Γ
(

− ip
µ0

)

Γ
(

1− ip
µ0

)

Γ
(

− ip
µ0

− s
)

Γ
(

1 + s− ip
µ0

)eipτ . (A.16)

For s ∈ N the �rst term vanishes, whih means that the potential is re�etionless. For

s = 1 we obtain

Ψ(τ → −∞) = ei(pτ+δ(p)) , eiδ(p) =
ip+ µ0

ip− µ0
. (A.17)

To get a well-de�ned spetral density, we must put the system in a large box of size T .
Then periodi boundary ondition on Ψ implies

pT − δ(p) = 2πN , N ∈ Z.
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For the size T → ∞ the density of states with a given p is

ρ(p) =
1

2π

(

T − ∂δ(p)

∂p

)

, (A.18)

whih gives

ρ(p) =
1

2π

(

T − 2µ0

p2 + µ2
0

)

. (A.19)

A similar, but muh simpler reasoning for Q0 yields

ρ0(p) =
T

2π
, (A.20)

so the divergent parts linear in T drop out from the di�erene.

A.4 The instanton ontribution

Substituting the results (A.19,A.20) into (A.12), the �nal result for the ζ-regularized heat

kernel (A.10) is

ζ(z,M) = ζ1(z,M) + ζ2(z,M) + ζ3(z,M) ,

where

ζ1(z,M) =
1

Γ(z)

∫ ∞

0

dt tz−1L(4πt)−1/2 (Kt(Q)−Kt (Q0)− 1) ,

ζ2(z,M) =
1

Γ(z)

∫ ∞

0

dt tz−1
(

Kt

(

−∂2x
)

− 1
)

,

ζ3(z,M) =
1

Γ(z)

∫ ∞

0

dt tz−1
(

Kt

(

−∂2x
)

− L (4πt)−1/2
)

(Kt(Q)−Kt (Q0)− 1) .

ζ1 and ζ3 orrespond to renormalizing the lassial soliton massMclass to the quantum one.

The interesting ontribution to the determinant omes from the term ζ2 whih gives

dζ2(z,M)

dz

∣

∣

∣

∣

z=0

= − log
L2

4π
+ Γ′(1)− 2 +

∫ ∞

1

dt

t

(

1 +

√

4πt

L2

)

(

Kt

(

−∂2x
)

− 1
)

= B − log
L2

4π
.

Numerial evaluation of the integral gives

2e
B
2 =

1√
π

to very high preision. Colleting all terms we get

∆E(ϑ) = −M
√

2

πl
e−l cosϑ . (A.21)
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