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ABSTRACT

Aims. We study the long-term time-scale (i.e. period comparablthé orbital period of the outer perturber object) tranisiiirig
variations in transiting exoplanetary systems which doragfurther, more distangg >> a;) either planetary, or stellar companion.
Methods. We give an analytical form of th® — C diagram (which describes such TTV-s) in trigonometricessrivalid for arbitrary
mutual inclinations, up to the sixth order in the inner eddeity.

Results. We show that the dependence of tBe- C on the orbital and physical parameters can be separatecthirgte parts. Two
of these are independent of the real physical parametersrasses, separations, periods) of a concrete systemepaddionly on
dimensionless orbital elements, and so, can be analysesh&rgl. We find, that for a specific transiting system, wheoeetricity
(e1) and the observable argument of periastrog) (@re known e.g. from spectroscopy, the main charactesisfiany, caused by a
possible third-body, transit timing variations can be meppimply. Moreover, as the physical attributes of a givesiesyp occur only
as scaling parameters, the real amplitude of@he C can also be estimated for a given system, simply as a funofitime mg/P,
ratio. We analyse the above-mentioned dimensionless amdges for diferent arbitrary initial parameters, as well as for two aittr
systems CoRoT-9b and HD 80606b. We find in general, that whédeshape of th®© — C strongly varies with the angular orbital
elements, the net amplitude (departing from some specififigaarations) depends only weakly on these elements, tanglir on the
eccentricities. As an application, we illustrate how thexfalae work for the weakly eccentric CoRoT-9b, and the higitcentric HD
80606b. We consider also the question of detection, as wehe correct identification of such perturbations. Finallg illustrate
the operation andffectiveness of Kozai cycles with tidal friction (KCTF) in tbase of HD 80606b.

Key words. methods: analytical — methods: numerical — planetary syste binaries: close — Planets and satellites: individual:
CoRoT-9b — Planets and satellites: individual: HD 80606b

1. Introduction mid-transit times with respect to the cycle numbers we get th
o , O - C diagram which has been the main tool for period studies
The rapidly increasing number of exoplanetary systems,e&lls W,y variable star observers (not only for eclipsing bingries
as the lengthening time mterva_l of t_he obser\_/atlons ndyuragore than a century. Consequently, thieet of the various types
leads to thg search for perturbatlong in the motion of thenkno ¢ period variations (both real and apparent) for e C dia-
planets which can provide the possibility to detect furthlen- 431 were already widely studied in the last one hundredsyear
etary (or stellar) components in a given system/andan pro- gome of these are less relevant in the case of transiting exo-
duce further mformatlon about the oblate_zness of the hasi(et planets, but others are important. For example, the tweicials
the planet), or might even refer to evolutionaffeets. ~ cases are the simple geometrical light-tinfeeet (LITE) (due
The detection and the interpretation of such perturbafionsto a further, distant companion), and the apsidal motifiece
the orbital revolution of the exoplanets usually dependswmh (AME) (due to both the stellar oblateness in eccentric tisar
methods and theoretical formulae which are well-known anghd the relativistic #ect). Due to its small amplitude however,
have been applied for a long time in the field of the close selip |TE, which has been widely used for identification furthtsls
ing and spectroscopic binaries. We mainly refer to the nithoar companions of many variable stars (not only in case dbscl
developed in connection with the observed period variation ing binaries) since the papers of Chandler (1892); Hertrspr
_eclipsing binaries. These period variations_ manifestmt{tﬂve (1922); Woltjer (1922); Irwin (1952), is less significant tine
inthe departure of the occurrence of an eclipse event (gitie-  case of a planetary-mass wide component. Neverthelesgin th
sit, or occultation) from its predicted time. Applying themen-  recent years there have been sorfieres to discover exoplan-
clature of exoplanet studies this phenomenon is calledsitrarets on this manner (see e.g. Silvotti et al. 2007, V391 Pegasi
timing variation (TTV). Plotting the observed minus calmtield peeg et al. 2008, CM Draconis, Qian et al. 2009, QS Virginis,
Lee et al. 2009, HW Virginis). The importance of AME in close
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exoplanet systems has been investigated in several paggers $witch df the Kozai cycles, producing a highly eccentric, moder-
e.g. Miralda-Escudé 2002; Heyl & Gladman 2007; Jordan &tely inclined, small-separation intermediate orbitehfihe last
Bakos 2008, and further references therein). Note, thatdktter Kozai cycle, some additional tidally forced circularizatimay
effect has been studied since the pioneering works of Cowlitigen form close systems in their recent configurations.
(1938); Sterne (1939), and besides its evident importantiee Nevertheless, independently from the question, as to which
checking of the general relativity theory, it plays also eapor- mechanism(s) is (are) the reallyfective ones, up to now we
tant role in studying the inner mass distributions of staia ( were not able to study these mechanisms in operation, oaly th
their quadrupol moment), i.e. it provides observationaifica- end-results were observed. This is mainly the consequéisees o
tion of stellar modells. lection dfects. In order to study these phenomena when they are
Nevertheless, besides their similarities, there are atse seffective, one should observe the variation of the orbital eleis
eral diferences between the period variations of close bina®y such extrasolar planets, as well as binary systems whigh a
and multiple stars, and planetary systems. For example, ofosin the period range of months to years. The easisest waytp car
the known stellar multiple systems form hierarchic submyst out such observations is the monitoring of the transit tgmiari-
(see e.g. Tokovinin 1997). This is mainly the consequentieeof ations of these systems. However, there are only a few known
dynamical stability of such configurations, or put anotheyw transiting extrasolar planets in this period regime. Femtiore,
the dynamical instability of the non-hierarchical stellanltiple although binary stars are also known with such separatims,
systems. In contrast, a multiple planetary system may formilarly, they are not appropriate subjects for this invesstign be-
stable (or at least long-time quasi-stable) non-hieraailion- cause of their non-eclipsing nature.
figuration as we can see in our solar system, and furthermore, The continuous long-term monitoring of several hundreds of
the same result was shown by numeric integrations for sevestars with the CoRoT and Kepler satellites, as well as thg-lon
known exoplanet systems (see e. g Sandor et al. 2007). Dugeton systematic terrestrial surveys provide an excellppbotu-
this fact we can expect severaliérent configurations, the ex-nity to discover transiting exoplanets (or as by-produettips-
amination of wich has, until now not been considered in tHd fieing binaries) with the period of months. Then continuousglo
of the period variations of multiple stellar systems. Exéaapf term transit monitoring of such systems (combining the data
these are as follows, the perturbations of an inner plasetedl  with spectroscopy) may allow the tracing of dynamical evolu
as of a companion on a resonant orbit (Agol et al. 2005), or ignary dfects (i. e. orbital shrinking) already on the timescale
a special case of the latter, the possibility of Trojan eaopts of a few decades. Furthermore, the larger the charactesize
(Schwarz et al. 2009). Recently, the detectability of exonso of a multiple planetary, stellar (or mixed) system the geettie
has also been studied (Simon et al. 2007; Kipping 2009a,b). amplitude of even the shorter period perturbations in tha-tr
Furthermore, due to the enhanced activities related to it timing variations, as was shown in detail in the disonissif
trasolar planetary searches, which led to missions likeddoRBorkovits et al. (2003).
and Kepler which produce long-term, extraordinarily aeter In the last few years several papers have been published on
data, we can expect in the close future such kinds of obsertr@nsit timing variations, both from theoretical aspeetg((non-
tions which give the possibility of detecting and studyingfier complete) Agol et al. 2005; Holman & Murray 2005; Nesvorny
phenomena which was never observed earlier. For examplekiBeaugé 2010; Holman 2010; Cabrera 2010; Fabrycky 2010,
is well-known, that neither the close binary stars, nor tbe h and see further references therein), and large numbergpefpa
Jupiter-type exoplanets could have been formed in theseuie on observational aspects for individual transiting exoptary
positions. Diferent orbital shrinking mechanisms are describegystems. Nevertheless, most (but not all) of the theolgtiaa
in the literature. Instead of listing them, we refer to thersh pers above, mainly concentrate simply on the detectilwfifyr-
summaries by Tokovinin et al. (2006); Tokovinin (2008) anther companions (especially super-Earths) from the trains
Fabrycky & Tremaine (2007). Here we note only, that one of theg variations.
most preferred theories for the formation of close binaaysst In this paper we consider this question in greater detail. We
which also might have produced at least a portion of hottdui calculate the analytical form of the long-periqd e. with a pe-
as well, is the combination of the Kozai cycles with tidatfibn riod on the order of the orbital period of the ternary compune
(KCTF). The Kozai resonance (recently frequently referted P2) time-scale perturbations of tl@— C diagram for hierarchi-
as Kozai cycle[s]) was first described by Kozai (1962) investcal (i.e.P> >> P,) triple systems. (Note, as we mainly concen-
gating secular perturbations of asteroids. The first (thibcal)
investigation of this phenomenon with respect to multipédlar ~ * In this paper we follow the original classification of Brown
systems can be found in the studies by Harrington (1968,)196@936) who divided the periodic perturbations occuring in ferar-
Mazeh & Saham (1979); Soderhjelm (1982). A higher, third ofMical systems into the following three groups:

der t.heory of_Koz_ai cycles was given b.y Ford etal. (2000)1_Whi — Short period perturbations. The typical period is equal tothe
the first application of KCTF to explain the present configura  orpital period P, of the close pair, while the amplitude is of the

tion of a close, hierarchical triple system (the emblemaliol, order (P1/P,)?;

itself) was presented by Kiseleva et al. (1998). Accordothits  — Long period perturbations. This group has a typical periodof
theory the close binaries (as well as hot-Jupiter systehws)ld P,, and magnitude of the order(P1/P,);

have originally formed as significantly wider primordianbk - Apse-node terms. In this group the typical period is anout
ries having a distant, inclined third companion. Due to thigit P2/P1, and the order of the amplitude reaches unity.

object induced Kozai oscillation, the inner eccentricigcbmes __ . S . : : )
) b This classification difers from what is used in the classical plane-

cyclically so large that around the periastron passagesih tary perturbation theories. There, the first two groups termed to-

stars (or the host star and its planet) approach each otherg er “short period” perturbations, while the "apse-node terms”

closely that tidal friction may befkective, which, during one e called “long period ones”. Nevertheless, in the hierarical sce-
or more Kozai cycles, shrinks the orbit remarkably. Due ® thario, the first two groups differ from each other both in period and
smaller separation, the tidal forces remaffeetive on a larger amplitude, consequently, we feel this nomenclature more gpopri-

and larger portion of the whole revolution, and finally, tve§l  ate in the present situation.
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trated on transiting systems with a period of weeks to mgnths o (a¥? (1-e)” 1 pfg \d 3

we omitted the possible tidal forces. However, our formuwize fﬁ [1+ ecos{i— w)]2 + g fxcosijdu. (3)

be practically applied even for the closest exoplanetastesys,

because the tidal perturbations becorfieaive usually on a no- In the equations above denotes the specific angular momen-
tably longer time-scale.) This work is a continuation antkax tum of the inner binaryp; is the radius vector of the planet
sion of the previous paper of Borkovits et al. (2003). In thegter With respect to its host-star, while the orbital elementseftaeir
we formulated the long-period perturbations of an (arbiirac-  usual meanings. Furthermore, in Eq. (3) we applied thatrthee t
centric and inclined) distant companion to the C diagram for anomaly can be written as= u—w. In order to evaluate Eq. (3)
a circular inner orbit. (Note, that our formula is a genemedi first we have to express the perturbations in the orbital efgm
variation (in the relative inclination) of the one of Agol at Wwith respect tas. Assuming that the orbital elements (except of
2005. For the coplanar case the two results become idetict) are constant, the first term of the right hand side yields the
Now we extend the results to the case of an eccentric inner fsilowing closed solution

nary (formed either a host-star with its planet, or two Jtaks

C1

it will be shown, our formulae have a satisfactory accuragne B, .= P 2arcta 1-e Fcosw + (1- )2 ecosw
for a high eccentricity, such as = 0.9. Note, that in the pe- * "' = 27 Vitelzsinw) 1Fesinw|’
riod regime of a few months the tidal forces arefimetive, so (4)

we expect eccentric orbits. This is especially valid in theecof

the predecessor systems of hot-Jupiters, in which caséthea for the two types of minima, respectively. (HePedenotes the
mentioned theory predicts very high eccentricities. anomalistic or Keplerian period which is considered to be-co
In the next section we give a very brief summary of oustant.) Note, that instead of the exact forms above, widsédu

calculations. (A somewhat detailed description can beddan s the expansion (as in this paper), which, up to the fifth pide
Borkovits et al. 2003, 2007, nevertheless for self-coasisg of ¢, is as follows:

the present paper we provide here a brief overview .) In Sect.
3. we discuss our results, while in Sect. 4 we illustrate the "B, = P.E+ P
sults with both analytical and numerical calculations oo ta+ L s 2r

1 3 1 .
F5TE 2ecosw + (L—le2 + ée“) sin 2w

dividual systems, CoRoT-9b and HD 80606tnally in Sect. 1 1 5 3

5 we conclude our results, and, furthermore, we compare F (—e3 + —e5) cos 3 — —€*sin4w + —e° cos 51)},

our method and results with that of Nesvorry & Morbidelli 3 8 32 40

(2008); Nesvorty (2009). (5)
wherePs is the sidereal (or eclipsing) period of, for example,

2. Analytical investigations the first cycle, ancE is the cycle-numbein the present case
the orbital elements cease to remain constant. Nevertheles

2.1. General considerations and equations of the problem as it can be seen from Egs. (8)—(14), their variation orP,

As is well-known, at the moment of the mid-transit (which ifimescale isf rﬁlated g?FH/Pz << 1 r‘:"hiCh allows the Iirf]-
case of an eccentric orbit usually does not coincide witheie ~ €arization of the problem, i.e. in such a case Eg. (5) is for-

time of the whole transit event) mally valid in the same form, but e, w and Ps are no longer
constant. Then a further integration of Eq. (5) with respect
U~ +2 + 2kn, (1) v gives the analytical form of the perturbedO — C on P,

time-scale. To this, as next step, we have to calculate the long-
Oq]eriod and apse-node perturbationsuinSome of these arise
simply from the similar perturbations of the orbital elertefor
directly of theecosw, esinw functions), while others (we will
refer to them as direct perturbationsujpcome from the varia-
tions of the mean motion (for more details see Borkovits et al
2007)2. (In other words this means that in such a cAseill no

whereu is the true longitude measured from the intersecti
of the orbital plane and the plane of sky, akds an integer.
(Note, since, traditionally the positiveaxis is directed away
from the observer, the primary transit occursiat —n/2.) An
exact equality is valid only if the binary has a circular oyloir
if the orbit is seen edge-on exactly. (The correct inclioratile-
pendence of the occurrence of the mid-eclipses can be fmnaqnger be constant.)

Gimenez & Garcia-Pelayo 1983.) Nevertheless, the obblva A\t this point, to avoid any confusion, we emphasize that dur-
inclination of a potentially month-long period transitiegtra- |r}g ourtcal'(A:\uIatlons V.Vei usetﬁizr_ent sert]s Ofﬁhe angular OLb'tﬁl .
solar planet should be closeite= 90°, if the latter condition is elements. AS We are Interested in such a pnénomenon Whtch pri

to be satisfied. Due to its key role in the occurrence of thetrag“g.'ly de_?r?nds onttr:etrhelatlge p05|t|(t)r:1s of th? orb||t|ngasthal_
sits, instead of the usual variables, we usas our independent P 'gs er1 rltcajsg)ec othe Od _ser%/er“, be anguiar (Ia”?mee S"IS' .
time-like variable. It is known from the textbooks of celast “ " )S ould be expressed in the "observational” frame of ref-
: erence having the plane of the sky as the fundamental plade, a
mechanics, that i ; . ) |
u, as well asv is measured from the intersection of the binary’s

U= G — Qcosi orbital plane with that plane, whil€ is measured along the
pi ’ plane of the sky from an arbitrary origin. On the other hahd, t
= uM2ar32(1 — )32(1 + ecosv)? — Qcosi, 2 physical variations of the motion of the bodies depend oir the

relative positions to each other, and consequently, it iserhen-
consequently, the moment of tieth primary minimum (tran- €ficial (and convenient) to express the equations of peatiaibs

sit) after an epochy can be calculated as of the orbital elements in aflierent frame of reference, (we shall
refer to it as the dynamical frame) which depends on theivelat
ty 2Nr-n/2 53/2 1— )32 du
f dt = f AT ( ) 5 oh ) 2 The minus signs on the rhs of Egs. (10) and (11) of Borkovitd.et
to w2 pU2[l+ecosti-w)]?q _ %Q COSi (2007) should be replaced by plus.



Fig. 1. The spatial configuration of the system.

positions of the bodies, independently from any outer okeser
The fundamental plane of this latter frame of referenceeadrh
variable plane of the triple system, i.e. the plane perpzridi to

the net angular momentum vector of the complete triple gsyste

In this frame of reference the longitude of the ascendingeriod
gives the arc between the sky and the corresponding intarsec

of the two orbital planes measured along the invariableglan

while the true longitudew)) and the argument of periastrog) (

is measured from that ascending node, along the respected or

bital plane. In order to avoid a further confusion, the ie&at
inclination of the orbits to the invariable plane is denobed.
The meaning and the relation between thedéent elements can
be seen in Fig. 1, and listed also in Appendix A.

2.2. Long period perturbations
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aged)v,, by the use of

d 5 2. .
du P__(lp_g) ©)
dV2 Czpl C1
from which, after averaging we get:
do 4’ P LT
T = Wi T 1
VoAl Jue-g
1— )32
~ Ei — % COSil. (7)
P: (1+ecosvp)?2  dwv,

In the following we omit the overlining. Furthermore, as one
can see from Eq. (13) below, the second term in the r.h.s of (7)
is of the ordeP;/P,, and consequently can be neglected. So for
the long-period perturbations of the orbital elements efdlose
orbit we get as follows:

From now on we refer to the orbital elements of the inner lyinar
(i.e. the pair formed by either a host star and the inner plane
or two stellar mass objects) by subscriptwhile those of the
wider binary (i.e. the orbit of the third component around th
centre of mass of the inner system) by subscrigEhe ditfer-
ential perturbation equations of the orbital elementsiated in
Borkovits et al. (2007 (In that paper, from practical consid-
erations, we did not restrict ourselves to the most usual rep
resentation of the perturbation equations, i.e. the Lagrage
equations with the perturbing function, rather we used the
somewhat more general form, expressing the perturbations
with the three orthogonal components of the perturbing
force. Nevertheless, as far as only conservative, three-thp
terms are considered, the two representations are perfegtl
equivalent.) In order to get the long-period terms of the pertur-
bation equations, the usual method involves averagingdbe-e
tions for the short-periody( P;) variables, which is usually the
mean anomalyl{) or the true anomalyg) of the inner binary,
but in our special case it is the true longitude This means that
we get the variation of the orbital elements by averaged ffor a
eclipsing period. Furthermore, in the case of the averagad-e
tions we change the independent variable franto (the aver-

dhy

V2_

dis
ede

3 Note, in the denominator of the Egs. (14) and (15) of that pap
for eandw a closing bracket is evidently missing, and furthermore, th
equation forQ should be divided by for the correct result.

da1 _
= O (8)
d_\(z = AL(1- €)% (1 + ey cosvy)

X [(1— 12) sin 29

-%(1 +1)?sin(2v, + 29, — 291)

+%(1 —1)?sin(2s, + 2g; + 291)] , 9)
a9 _ AL(1-€)Y2(1 + ey cosvy)
dV2

3(, 1
«{s(e-3)
5 3

+(1-17)|cos 2 + £ CoS(3; + 202)

+%(1 +1)2cos(3n + 29> — 201)

+%(1 —1)2cos(3n + 20, + Zgl)}

dh; .
~ g, °osin (10)

-AL(L- eﬁ)’l/z—s!m.m (1 + & cosv,)
Sin

2 3
: (1+ Ee{)l
—€f1 cos 2

?, (1 + gef) | cos(2r + 2g5)

X

+%e§(1 + 1) cos(2 + 20, — 201)
1
—Eei(l — 1) cos(2r + 292 + 201) |,
AL(1-€)2sinim(1 + e cosvy)
[2
X

o (1 + gef) sin(2v + 2g)



da) 1
de

dQ;
de

diy
dV2 -
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+€71 sin 2,
1 .
_zeg(l + 1) sin(2v2 + 292 — 2g4)

+%e§(1 —1)sin(2 + 29, + 291)] ,

AL(1- &)Y%(1 + ey cosvy)
<{2(-3)

2 3
+(1-12)|cos 2n + = CoS(32 + 202)
+%(1 + 1) cos(dr, + 292 — 201)
+%(1 —1)?cos(2n + 2, + Zgl)}
—% COSiy,

V2

2sm m

A@L-e)Y (1 + € COSVy)

X g (1+ éef)l COS(1 — 1)

+é (1+ geﬁ) (1-1T1)cos(2, + 202 — w1 + g1)

_é (1+ geﬁ) (L+1)cos(2r + 292 + w1 — 01)
—€21 coss + 01)

+%e§(1 + 1) cos(2r + 20> — w1 — 01)

—%e{(l —1)cos(2 + 20, + w1 + Q1) |
AL(1-€)V2sinim(1 + e;cosvy)

2
2 (1

l( gez) (L-1)sin(d2 + 292 — wy + G1)

X

§ef) | sin(1 — g1)

+:F1) (1+ zeﬁ) 2+ 1)sin(2n + 292 + w1 — 01)
+€1 sin(ws1 + g1)

1 .
—éef(l +1)sin(2 + 292 — w1 — g1)

+%e§(1 —1)sin(2v2 + 292 + w1 + G1) |,

and, finally, the direct term is as follows:

dly
dV2

= AL(1- €)1+ ercosvy)

-3

51
+Z)(1_ 12) & fa(er) cos 2y

(11)

(12)

(13)

(14)

+g ( - |2) f1(er) cos(2, + 2g2)

+%(1 +1)2€2 f2(e1) cos(d2 + 29, — 201)

51
+%(1 — )% fa(e1) cos(dz + 29 + 291)},

(15)
where
15ms Py 232
A= 8 Mmyos Pz( - (10)
and
25 15, 954
fl(e) 1+ Eez + Ee + &e (17)
31 23
fo(6) = 1+ 5_1e2 48e4 (18)

Furthermorei,,, denotes the mutual inclination of the two orbital
planes, while

| = CcOSim, (19)

andmy»3 stands for the total mass of the system. Note, formal in-
tegration of the first five of the equations above (i.e. thokikv
refer to the orbital elements in the dynamical system, Ejs. [
[11]) reproduce the results of Soderhjelm (1982).

Strictly speaking, some of the equations above are valig onl
in that case when both orbits are non-circular, and the arbit
planes are inclined to each other, grdo the plane of the sky.
For example, if the outer orbit is circular, neither norg, has
any meaning. Nevertheless, their sum ive+ g, is meaning-
ful as before. Furthermore, although in the case of circular
ner orbits the derivative af; has no meaning, yet the derivative
of e; cosg;, €1 sing; (Or e; Coswy, € Sinws), i. e. the so-called
Lagrangian elements can be calculated correctly. (Noste#au
of the “pure” derivatives of; andg; (or w1) these latter occur
directly in theO — C.) Similar redefenitions can be done in the
case of coplanarity. So, for practical reasons, and fordke sf
clarity, we retain the original formulations even in suclses,
when it is formally not valid.

As one can see, there are some terms on the r.h.s. of these
equations which do not depend on Primarily, these terms
give the so-called apse-node time-scale contributioneos#ri-
ation of the orbital elements and the transit timing vaoiasi.
Nevertheless, in order to get a correct result for the largit
behaviour of the orbital elements these terms must neverthe
less be retained in our long-term formulae. Note, thesederm
were calculated for tidally distorted triplets in Borkawiet al.
(2007). Such formulae (after an omission of the tidal terams)
also valid for the present case in the low mutual inclinatica
approx.1? > g) domain. (Formulae valid for arbitrary mutual
inclinations will be presented in a subsequent paper.)

Carrying out the integrations, all the orbital elementston t
r.h.s of these equations with the exceptiorvpfire considered
as constants. This can be justified for two reasons. Firsipnas
can see, folP, >> P; the amplitudes of the long-period per-
turbative terms A, ) remain small (which is especially valid for
the case where the host star is orbited by two planets, when
Mg << My23)*, and second, although the amplitude of the apse-
node perturbative terms can reach unity, the period is lyssal

4 This assumption is analogous to that of the classical low or-
der perturbation theory where the squares of the orbital ele
ment changes are neglected, as they should be proportionab t
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long (~ Pg/Pl, see e.g. Brown 1935), that its contribution can +e, E_ (1_ 1_3%) sin(, + X)
be safely ignored during one revolution of the outer objekhe |
final result of such an analysis is an analytical form of tlaa1r 7 207 )
sit timing variations, i.e. the long-peridd — C diagram. Here +2(1- =x€)sin(@2+X) (23)
. . X . e 3 56
we give the result up to the first order in the inner ecceyici \
while a more extended result up to the sixth order in the inner +e§ 1 sinx + 1—73in(4l +%)
eccentricity can be found in appendix B, where we give algo th | 4 4 2
perturbation equations directly for tle cosnws, €'sinnw; ex- 1 169
pressions. +e2 —sinl, - xX) + —sin(32 + X)| + O(e‘z‘),
|24 24
1
O-Cp, = AL(1 en/? {( += e2 ¥ 291 smwl) C(2v2 + X) = €OS(2/2 + X) + € COSf/2 + X) + 3& cos(3/ + X)
= (1-4e)cos(2; + X
x (lz——)M+—(1—|2)S(2v2+292)] (1-4¢) cos(@ +x)
| 13
- —[1- =€ |coslz + x)
51 8
+ 20e2 cos 2y; F 2e; sin(w1 — 201) . 207
1 +3 (1 ~ 6 )cos(32 + X) (24)
X ( —IZ)M+§(1+I2)S(2v2+292)] . .
- ; +€5 =7 COSX+ - cos(4z +X)
~ | 558 Sin 201  2e1 cosu — 201) | 1C(2v2 + 262) ] 160
) } +6 —2—400312 -X)+ 2 cos(3; + X) |+ O(&5),
+ cotiy Sinin, {—E (1 ¥ 2e; sinw1) COSUm1l
5 furthermore,
x [ M- %S(sz + 292)] Umi = w1 — 01, (25)
1 i.e. ums is the angular distance of the intersection of the two or-
+=(1F 2e; Sinw;) SinuMC(2v7 + Zgz)}} bits from the plane of the sky, or, in other words, the longdgtu
S of the (dynamical) ascending node of the inner orbit alorg th
(1 . orbital plane, measured from the sky.
_ Mg &sini; ( B eﬁ) sin(vz + w2) Note, the superscripts refer to the exoplanetary trangsits (
M3 C 1+ e, cosv, mary minima), and the subscripts to the secondary ocooffisti
secondary minima). Furthermore, we assumed the formally
+0(€3) (20)
1 second-ordeg€?, and 3e? terms, to be first order, as their val-
where ues exceed; for medium eccentricities. We included also the
pure geometrical light-time contribution in the last rowendc
_ denotes the speed of light. The minus sign arises becatsse thi
M f1+ €2 COSVz0V term reflects the motion of the inner pair around the common
=V —l, +esinv, (21) centre of mass, whose true longitudéelis byr from the one of

3e; sinv, — geﬁ sin 2, + %eg sin 3, + 0(&5)

3 . 9, . 53 ; .
3e, (1 - ée%) sinl, + 4_19?2 sin, + 2—4e§ sind, + O(&)),
(22)
and
S(2v2 + X) = sin(22 + X) + e Sinfvz + X) + %eg sin(3v2 + X)

= (1- 4&})sin(2 + X)

(nbenurbe/ngtar)z, but with the difference that here the small param-
eter is the ratio of the semi-major axesa;/a, instead of the mass
ratio. Consequently, this assumption remains valid even ithe per-
turber would be a sufficiently distant stellar-mass object.

5 Note, this is not necessarily true in the presence of othem-

tive effects. Nevertheless, in such cases one can assume, thaeifshe
a physical &ect producing apse-node time-scale perturbations havift

a period comparable to the period of the long-period peatimhs aris-
ing from some other sources, then the amplitudes of thegeperiod
perturbations are usually so small with respect to the dug#s of the
apse-node perturbations that thefieet can be neglected.

the third component. In Eq. (21) the mean anomaly of the outer
body () appears because of (the constant part of) tiferdince
between the anomalistie and sideral (eclipsing, or transiting)
Ps period included into the first term in the r.h.s. of Eq. (5).

3. Discussion of the results

As one can easily see, the result for a circular inner orhst (i
e; = 0) is identical with the formula (46) of Borkovits et al.
(2003). Consequently, the discussion given in Sect. 4 df tha
paper is also valid. Nevertheless, as one can see in Figs. 2, 3
a significant inner eccentricity produces notably higheplm
tudes, and consequently, is easier to detect. Furtherreones
other attributes of the transit timing variations also d@dras-
tically. For example, in contrast to the previously studiegla-
nar ( = £1), circular inner orbité, = 0) case, (Borkovits et al.
2003; Agol et al. 2005), as long as the inner orbit is eccentri
the dynamical term does not disappear even if the outer isrbit
gcular €2 = 0). A further important feature for eccentric inner
bit, in that the amplitude, the phase and the shape dth€
variations cease to be depend simply on the physical (& re
tive) positions of the celestial bodies, but also on thertaton
of the orbit with respect to the observer. These latter efeéme
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(i. e. ey sinws, € cosw; and their combinations) can also be deThen

termined from radial velocity measurements, as well as fiteen )

shape of the transit light-curves, and, in the case of theiples O — Cgy, ~ A [yM ++/a? + B2S(2v; + ¢)
detection of the occultation, or (in the case of eclipsintabies), 2n

of the secondary minimum, from the time delay between the tWghere

different eclipsing events. So, while the relative, i.e. ptajsio-

gular parameters (i.e. periastron distances from theset#ion ¢ = 2g, + arctarﬁ (31)
of the two orbits,g;, g2, and mutual inclinationy,) cannot be a

aquired from other, generally used methods (e.g. light&wr or, in trigonometric form

simple radial velocity curve analysis), these observatigeo- P

metrical parameters could be determined from other sowtesy _ ~ _Lpx i

information, and then simply can be built into such a fittihgpa 0~ Capn 27TAL Zn: Ao SINOV: + 6in) (32)
rithm, which was described in Borkovits et al. (2003), orldou ) .

be included into such procedures which were presented by B&ere (up to third order iey)

2010). .
(2010) ) e RS+ A+ 2AsAL cOS, (33)

In the following, as we are mainly interested in transitin@l =(1-¢
-3/2 1 1
eg) \/Ag + 1—6e‘2‘A§w + EegASAM cosp, (34)

: (30)

systems, wherg ~ 90° (which is especially true for relatively
longer period, i.e. distant transiting exoplanets), wetderms A, = (1_
multiplied by cotiy, i.e. terms arising from nodal motion.

(2-

In Borkovits et al. (2003) we considered only triple stellar -321 > 1,5 2
systems, where the three masses were usually nearly eqdal,® = ) 3® A+ §egAM + §e§A3AM cosg, (35)
the inner period was of the order of a few days. In such cases sing
light-time term dominates. The amplitude of the light-tifiect ¢, = arctan————, (36)
is simply COS¢ + A
- sing
_ Mg asini o 1/2 ¢r = arctan—lAM, (37)
Aute = s © (1 & cog wz) COSp + 7572
ms GI'rtl.23 1/3 SiniZ 2/3 1/2 = arctan& 38
- m123( 471'2 ) Cc PZ (1_%00520)2) ¢3 COS¢+% %’ ( )
~ 11x 1@4% sini P35/ (1 - &cod 0.)2)1/2, (26) and
123
: L As = @ +p?, (39)
where masses should be expressed in solar unitfaimdays.
The amplitude of the dynamically forced — C, and con- Am = 3y, (40)
sequently, the detectability limit of such perturbatioepends and, furthermore,
on almost the all dynamical as well as geometrical variables 32
So, we can give only some limits on the detectability IimitAi*_ =A (1_ eﬁ) . (41)
Nevertheless, for an easier, and somewhat general studgpve
arate the physical and geometrical variables from eachr,othiote, for a circular outer orbigg = 0)
and furthermore, we separate also the elements of the imhiﬁeroA A =0 (42)
from those of the outer perturber (with the exception of the m”™ = "% = =
tual inclination). In order to do this, we introduce the éaling A = As. (43)

quantities, all of which depend on eccentricigy)( the two types
of periastron argumentgy, w1), and mutual inclinationif,), via
its cosine:

As one can see, both sets of amplitudes,Ag.s andA; 23
are independent of the real physical parameters of the urre
exoplanetary system. Furthermore, the dependence froel-the
ements of the outer orbit (i.ep, g») appear only in the; o3

2 5 3. .
a = {3 + Ze§(1+ cos) F e [E sinws + sin(wy — 291)] Fourier amplitudes. The masses (or more accurately mass ra-
tios), and the periods and period ratios (and indirectlyptings-
)2 2 N §e2(1— cos 1) ical size of the system) occur only as a scaling parameter. In
5 41 1 this way, the following general statements are valid forrgve
3 12 hierarchical triple systems (as far as the initial modelags
Te [— sinw; — sin(wz — Zgl)]}} (1 - ef) , (27) tions are valid). In order to get the real, i.e. physical ealdor
S theO-C amplitgdes ina given_ system, one must_multiply_ the
= - (1 _ ei)1/2 al Feﬁsin 201 % €1 oSy — 291)}, (28) general systérn-mdependpe%nt, i:mensmnless amplitudbagihé
4 system specific n_umbqg B _
4 5 1\ ) 1 . Considering first the (nearly) coplanar case, i.e. when
Y=11" Eei (COS By - 5) T 2€, [sin(ws - 291) ~gSNwy 41, then the (half-)amplitude of the two sinusoidals becames
4 5 8 1/2 25 3
+|2{§ + Eef(l—coszgl) ANM0 ~ B(1—e§) (1+ Eeﬁ:u zelsma)l)ez, (44)
_ 3 . . 1/2 1/2 5 25
2 [g sinw; — sinw; — Zgl)]}} (1-¢)". (29) A~ 2(1-€) e \/1 F sersinws + =&, (45)
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This illustrates the above-mentioned fundament@iedences to Fig. 2 shows the inner eccentricitg;] dependence of the
the previously-studied coplanag = 0 case (Borkovits et al. amplitudes for some specific values of the other paramdters.
2003; Agol et al. 2005), as according to our new result for egeneral, one sees that tbe increase with amplitude, but this
centric inner orbits, the dynamical term does not disappean growth usually remains within one order of magnitude. Se, al
if the outer orbitis circularg; = 0). Furthermore, the amplitudesthough the shapes of the individu@l — C curves may dter
strongly depend on the orientation of the orbital axis withpect  significantly, the net amplitudes vary over a narrow randge T
to the observer. When the apsidal line coincides (more @) legraphs also suggest another, perhaps suprising facthehamt-
with the line of sight (i.ew: = +90°) there can be very signifi- plitude of O — Cpogyn depends only weakly on the mutual incli-
cant diferences both in the shape and amplitude of the primamgtion (). This is especially valid for medium inner eccentric-
(transit) and secondary (occultatio®)— C curves. However, ities, since in this case, at least for the cases shown inZig.
when the apsidal line lies nearly in the sky, then theffedinces all Ay s amplitudes have similar values. Moreover, the numeri-
disappear. A further interesting feature of the= +90° config- cally generated samp{@— C curves of Fig. 3, also suggest such
uration, is that for eclipse events which occur around apast a conclusion. Nevertheless, there are several excepttmme
there is a full square under the square-root sign inkterm, particular configurations some of the amplitudes, or eveth bo
with the root ofe; = 0.8, which means that in this situation thisof them (and consequently, the corresponding terms) can dis
term would disappear. Nevertheless, for such a high edciéptr appear. Such a situation will be discussed in Sect. 4.1. We wi
the first order approximation is far from being valid, as isst return to this question in detail in Sect. 4, where the depend

trated in Fig. 2. of the amplitudes on other parameters will be also studiethfo
For highly inclined ( ~ 0) orbits the (half-)amplitudes aresystems of CoRoT-9b and HD 80606b.
as follows: Returning now to the LITE amplitude, and comparing it with
4 12 25 the dynamical case, an incremen®f(keepingP; constant) re-
&AMg0 ~ 3 (1 - ef) {—1 - @ef (1-3cos2y) sults in an increment 0%, e /Ap2_dyn DY Pg/s. Consequently, for

more distant systems the pure geometrickda tends to exceed

3 : ; the dynamical one, as is the case in all but oh&gqu, see e. g.
*5€1 [Sinwy - 5sins — 291)]} e, (46) Soderhjelm 1975) of the known hierarchical eclipsinglérigtel-
2 12 25 lar systems. Nevertheless, as we will illustrate in thisgrdpee
Asgo & — (1 - ef) {1 + —e{ (1 + cos 2y1) Fig. 5), we have a good chance of finding the opposite sitnatio
> 8 in some of the recently discovered transiting exoplanesssy
3 . 5 . tems. We can make the following crude estimation. Consider a
& [S'n“’l *t3 sinfws - 291)]} ’ (47) system with a solar-like host star, and two approximatepjtéu-
o mass companionsirgos ~ My = 1My, M = Mg = 10°M,)
furthermore, the phase of tiieterm is simply choosingA = 1073 day for the case of a certain detection, then
¢ = 20p. (48) the LITE term for the most ideal case givies> 10°d ~ 2 700y.

. _ ” Alternatively, settingng = 1072M, and allowingA = 107 for
In this case a further parameter, namely, the periastrdardie detection limit, the result i®, > 10°d ~ 2.7y. Similarly, for
of the inner planet from the intersection of the two orbital@s two Jupiter-mass planet, in the coplanar case, for smathe

(g1) also plays an important role. A = 1073 day limit gives
Finally we also mention a very specific case, namely for the 32
maximum eccentricity phase of the Kozai mechanism drivét < 2 X 103msez(1— eﬁ) Pi (51)

e-cycles. During this phase, cog2takes one definite value, - - . . .
nar¥1ely cos 8 =g—1. FSrthermorg,lthe mutual inclination of theCondltlon for the detectability of a third companion by itsg-

two orbits here reaches its minimum. The actual value deperi%rme?%]sg'cal perturbations. For the perpendicular chse t
on both the maximum mutual inclinatiag,, or more strictly, 1 )

on j;, and the minimal inner eccentricigy. Nevertheless, in o 2 1 Bm. (1 - -3/2 1+ %6 |pP2 52
the case of an initially almost circular inner orbit, the min =72 m;( %) 3ez T (52)

mum mutual inclination is almost independent of its maximumy,., 1 ote that foms << m, the above equations are linear fog
value, and takefu(x im) ~ 3923 (or its retrograde counterpart,so it is very easy to give the limiting peridé, in the function

A M i o
ji(x im) ~ 14077), i.e.1” = 3/5. For this scenario: of mg. Nevertheless, we emphasize again that there are so many

16 12 25 9 terms with diferent periodicity and phase, that these equations
©2AMKozalo0 ¥ 5 (1-€) (1 - Eei 8 smwl) €. (49) give only a very crude, first estimation. Fey =1, 10, 100 days,
(at zero outer eccentricity) givés <0.5, 50, 5000 days, respec-
@Kozai90 = (1 - e2)1/2 (i - §e2 * E-el Sinwl) tively,
) 1 25 31725 ’ These results refer to the total amplitude of e C curve,

12 2 i.e. the variation of the transit times during a complet®hetion
Brozaiso = ¥ (1-€) c V1Be; cosws. (50)  of the distant companion, which can take as long as seveassye
i or decades. Naturally, the perturbations in the transisicould
In order to get a better overview of the parameter depege opserved within a much shorter period, from the variaion
dence of the formulae above, we investigate Migs, as well he interval between consecutive minima. This estimatian ¢
as theA; » 3 amplitudes graphically. Due to the complex deperle calculated e.g from Eq. (30), or even directly from Eq)(15
dence of these amplitudes on many parameters, ifffigalt to  According to the meaning of th® — C curve, the transiting or

give dgenera]Ic ts;ateme?':saThereE%re_we |nvest|g?'ge_ton:,)\tli|?;ee eclipsing period ) between two consecutive (let us assume the
pendence of the amplitudes on the inner eccentricity, -th andn + 1-th) minima is

effects of other parameters will be considered in Sect. 4 for spe

cific systems, where some of the parameters can be fixed. Pp=th1—th = (O-C) (ths1) — (O -C) (tn)
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Fig. 2. Left panels:The inner eccentricitye) dependence o, As amplitudes ofM, S functions of long-period dynamical part &f — C for
specific values of some parameters. Note, to compardttadS terms, the former should be multiplied ly. The thin lines (indexed by '1")
refer to the first order approximation, while the thick onieel€x '6’) to the sixth oneRight panelsThe corresponding\, » 3 amplitudes of the
trigonometric representation (Eq. 32) of tBe- C for two different outer eccentricitieg{ = 0.3 ande, = 0.7) (g, was set to 0).
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Fig. 3. Transit timing variatons caused by a hypothetieal= 10 000 day-periotn; = 1Me mass, moderately eccentgg = 0.3 third companion
for CoRoT-9b, at dferent initial orbital elements, for four flierent initial inner eccentricitieg{ = 0, 0.11, 0.5, 0.9). The various initial elements
of each panel are as follows. Pana&).(@; = 7°, g> = 90°, i, = 0°; (b): The same, but far, = 90°; (¢): g1 = 7°, @2 = 45, im = 30°; (d): g1 = 337,

02 = 45,in = 60°; (6): g1 = 307, 0, = 45, i, = 30°; (f): same as previous, but fof = 9C°. (9): g1 = 277, @, = 45°, iy = 0°; (h): same as
previous, but foi,, = 90°. (For better comparison the curves are corrected for tfierdnt average transit periods, and zero point shifts.)
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P 1/2 ;
~ Po+ —A (1-€)"" AVan (1 + €2COSVan) 4. Case studies
CoRo0T-9b is a transiting giant planet which revolves aroisd

4.1. CoRoT-9b
v+ 2+/a? + B2 cos(2ion + @)
host star approximately at the distance of Mercury (Deed.et a

where up to third order ie; 2010). Consequently, tidal forces (including the possitde
1 tational oblateness) can safely be neglected in this system
Al (142 26, COS ~ &2 cos A + 363 cos V. Furthermore, du_e to the relatively large absolute seplmatf .
2( * eﬁ e Cosv2+ 2ezz 2458 2) the planet from its star, we can expect a large amplitude sig-
5 nal from the perturbations of a hypothetical, distant (lntttoo

X , (53)

AVy

Q

~ 27r3(1 +6Vy) distant) further companion. To illustrate this possigjland, fur-
P2 thermore, to check our formulae, we both calculated andegalot

~ ZnE(l +6Vy) (54) the amplitude_s with the measured parameters of_ this speg#ic
Py ’ tem, and carried out short-term numeric integrations fongar-

] ] o ison. The physical, and some of the orbital elements of CoeRoT
i. e. we approximated the variation of the mean anomaly of th@ were taken from Deeg et al. (2010). These data are listed in

outer companionif) by the constant value of Table 1. (Note, we added 180 thew; published in that paper,
p as the spectroscopig; refers to the orbit of the host star around

Alp ~ ont (55) the common centre of mass of the star-planet double systein, a
P2 consequently, dier by 180from the observational argument of

Iperiastron of the relative orbit of the transiting planefward its
host star.) In the case of the numerical integrations, therin
planets were started from periastron, while the outer oomn fr
its apastron.

(Here, and in the following text we neglect the pure geomet
cal LITE contribution.) Then the variation of the length bkt
consecutive transiting periods becomes

12 Fixing the observationally aquired dat&,s depend only
AP ~ _Eﬂ ms P_‘ll (1 - ef) on two parameters, namely andin. In the left panels of Fig. 4
4" Moz pg (1 _ e%)S/Z we plotted thep, versushns graphs foig; = 6%andg; = 158.
We found that the amplitudes reach their extrema arounathes
9 ) ) 9, . periastron arguments, i.e. for otlggrvalues results occur within
X {7’ 3e (1 + 5"%) sinv, — 665 sin v, — 5&sin 3 the areas limited by these linE$n the middle and right panels
the dfect of the two further free parameters, i.e. outer eccen-
+2 a2 + 2 [2(1 + 8%) sin(2 + ¢) tricity (e2), and dynamical (relative) argument of periastrgs) (
. 9 were also considered. The middle panels skgwfor e, = 0.3,
! 2 ; the right panels foe, = 0.7, for bothg, = 0°(upper panels), and
* 2ez (1 * 2%) sinfvz +9) 02 = 90°(bottom panels). (Note, th#{(s, plotted in the left panel
13 9 _ is identical toA; for e; = 0, in which cased; 3 = 0.)
+?ez(1 + 5%) sin(3vz + ¢) These figures clearly show again that the amplitudes, and
L 19 consequently, the actual full amplitude of the dynam@al C
3 i 3 i curve remains within one order of magnitude over a wide range
+Ze2 SiNCV+9) + Zez sin(Svz + ¢) } ’ (56) of orbital parameters. This once more verifies the very casde

timations given by Eqgs. (51,52). As a consequence, for angive
Comparing (the amplitude of) this result with Egs. (1,2) ofystem we can estimate very easily the expected amplitutie of
Holman & Murray (2005), one can see that the power of th® — C variations induced by a further companion. For a planet-
period ratio difers. (Furthermore, in the original papestands mass third body, the
at the same place, i.e. in the numerator (as above) but iater,
Holman 2010 this was declared as an error, and it was put into 1mg P?
the denominator.) There is a principalfdrence in the back- Adyn ~ 27t Py Mhost star
ground. Holman & Murray (2005) state that they “estimate the
variation in transit intervals between successive trafistiut gives a likely estimation at least in magnitude. For exarniple
what they really calculate is the departure of a transitiadgqu CoRo0T-9b
(i.e. the interval between two successive transits) froorstant

(57)

i

mean value. This quantity was estimated in our Eq. (53).hewot 4 _ 1 ~ 1459¢M =L
words, the Lagrangian perturbation equations gives tharie- 27T Mhoststar ©
neous period of the perturbed system. So, its integratieesgi ~ 1.39M7?, (58)

the time left between two consecutive minima. The first deriv

tive of the perturbation equation gives the instantane@u®@ je. a Jupiter-mass additional planet could produ @90 half-
variation, and so the variation of the length of two conseeut amplitude already from the distance of the Mars. (Of colifse,
transiting period can be deduced by integrating the la#era ¢, andw; are known, a more precise estimation can be provided
consequence, the best possibility for the detection of riue-t easily using the formulae of the present paper.)

sit timing variation, and so, for the presence of some peeilur  Nevertheless, while the net amplitudes usually vary in a nar

occurs when the absolute value of the second derivativeeof iy range, the dominances of the two main terms (with period
O - C diagram, or practically Eq. (56) (the period variation dur-

ing a revolution) is maximum. We will illustrate this statemt  © Strictly speaking this latter argument is true only if negative
in the next Section for specific systems. values are also allowed for the cdficients.
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Fig. 4. Left panels:The mutual inclinationif,) dependence ohy, As amplitudes ofM, S functions of the long-period dynamical component of
O - C for CoRoT-9b, forg; = 69andg; = 158 . For otherg; values the corresponding curves run within the area linbtethese lines. (The two
left panels are identicalNliddle and right panelsThe correspondingy ; amplitudes of the trigopnometric representation (Eq. 3ZhefO — C

for two different outer eccentricitiess = 0.3 (middle) ande, = 0.7 (right); and outer dynamical (relative) argument of penicum arguments
02 = 0°(up) andg, = 90°(down). For the sake of clarity, we did not plot the smigjicodticients. (Note, foe, = 0.0 the As amplitudes of the two
identical left panels are equal £, while A; = A3 = 0.)

P, and %Pz) can alternate and, although it is not shown, the{2000) the higher order contributions are the most sigmifiéar
relative phase can also vary so, the shape of the actualsuree ~ 0, i = (0,1) x 18C°. Although the above authors con-
may show great diversity, as is illustrated e.g. in Figs. 3, Sidered only the secular, or apse-node term perturbattbaes,
Furthermore, for specific values of the parameters, one er ttame might be the case for the long-period ones. This might ex
other amplitudes might disappear. At CoRoT-9b particylard plain the better correspondance in the perpendicular amnafig
teresting is th@; = 69y, ~ 45°configuration since in this casetion than in the coplanar one. We suppose some similar reason
both Ay andAg disappear very close to each other. This meansthei,, = 46°case. As in this situation the first order contri-
that for specifie;, gz values the dynamic& — C almost disap- butions almost disappear, whereas the small higher ordeste
pears. This possibility warns us of the fact, that from theesigze can also be more significant. Furthermore, numeric integrat
of TTVin a given system one cannot automatically exclude tlre this latter case show a disappearence of the identity desiw
presence of a further planet (which should be observed decaheqs, g; + 18Cinitial conditions, which also suggests a signifi-
ing to its parameters). cance of the higher order terms as in this case we can expect th
This can be seen clearly in Fig. 5, where we plotted the corr@ppearance of trigonometric functions wgh and 3; in their
spondingD-C curves for coplanar, perpendicular, and the aboaguments.
mentioned interestinig, = 40°and 46configurations. In this lat- As expected, the highly eccentric-distant-companion sce-
ter figure we plotte® — C curves obtained from both numericalnario produces the largest amplitude TTV, at least when acom
integrations of the three-body motions, and analyticatwlal plete revolution is considered. Nevertheless, on a shtner-
tions with our sixth order formula. (Note, according to F&. scale, the length of the observing window necessary for ¢ie d
for the small inner eccentricity of CoRoT-9k;(= 0.11), the tection depends highly on the phase of the curve. To illtestra
first order approximation would have given practically taeng this, in Fig. 6 we plotted the first, and second 8 years of theeth
results.) Comparing the analytical and the numerical ajrveprimary transitO — C curves for both the coplanar, and the per-
the best similarity can be seen in the perpendicular cas¢ (lpendicular cases, shown in the first and last rows of Fig. & Th
row). In the coplanar case some minor discrepancies can-be whnsiting periods for each curve were calculated in thakisi-
served both in the shape and amplitude, while the discrégancservational manner, i.e. the time interval between the(Benhe)
are more expressed in the particular = 46°case, where for transits were used. According to Fig. 6, in the present sitna
large outer eccentricity (right panel in the third row) owr s in the first 8 years (i.e. which begins at the apastron of therou
lution fails. (Nevertheless, the total amplitude of taealyti- planet) it would be unlikely to detect the perturbationshie t
cal curve is similar to the numerical onein this case, t0o.) largest (total) amplitude, = 0.7 cases, as well as in the copla-
Although a thorough analysis of the sources of the discreipan nare, = 0.3 case. The most certain detection would be possible
is beyond the scope of this paper, we suppose that in theseisitthe two smallest amplitude circula = 0 configurations.
uations the discrepancies come from the higher order ferturNevertheless, if the observations starts at those phastegl
tive terms. As was shown e.g. by Soderhjelm (1982); Fordl et an the right panels (8-16 years), the pictures completefiei
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Fig. 5. Sample of transit timing variations caused by a hypothefiga= 10 000 day-periodn; = 0.005Mg(~ 5M;) mass third companion for
CoRoT-9b at four dferent initial mutual inclinationsi§ = 0°, 40, 46°, 9C°, from up to down), and three ftierent initial outer eccentricities
(e =0, 0.3, 0.7, from left to right). The dynamical (relativeyaments of periastrons are setgo= 69°, g, = 90°. The curves show the sum
of the geometrical LITE, and the dynamical terms obtaineith frem numeric integrations, and analytic calculationgaipixth order ine;. The
pure LITE contributions are also plotted separately. Nbg the vertical scale of the individual columns (i.dfeliente,-s) are diferent.

In this latter interval, the circular cases produce the saatur-
vatureO—C-s, and the discrepancy from the linear trend reache=gards to 'certain’ detection.
07001 days (which can be considered as a limit for certain detec
tion) occuring towards the end of the interval. On the otlasrdh

in the case of the highly eccentric configurations, the 'mome
of truth’ comes after some years. Nevertheless, we havegssst
that although we plotted th@ — C curves with continuous lines

in reality they would contain only 3-4 points during the pba$

the seemingly abrupt jump, is a further complicating faetiah

In the sample runs above a moderately hierarchic sce-
22a; was studied. In order to get some picture

nario a,
about the lower limit of the validity of our low-order, hi-

=~

erarchical approximation, we carried out further integra-

'tions for less hierarchic configurations. In Fig. 7 we show

the results of some of these runs, which were carried out
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Fig. 6. The first and the second 8 years®#f C-s plotted in the first and the last rows of Fig. 5. The periddte individual curves were set equal
to the respective initial transiting periods.

with the same initial conditions what were used in the mid- We also investigated the case of th& : 10 mean-motion
dle panel of the first and last rows (coplanar and perpendic- resonance. Our results for the perpendicular case are plot-
ular cases, respectively) of Fig. 5, but foP, = 1000days (i.e. ted in the last row. In this case the numerical integration
a, ~ 4.8a4), P, = 2000days @ ~ 7.6a;), and P, ~ 9527 shows very high amplitude apse-node scale variations that
days @ ~ 4.6a;), in which latter case the two planets or- does notoccur in the analytical curve. In order to get a bette
bit in 1 : 10 mean motion resonance. In the left panels of comparison between the analytical and numerical long-term
Fig. 7 we plot 20-year-long intervals, while in the right ons variations in this case, we removed the apse-nodé#ect from
century-long time-scales are shown. As one can see, on thithe numerical curve, by the use of a quadratic term, i.e. the
latter time-scale, apse-node féects already reach or exceed (blue) O — C curve was calculated in the form of

the magnitude of the long period ones. This naturally arises

from the fact that the typical time-scales of these latter gh- O - C = ¢y + ¢, E + ,E2, (59)
amplitude perturbations are proportional to P%/Pl, i.e. in

the present cases these are 100x faster than in the pre- \yhere E is the cycle number. As one can see, this quadratic
viously investigated case. Note, that for the sake of a bette (pjye) curve shows similar agreement with the analytical
comparlson,.the anz_zllytlca_l curves in the right panels were curve, which was found in the similar ap/a; ratio non-
calculated with the inclusion of these apse-node terms, al- resonant case. Consequently, we can state that our long term
though the latter will be presented only in a forthcoming pa-  formulae are capable to produce the same accuracy even
per. Turning back to the 20-year-long integrations, one can 5round mean-motion resonances.

see that the limit of the validity of the present approxima- Nevertheless, from these few arbitrary trial runs we can-
tion do_es strongly d_epenc_i on the mutual |_ncI|nat|on_. While not give general statements about the limits of our approxi-
for the im = 90 configurations the long period analytical re- - a4i0ng A detailed discussionof this point is postponed ta
sults are in remarkably good agreement with the numerical - 5 4,oming paper, when we include the apse-node time scale
curves even fora, < 5a; (left panels of third and forth rows), terms.

for the coplanar (i, = 0°) case our approximation is clearly , . . .
insufficient for such smallay/a; ratios. and even for the dou- _._V/hile CORoT-9b served as an illustration for the Transit
Timing Variations in the low inner eccentricity case, ouxne

gf:ly?i%grcﬂf\;leog ?\%Srﬁy(lﬁwgzer:sﬁalg\tgﬁ amplitude of the sample exoplanet HD 80606b represents the extremely exent
' case.
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Fig. 7. Checking the validity of hierarchical approximation for closer systems. In the first two rows the initial conditions were set to be the
same as at the uppermost middle panel of Fig. 5, with the excépn of P, = 1000(first row) and 2000days (second row)i.e.a,/ay ~ 4.8 and
~ 7.6, respectively, while the third and last rows have initial canditions similar to the middle panel of Fig. 5, with the excepion of P, = 1000
(third row) and 9527 days(last row) This latter illustrates the case of al : 10mean-motion resonance. The left panels represent a 20-year
long time-scale, while the right ones show the TTV behaviouduring a century. In the left panel of the last row the blue (quadratic) curve
shows theO — C curve calculated by including a quadratic term. See text fordetails.
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Table 1. The initial parameters of the tran§iting planetary submgte Al = 61 Gmy , (64)
(The masses are given in solar mass, periods in days, anthaefg: c2a;(1- ef)

ments in degrees.) The parameters are taken from Deeg 2020)(for
CoRoT-9b, and from Pont et al. (2009) for HD 80606b. (Note¢ tha Where
argument of periastrond) for the relative orbit of the planet around

its host star dfer by 180from the value deduced from radial velocityC,; = MM Gmpag (1 - eﬁ)
data.) M2
= LiJ1-€%, (65)
System m m P, e w i1 C, = M2 /Gml23a2 (1_ e%),
CoRoT-9b 099 00008 952738 011 217 899 My23
HD 80606b 097 00038 1114357 093 121 8932
= Lay1-6, (66)
moreover,
4.2. HD 80606b M my
1 2
The high-mass gas giant exoplanet HD 80606b features anal-= G(Ekg )R? + Ek; )Rg)
most 4-month long period and an extremely eccentric orbit _ .2
around its solar-type host-star. It was discovered spsobym- _ 6ER5 [kgl) n kg) (&) &} (67)
cally by Naef et al. (2001). Recently both secondary octiolta m * 0] R’
(with the Spitzer space telescope, Laughlin et al. 2009) jai (RS 2 )5 2
mary transit (Moutou et al. 2009; Fossey et al. 2009) have be% _ K 197, K Rﬁzwz’2
detected. A thorough analysis of the collected data aroned ™ =~  Gm, * Gmp
February 2009 primary transit led to the conclusion thatehe 2D %@
is a significant spin-orbit misalignment in the system, ite - k3 V2 o+ k2 V2 (68)

orbital plane of HD 80606b fails to coincide with the equato- ~ 47Gp; * = 4nGp, %'
rial plane of its host star (Pont et al. 2009). These factgssig . —
that this planet might be seen at an instant close to the ma-hese equationsy, Ry, py, k;”, wz, Ve, refer to the mass, ra-
mum eccentricity phase of a Kozai cycle induced by a distaffus: average density, first apsidal motion constant, uiztao-
inclined third companion (cf. Wu & Murray 2003; Fabrycky &!@tional angular velocity, and equatorial rotational etpof the
Tremaine 2007). Note that although HD 80606 itself forms-a HjOSt Star respectively, while subscripenotes the same quanti-
nary with HD 80607, due to the large separation, one may @xpHgS for the inner planet. Note also that the rotational tsmalid
a further, not so distant companion for afeetive Kozai mech- Ol fornon-aligned rotation, and consequently, it preganly
anism. Such a very distant companion may nevertheless play?sCrude estimation for HD 80606b. Nevertheless, for theqmies
indirect role in the initial triggering of the Kozai mechani, by ~PUTPOSe it seems satisfactory. First consider the thirdiyerm.
the efect described in Takeda et al. (2009). The most important'Pstituting cos@= -1,1% = 3/5,
parameters of the system are summarized in Table 1. 3 ms (Py)2 _ap2 _12

Due to its very high eccentricity, the periastron distante ¢ = — — (—1) (1— %) (1 - ef)
this planet isg; = a1(1 — e1) ~ 0.03AU at which distance the 2 Moz \P2

tidal forces and especially tidal dissipation should Fective. _

. . : 3 L, [1-¢€
(As a comparison we note, that this separation corresporits t X 3e§ + 4/= (1 + 4e§) — 4\ —], (69)
semi-major axis of an approx. 2 day period orbit.) Furthexeno S L2 V1- e%
we can expect also a significant relativistic contributiorthie . . S .
apsidal motion. Although such circumstances do not ineatid from which the last term usually omittable in hierarchicyss
the following conclusions (as the time-scale of theieats are €MS; SINCE&, << Cp, which is more expressively true for high
significantly longer than the ones investigated) we neegegs .- FOr example, in the present situation
provide a quantitive estimation of theiffects. Furthermore, the C, —1/2
effect of dissipation will also be considered numerically,he t C, ~ 0~O6(1 - %) : (70)
end of this section.

As is well known, the apsidal advance speed, averaged f&®, for HD 80606b we obtain that:

one orbital revolution, can be written in the following farm

-3/2 "
AQze ~ 43 x (1 - century-. (71)
g1 = A+ Bcosay, 60) (1-€)
I . . (This result is in excellent correspondance with Fig. 11.)

where the non-zero contributions of the third-body, ticted ael- There are several uncertainties in the calculation of the ti

ativistic terms are as follows: fcontritaqtion. While 'thikz constant is rg_latiyel;; weII—kn?wn
P1 -2, 1 2 3,\C or ordinary stars, it has a great ambiguity for exoplanets.

Aga = A‘-p_2 (1_ e%) [' 5 (1 - e{) te 1+ §e§ C_2| > Furthermore, we do know nothing about the rotational véjoci

of HD 80606b. So, according to the tables of Claret & Giménez

(61) (1992) we sekgl) = 0.02 for the host star, and assum@ =02
Bga = AL& (1 - & Y2 (1 - ei) —12_ ei&l] , (62) for its planet, which is the same order of magnitude as fortdup
P2 C2 and of WASP-12b (Campo et al. 2010). The stellar rotation was
571+ 3¢ + Lef R set toVior = 1.8kms™ (i.e. Py = 275; wy = 0.228 day?)
Aiidal = —= =+ (63) (Fischer & Valenti 2005), while for the planet we supposed (a

+
285 (1 - ef) a2(1 - ez)z, bitrarily) a one-day rotation period, i.e;; = 6.283 day". By



T. Borkovits et al.: Transit timing variations in eccenthierarchical triple exoplanetary systems 17

the use of these values, the classical tidal contributidghéap- However, this assumption is only correct in those cases avher

sidal motion becomes tidally forced dissipation is not considered. Consequente
o integrated the dynamical evolution of the system includioth
AGtigal ~ 02007 century, (72)  tidal effects (both dissipative and conservative tidal terms), and

without them (i.e. in the frame of pure three, point-masygra
itational interactions). The equations of the motion (intihg
tidal and dissipative terms, and stellar rotation) are miue
Agrel ~ (P06 century?, (73) Borkovits et al. (2004), where the description of our insegr
can also be found. In the dissipative case our dissipatinstaat
i.e. it is smaller by one magnitude than the third-body teamy  was selected in such a way that it produegd ~ 216 x 10~
consequently, does also not play any important role. tidal lag-time for the host-star, antt; ~ 5121 x 10~ for the
Returning to theP, time-scale variations of the TTV-s, weplanet, which are equivalent @, ~ 4.1x 10’, Q; ~ 1.7 x 10*
carried out our calculations and integration runs with thgpe-  dissipation parameters, respectively. Fig. 11 shows thatian
sition that a second, similar mass giant planet is the sonirce0f most of the orbital elements (both dynamical and observa-
this comet-like orbit, which is seen in the instant of the maxional) for 100 and 1 million years in the dynamically most-
imum eccentricity phase of the Kozai-cycle. Consequemtly, excitede; = 0.7 case. Thick lines represent the dissipative case,
setg; = 90°, andi, = 3%23. With these values from the sixthwhile thin curves show the point-mass result. The centangl
order formula we gef\y, = —0.38, As = 1.69 for primary left paneldemonstrates, that apart from the shrinking seajor
transits, andAy = —1.06, As = 1.72 for secondary occulta- axis, there is no detectable variation in the orbital eletmienr-
tions. Consequently, for primary transits tBe- C is evidently ing such a short time-interval. And, of course, if this isetrfor
dominated by theS-term. (The negativé\,, indicates a simple the extremum of the Kozai cycle, it is more expressly valid fo
180 phase-shift.) In Fig. 8 thé;»3 amplitudes are plotted asother situations, as this phase produces the fastest logbsta
a function of the outer eccentricitgs). Due to the more than ment variations. Furthermore, on such a short time-scaletth
four and a half-times larger primary trandlitamplitude, theg,  bital variations in a point-mass or non-Keplerian, tidairfre-
dependence of the amplitudes here are weak, and thereforew@gk are indistinguishable. (Again, we do not take into aodo
show onlyA; »3-s for g, = 0°. In Fig. 9 we present both thethe semi-major axis.) This provides further verificationtioé
numerically generated short-tet@h— C curves, as well as the effects previously-discussed, namely that we neglecteddaé ti
analytically calculated cases up to the sixth order in erizen and relativistic &ects completely, and considered all the orbital
ity (see Appendix) for three fierent eccentricitiesst = 0, 0.3, €lements as constant.
0.7) of the outer perturber’s orbit. We plotted tBe C-s for both
primary transits and secondary occultations. Also showrtla Now, we consider orbital shrinking due to dissipation. As
corresponding primary minus secondary curves. one can see, in the present situation the decreagedaring the
As one can see, the sixth order formulae gave satisfactdingt 100 years ida; ~ 6x10* Rg. Converting this into a period
results even for such high eccentricities, although théysinal variation suggestaP; ~ 1073 d. This gives for one transiting
amplitudes are somewhat overestimated. Neverthelessra nperiod aP; ~ 3x10°6 day cycle? rate. From the point of view of
detailed analysis shows that the accuracy of our formulae fan eclipsing binary observer, this is an incredibly large&aFor
such high inner eccentricities strongly depends on therathe comparison, a typical secular period variation rate mestor
bital parameters. This is illustrated even in the presénagon, many of the eclipsing binaries is about26- 10-'* day cycle?.
where, for the secondary-occultation curves, (which apoad Such a high rate would producg001 departure in transit time
to w; = 301°), the discrepancies are clearly larger. From thiduring~ 26 cycles, i.e. during approximately 8 years. Note, this
point of view, thee, = 0 case (first row) is the more interestingperiod variation ratio is close to that ratio produced byi¢gp
as in this situation, due to the non-zero, very similar= A, am- long-term perturbations within a few years. This illustsathat
plitudes, we would expect almost identi€al C curves (since if the data-length is significantly shorter than the peridédhe
the dashed analytical ones are very similar), but this, @b fia long-term periodic perturbations, then theeet arose from such
not the case. perturbations, and otheffects, coming from i.e. orbital shrink-
Considering the case of fastest possible detection of the aifrg can overlap each-other, and as a result they can be erisint
plitudes, in Fig. 10 we plotted also the first and second 8syefar preted easily. (The question of such kinds of misinteri@ta
the three primary trans@ - C curves, shown in Fig. 9. The tran-or false identifications were considered in general in S2cf.
siting periods for each curves were calculated on the usbal, Borkovits et al. 2005).
servational manner, i.e. the time interval between the(Benhe)
transits were used. According to Fig. 10, in the first 8 year, i Finally, we consider the right panel of Fig. 11, which il-
after the apastron of the outer body, the fastest detectmndv lustrates the frequently mentioned Kozai-mechanism (aitt
be possible in the smallest (total) amplitude circulardfiody- without tidal friction) in operation. Note, that in the pest sit-
case, while the curvature of the highly eccentric curve is smtion due to the high outer eccentricity, and as well as¢he r
small, that it needs almost 7 years to exceed f®D difer- atively weak hierarchicity of the system (i&./a; ~ 0.05) the
ence which could promise certain detection. (Of courss,ihé higher order terms of the perturbation function are alsaifig
non-realistic ideal case, when all the transits are medswith- cant, which results in very fferent consecutive cycles even in
out any observational error.) Around periastron (rightgdgiihe the point-mass case, too. This manifests not only fisréint pe-
situation is completely dierent, similarly to the case of CoRoT-riods and maximum eccentricities, but e.g. in the fact that t
9b. argument of (dynamical) periastrogy ] shows both circulation,
We also carried out numerical integrations to investiglge tand libration, alternately (cf. Ford et al. 2000). Neveltiss, the
possible orbital evolution of HD 80606b in the presence chsu detailed investigation of the apse-node timescale behawdb
a perturber. We have shown that both relativistic and tidtal ehe TTV, as well as other orbital elements and observablis wi
fects are omittable in the present configuration of the systebe the subject of a succeeding paper.

which can be neglected.
Finally, the relativistic contribution is estimated to be:
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Fig. 8. The A ;3 amplitudes for HD 80606b for primary transits (left), and@adary occultations (right), supposing that the plansein at the
instant of the maximum phase of a Kozai-cycle.

5. Conclusions This suggests a somewhat greater generality of the results,
. . o . l.e. it is well applicable systems similar to our solar systa.
We have studied the long-terf time-scale transit timing vari- Nevertheless, perhaps a small disadvantage of this method
ations in transiting exoplanetary systems which featutgthér, \yith respect to the hierarchical approximation is, that for
more distant#, >> ay) either planetary, or stellar companionjarge mutual inclinations the number of terms in the per-
We gave the analytical form of th® — C diagram which de- trpation function needed for a given accuracy grows very
scribes such TTV-s. Our result is an extention of our presiogsst while our formulae have the same accuracy even for the
work, namely Borkovits et al. (2003) for arbitrary orbitdée |argest mutual inclinations. There is also a similar discom
ments of both the inner transiting planet and the outer cOMPgort in the case of high eccentricities, in which case the gen
ion. We showed that the dependence of @e C on the or- era| formulae of Nesvorny (2009) are more sensitive for these
bital and physical parameters can be separated into thré® pgyarameters than in the hierarchical case. For example, we
Two of these are independent of the real physical param@®rs ¢oy|d reproduce satisfactory accuracy even foe; = 0.9, in
masses, separations, periods) of a concrete system, aeddlepyhich case the classical formulae are divergent. (Note, tha
only on dimensionless orbital elements, and so, can be selyg|though in this paper we concentrate only on the long pe-
in general. For the two other kinds of parameters, which &re ayjod perturbations, the same is valid for the apse-node time
plitudes and phases of trigonometric functions, we sepditie scale variations, as will be illustrated in the next paper.)As
orbital elements of the inner from the outer planet. Thetrak 5 conclusion, the greater generality of the method used by
importance of such a separation is that in the case of any &gssvorny & Morbidelli (2008) and Nesvorny (2009) beyond
tual transiting exoplanets, if eccentricitg;} and the observable the evident non-hierarchical configurations is well (or eve
argument of periastronu) are known e.g. from spectroscopypetter) applicable also in the nearly coplanar case, espely
then the main characteristics of any, caused by a possiide thyhen the inner orbit is nearly circular (in which strict case
body, transit timing variations can be mapped simply by @V the first order hierarchical approximation becomes insufi-
ation of two free parameters (dynamical, relative arguneént gient, see e.g Ford et al. 2000), but in other cases, as far as
periastrongs, and mutual inclinationim), which then can be the hierarchical assumption is satisfied, this latter couldyive
refined by the use of the other, derived parameters, inajudig faster and simpler method. Furthermore, since in the hier-
two additional parameters fot the possible third body (Becearchical approximation, the principal small parameter in the
tricity, €, and dynamical, relative argument of periastrgs),  perturbation equations is the ratio of the separations ins¢ad
Moreover, as the physical attributes of a given system o@elyr  of the mass-ratio, these formulae are valid for stellar mass
as scaling parameters, the real amplitude 00k& can also be opjects as well, and can also be applicable for planets orbit
estimated for a given system, simply as a function ofta¢P2  ing an S-type orbit in binary stars, or even for hierarchical
ratio. triple stellar systems.

At this point it would be no without benefit to compare
our results with the conclusions of Nesvorg & Morbidelli
(2008) and Nesvorg (2009). These authors investigated the
same problem, i.e. the fast detectability of outer perturbing
planets, and determination of their orbital and physical pa
rameters from their perturbations on the transit timing of
the inner planet, by the help of the analytical description
the perturbed transiting O — C curve. For the mathemati-
cal description they used the explicite perturbation theoy of
Hori (1966) and Deprit (1969) based on canonical transfor-
mations and on the use of Lie-series. This theory does not
require the hierarchical assumption, i.e. thea = a;/a, pa-
rameter, although less than unity, is not required to be smdl

We analysed the above-mentioned dimensionless amplitudes
for different arbitrary initial parameters, as well as for two con-
crete systems CoRoT-9b and HD 80606b. We found in general,
that while the shape of th® — C strongly varies with the an-
gular orbital elements, the net amplitude (departing frome
specific configurations) depends only weakly on these el&snen
but strongly on the eccentricities. Nevertheless, we fosorde
situations aroundl, = 45°for the specific case of CoRoT-9b,
where theD — C almost disappeared.

We used CoRoT-9b and HD 80606b for case studies. Both
giant planets revolve on several month-period orbits. Dineér
has an almost circular orbit, while the latter has a conte&t-kx-



T. Borkovits et al.: Transit timing variations in eccenthierarchical triple exoplanetary systems 19

0.004 T T T T T T 0.006 T T T
€,=0.93 ;=121 g;=90 e,=0  hum. €,=0.93 w=121 g,=90 e,=0  NUM. €,=0.93 ;=121 g;=90 e,=0  hum.
Primary transit | e 0.332(‘3 -~ 49.646 Secondary occultation anal. = = Primary - secondary minima anal. = -
0.002 - . N B 0.004 - B
i/ M \ n 1
1 \ Il Il L ]
f 1 1 \ i\ ,I 49.644 N \ " \ " N " 3 0 0 . '| " N R
@ [ \ { A i @ 1 1 1 @ | A b H, /v
20000 | { A \ [T S N N vooN VN g 0002 A 0
© v | 1 1 1 ° 1f I I ° 1 [N i P, IR
£ [ ! o \ { { 49642 F | 1\ A ' \ " 11 £ P [
13} 1 Vo | [ \ o | [ f 1 ! o v ! v
g0z [ ¢ | 1| | | \ IR AR p:s AN T S A Y O YA R B & 0.000 | |, Vo Pl N .
I v ]
[ ] 1 \ L] ! ] \ | | Vot a0.640 L ) \ i [ | L. | Vo] \ (] | \ ! n ] |
ty { [ \ I ! Wy o Voo L/ Y N
-0.004 l \ { { 1 g 1 I -0.002 '/ ! "y f YR
\ \J J ! \ i v L e N Yo oy y Y Y A
v 49.638 | |, R ‘1 N ', N V]
-0.006 ™~ T~ T~ A -0.004 4
. . . . 49.636 . . . . . . . .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Years Years Years
0.006 T T T T T T T T 0.008 T T T
€,=0.93 0, =121 g,=90 e,=0.3  num. L €,=0.93 w;=121 g;=90 e,=0.3  nhum. 1] €,=0.93 ;=121 ;=90 ,=0.3 NuM.
Primary transit | g _ g gg?‘d - - 49.646 Secondary occultation 2" = = Primary - secondary minima 2" = =
0.004 | : 9 n " ,| ' 0.006 | 9
L ' \ d
! i I I 49.644 " " " ' 0 ) A 4
0.002 | 1 e f ) 0.004 | h ! 14
" " l| [} 1 » 11 1y \ | . ] N ]
g " [ - | ~ | F il S VAN i IR [ ‘N 118 £ 1 % | I
S 0.000 4 ! B \ | 11 Soo002fh (L S B .
£ A\ [N e [ | [} < (v [} LAY [} LAY ! c [ | ! b\ vl
Q { v\ | o Q49.640 | PN | N v 1119 Yy \ ! Iy '
O.0.002 [ | | | ! 4 ©° A 1 1 1] ©oo000f | vV g i
I Vi v\ [} \ ! ;o0 A | ] I NG Fg \ (.
\ RN \ /! 49.638 | " V s o\ Y Y} \ |
0004 f \f 1{ o I = i \ | A 0002 F Vi 'y J
\ | v 1 v 1 I 1 ] \u
1 \ | 1] 40636 | l l | "l Y !
-0.008 | H i I v v V N N -0.004 | ]
T~ ™~ T~ ] 49.634 - 1
.0.008 . . . . . . . . -0.006 . . . .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Years Years Years
T T T T 49.670 T T T T T T T T
€,=0.93 w;=121 g,=90 e,=0.7  num. €,=0.93 w;=121 g;=90 e,=0.3  nhum. €,=0.93 ;=121 g,=90 ,=0.7 NuUM.
0.030 Primary transit LWE,;‘S;‘& - T Secondary occultation 2" =~ 0.030 Primary - secondary minima 2" = =
49.660 q
0.020 |- 1 | { | I 0.020 - 1
[ | )
g | ' ! 249650 " il og X | i '
& 1 i i s I { H ) 1 | 1 !
T 0.010 | ! h {4 T | / H T 0.010 | A i 4
£ It 1 1 £ It / | / = f i ) 1
Q B [ i Q49,640 = | mm T =TT | T O | \ | |
. 1" 1 > 1 . I~ =~ = \ A~
0000k 1 omn || pmon N = 4] © [ i [ 1] © o000 [ [V ~ |V N ~_ 4
)i 1" s U/ N1 y [ 2! . .
N[l vl | Jlf 49.630 |- 4 s Y
i | i/ | [ 1 v \ \
-0.010 [ I v s \ Y \ ¢ -0.010 | | 1
1
49.620 q
-0.020 | -0.020 b
. . . . 49.610 . . . . . . . .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Years Years Years

Fig. 9. Transit timing variatons caused by a hypothetieal= 10 000 day-periodn; = 0.005Mg (= 5M;) mass third companion for HD 80606b at
the maximum eccentricity phase of the induced Kozai-cyclep: e, = 0; middle:e, = 0.3; bottom:e, = 0.7 (g, = O° in all cases)]eft panels:
primary transitsmiddle panelssecondary occultationsight panels:primary minus secondary fiierence. See text for further details. (For better
comparison the curves are corrected for thedent average transit periods, and zero point shifts.)

tremely eccentric orbit. These large period systems ad fde cultation) events, with great accuracy. A further quesi®the
searching for further perturbing components, as the aoggit possible misinterpretation of th@ — C diagram. For example,
of the O — C is multiplied by Pi/Pg and consequently, as theas was shown, in the HD 80606b system we can expect a sec-
magnitude of the perturbations determinedRyP,, the same ular period change due to tidal dissipation, which has tineesa
amplitude perturbations cause a better detectaffidete if the order of magnitude than might have been measured due to the
characteristic size of the system (iR) is larger. periodic perturbations of some hypothetical third body as o
sample. These two types of perturbations could be sepairated
We considered also the question of detection, as well as the different ways. One way is simply a question of time. In the
correctidentification of such perturbations. We emphasigen, case of a sfiiciently long observing window, a periodic pertu-
that theO — C curve is a very fective tool for detection of bation would separate from a secular one, which would preduc
any period variations, due to its cumulative nature. Ndadess, a parabola-likeD — C continuously. But, there is also a faster
some care is necessary. First, it has to be kept in mind, ltleat possibility. In the case that not only primary transits, blgo
detectability of a period variation depends on the cuneatfr secondary occultations are observed with similar frequamnd
the O — C curve. (If the plottedD — C is simply a straight line, accuracy, then, on subtracting the two (primary and seaghda
with any slope, it means that the period is constant, which @-C curves from each-other, the secular change, i.e fibetof
known with an error equal to that slope.) This implies tha thdissipation would disappear, since it is similar for prisgnaan-
interval which is necessary to detect the period variatiom-c sits and secondary occultations. This fact also makesatdsir
ing from a periodic phenomenon depends more strong on whitfe collection of as many as possible occultation obsermati
phase is observed than on the amplitude of the total vaniatidoo.
(We illustrated this possibility for both system sampleds il-
lustrated also, that in the case of a very eccentric thirdpaom
ion the fastest rate period variation lasts a very shortrvate acknowledgementsThis research has made use of NASA's Astrophysics Data
which consists of only a few transit events. This emphadizes System Bibliographic Services. We thank Drs. John Lee GeHleand Imre
importance of observing all possible transits (and, of seurc- Barna Biro for the linguistic corrections.
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Appendix A: Relation between the observable, and
the dynamical orbital elements.

The start of the paper remarked that some of the relations be-
tween the elements given in this section are valid strictlthie
presented form only for the situation shown in Fig. 1. Acdogd
to the actual orientations of the orbital planes, the sghétiian-
gle (with sideum;, Umz, Q1 — Q) could be oriented in dierent
ways, and so, some precise discussion are necessary, \shich i
omitted in the present appendix.

The relation between the pericentrum arguments are as fol-
lows:

(A1)
(A.2)

Consequently, the true longitudes measured from thewgland
from the intersection of the two orbital planes) @re:

w1 = 01+ Umi,

02 + Um2 + 180°.

w2

U = Vi +ws, (A3)
Uy = Vo + wy, (A4)
Wy = Vi + 01, (A.5)
= Ug — Uma, (A.6)
Wy = Vo +02+ 180, (A?)
= U2 — Uma2. (A8)

There are two relations between the mutual inclinatig) &nd
the two dynamical inclinationsj{,). One of these is trivial,



a, 96.5962
96.5959
96.5956

0.9301
0.9299
0.9297

g, 912

90.6
90.0

@, 121.01
120.99
120.97

hy 37.0
36.3
35.6

Q, 45.0
446
44.2

36.724
36.718
36.712

iy 89.8
89.6
89.4

39.242
39.234
39.226

T. Borkovits et al.: Transit timing variations in eccenthierarchical triple exoplanetary systems 21

40 60
time [in years]

O rrgrrTTT
N
o

a, 96 ' ?
93 ]

90 ‘ ‘

1.0 ‘ ‘ S

05 A FAYAFE s/ &
e o X AANANVY 3 i

RS L s

360

360 T T T T
E A N\ Ugvinunty
91360 JSST R W
(1380?;7\ o e W
75 ‘

55 ] ¥
35 ‘ ‘ s,

""‘(: |||utr

110 ‘ iy

LA
g
Aaladaap ey’

20

time [in 10° years]

Fig. 11. Dynamical evolution of the orbital elements of HD 80606blie presence of a hypothetidd} = 10 000 day-perioan; = 0.005M¢g (»
5Mj) mass third companion. The initial orbital elements cqrogsl to the last row of Fig. ®Red curvestidal effects and dissipation are considered,;
blue curvesthree point-mass model. (Relativistic contributions @métted.) Note, the semi-major axia§ is given in Rs.

while the second comes from the relation of the inclinatittns (The rotational angular momenta were neglected.) At thiatpo

the orbital angular momenta. The trivial case is

im=j1+ jo,

while the non-trivial case comes from the fact, that

. CcC,
Cosjy = C_Cl
.. |C><Cl|
sSinj; = cc,
i.e.
CoSj; = % %I,
sinj < sini
1= = m»
C

whereC, » represents the orbital angular momentum vector Olfni
the two orbitsC the net orbital angular momentum vector, and>"'m

m
C, = My
M2
m
C, = 123
M23

Gmypoay (1 - eﬁ)

Gmyzsay (1 - %),

C = Cycosj; + C,c0Sj>.

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
(A.16)

we remark that for hierarchical systems it is a very reaslertab
assume

Cj cosj; = constant (A.17)

(since the first order, doubly averaged Hamiltonian of sysh s
tems does not contain its conjugated variahig, which prop-
erty, together with the constancy of the semi-major axis\eats
the eccentricity ;) with the dynamical inclinationjg).

Further relations can be written by the use of the several
identities of spherical triangles. For example:

COSim = COSiy COSi, + Sinig siniz cosQ, — Q1), (A.18)
SiNiy, Sinumz = sinip sin(@Q2 — Qs), (A.19)
SiNiy, Sinumy = Siniz sin@Q, — Q3), (A.20)
SiNip COSUmz = — COSi Siniz + Sinip Cosiz cos@, — Q1) A.21)
COSUp1 = COSiz Siniy — Sini; cosi; cosQy — Q4), (A.22)
and similar ones can be written for the two smaller spherical
triangles. Finally, in hierarchical systems usudlly >> C4, so
we can take the following as a first approximation:
j1 = im, (A.23)
j2 =0, (A.24)
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io = ip, (A.25)
hl = Um>2. (AZG)

We note that in Fig. 1, for practical reasons, we chose the
intersection of the invariable plane and the sky for theteaby
starting point of the observable nodé€¥ ( Q). Traditionally, in
astrometry, these quantities are measured from north tcoeas
the sky, nevertheless such an approximation is valid sine@+
s only appear in the equations in the form of theiffefiences,
and derivatives. (Nodes cannot be determined from photymet
and spectroscopy, as both the light curves and the radiatvel
ity curves are invariant for any orientation of the orbitidmes
projected onto the sky.)
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Appendix B: The derivatives used for calculating the long-period dynamical O — C up to sixth order in e;

The derivatives of the indirect terms are as follows:

de; cosw,

W = AL (1+ e Ccosvy) {(1 — )2 {—gel sinwy [(I2 - %) + (1 - I2) cos(2, + 2g2)]
2

—er sin(s - 201) [(1 - 17) + (1+ 1) cos(@ + 2g7) |

—€1 CoS(w1 — 201)2I sin(2v2 + 29p)}

+wcolt/|21 {[E (1 + §ef) COSUm1 — € cos(2y; + uml)] ersinws | [1 - cos(2; + 2g,)]
(1 _ ei) 5 2

2 (1 + gef) SiNUm1 + € sin(2g; + uml)] e; sinws Sin(2r, + Zgz)}} ,

ME

de? fa(ey) sin 2wy

v = AL (1+ e Ccosvy) {(1 — )2 {geffg cos 21 [(I2 - }) + (1 - I2) cos(2, + Zgz)]

3

+

221, cos(2v1 — 291) — ée‘l‘ f5 cOS(Qv1 + Zgl)] [(1 - IZ) + (1 + I2) cos(2s + Zgz)]
- [2e§ f4 sin(2wy — 201) + ée‘l‘ fs sin(2w, + 291)] 21 sin(2v, + 292)}

sininy, coti 4 3
+(1m—e2)1/21 f {[_3 (1 + Eeﬁ) COSUm1 + 2€% COS(2y + uml)] €} cos w11 [1 - cos(2 + 29y)]
-8

- [g (1 + gef) SinUmy + 265 sin(2g, + Uml)} € C0S 2 SiN(2V2 + 292)}} ’

de? fg(er) cos 3u;

dV2

= AL (1+ e cosw) {(1 — )2 {—gei fg sin 3w, »(IZ - %) + (1 - IZ) cos(2 + Zgz)]

- [Bef f7sin(3w1 — 201) — gefl’ sin(3wy + 291)] [(1 - I2) + (1 + I2) cos(2 + Zgz)]

- [Bef f; cos(3vy — 201) + gefl’ cos(3v1 + 291)| 21 sin(2v, + Zgz)}

+M f {F (1 + gef) COSUm1 — 3€2 COS(D1 + Um1) | € sin 3w1l [1 - cos(2r, + 2gy)]

- U8
6

g (1 + gef) SinUmy + 3€2 sin(2g; + uml)] € sin 3wy sin(v; + 292)}} ,

= AL (1+ e Ccosvy) {(1 — &@)1? {%Ze‘l‘fg COS 4u1 [(I2 - %) + (1 - I2) cos(2n + Zgg)]

def fg(ex) sin 4wy
dV2

+

4¢l fs cos(4vy — 201) — gef cos(4vy + 291)] [(1 - |2) ¥ (1 + |2) cos(ds + 2g2)]
- [4e‘1‘f5 sin(4ws — 2g1) + gef sin(4w; + Zgl)] 21 sin(2v, + Zgg)}

. Sinim COtly fg {[—§ (1 + gef) COSUm1 + 4€2 COS(B)1 + Um1) | €] COS 4oyl [1 — cOS(2 + 20y)]

(1_ e21)1/2 5

- P (1 + gef) SinUmy + 4€ sin(2g; + uml)] €] cos 4v; Sin(2r; + Zgz)}} ,

5

de; cos Gu;

& = A (1+ e cosvy) {(1 —e)? {—3e§ sin 5w, [( 2_ %) + (1 - I2) cos(2; + 292)]

—56; sin(5wy — 2g1) [(1 - 12) + (1+ 12) cos(a, + 20,) |

(B.1)

(B.2)

(B.3)

(B.4)
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-5 cos(Gw1 — 291)21 sin(v; + Zgz)}

+w¢°lt/'21 { 2(1 + gef) COSUm1 — 5€2 cos(dy + uml)] € sin w1l [1 - cos(2; + 2g2)]
(1-€)
2(1 + gef) SiNUmy + 5€2 sin(2g; + uml)] €; sin 5wy sin(v; + 292)}} ,
de’ sin 6w
lTl = AL (1 + e, cosw) {(1 - e)l? {1—58e? cos Guy [(IZ - %) + (1 - |2) cos(2; + 292)]
2

+6€5 cos(Gu1 — 291) [(1 - I2) + (1 + I2) cos(2 + Zgz)]
—6€5 sin(6w; — 2g1)2! sin(2s; + Zgz)}
+sinimcoti1 ¢ {[ 12
- 1 18
(1 - ez)l/2 5
12
5

(1 + e2) COSUm; + 6€2 cos(Dy; + uml)] €] cos sl [1 - cos(22 + 20p)]

(1 + e2) SiNUp; + 6€2 sin(2g; + uml) €5 cos Gy sin(2v, + Zgz)}} )

The direct terms are coming frora¥2€™ cosfv) andQ cosi,) are as follows:

)dir = AL(1+excosvy) (1 - &)Y? {—é (1 + %eg) :(IZ - %) +(1-1%)cos(2r + 292)]

—€f cos 2y [(1 - I2) + (1 + I2) cos(2 + Zgz)]
—€f sin 29;21 sin(2v; + Zgz)} +

dV2

(del cosv

de? f .Y

(%)d" = A (1+ecosvy) (1 - €)? {3e2 (1 + %ez + 1—18e‘1‘) [(I2 = %) + (1 = I2) cos(2r;, + Zgz)]
——eﬁ( igez ge‘l‘) cos 2y |(1-17) + (1 + 17) cos(2r + 2g7)|
——e{( igez ge‘{) sin 20121 sin(2v, + Zgz)} +

de3 f KT

(%\Lcos)dir = A (1+ecosvy) (1 - €)? {—ge‘l‘ (1 + %eﬁ) [(I2 = %) + (1 = I2) cos(2r;, + Zgz)]
+%e§ (1 +é - i—ge‘l‘) cos 2 |(1-17) + (1 + 1%) cos( + 2gy)|
+%e§ (1 +€ - i—ge‘l‘) sin 20121 sin(2v + Zgg)} +

(W] = AL (1+ e cosvy) (1 - €52 {%eﬁ (I2 - %) + (1 - I2) cos(2, + Zgz)]

2 dir

—%e‘l‘ (1 + Zeﬁ) cos Ay [(1 - I2) + (1 + I2) cos(2 + Zgz)]
—%e‘l‘ (1 + Zeﬁ) sin 2121 sin(2v, + Zgz)} +

de> cos &

(1;7\23)“ = AL (1+excosvy) (1 - €)Y/2 { 1e1 cos 2n [( - |2) + (1 + I2) cos(2n + Zgz)]

+%eﬁ sin 20:21 sin(2v + Zgg)} +

il

(deﬁ cos 6/) 0
dV2 dir

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
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where+... refer to those terms which come from the normal force comppraad will be cancelled by equal but opposite in sign
directQ-terms. Furthermore, from

3/2
[ ~1/2 da®/? (1 B ef) ]
u

dir

dv, (1 + e;cosv)?

- %AL(1+ezCOSVz)(l—ef)l/z{Gez(1+ 1—9692 176 )[(|2_%)+(1—|2)cos(2/2+292)]

e2 ( 14e2 15172e1) cos 2y [(1-12) + (1 + 12) cos(@r + 2g)|
+§—(1)e§( iei + 15T72e‘1‘) sin 20,21 sin(2%, + 292)}, (B.13)
and fromQ-term:
a . (1 - ef)g/z sinip cotiy (| 2
W co |1m = A (1+ecosv) ——— - e2)1/2 {[ (1 + e2) COSUm, + € COS{im1 + 291)] [1 - cos(2 + 20y)]
dir
[—g (1 + gef) SiNUm, + € Sin(Umz + 291)] sin(2v, + 292)} - ... (B.14)

By the use of equations above, and integrating/4ofinally we get:

(0-C), = ;AL {(1 &) {[ fu(er) + 6K1(e1, wy) [(I - é)M +5(1-17) 8@+ 292)]
+ g—éei f(€1) cos 2y + 2Ka(€1, w1, G1) + eKa(er, wi, gl)] [ 1M+ 5 (1 +12) S(2vz + 292)]
—% [g—éei fo(€1) sin 201 + 2Ks(ey, w1, 91) + eKs(er, w1, 1) | 21C(2v2 + 292)}
+?1”'_m7;‘;1t/'21 {[—% (1 + gei) COSUm1 + € €OS(1 + Um1) | [1 + 2K1(er, wy)] | [M - 5S(2v + 292)]
; g (1 + e2) SiNUm1 + € SiN(201 + Um1) | [1 + 2Ky (€1, w1)] C(2v2 + 292)}} (B.15)
where

7
&ef cos Gy, (B.16)

5
Ka(er, w1,01) = Fersin(wr — 201) + ~ e2f4 cos(2v1 — 29p) + e3f7 sin(3w; — 291) - 91 fs cos(4v1 — 201)

. 3 1 . 5 3 .
Ki(e, w1) = Fe sinw; + —e2f3 coS vy + Eeffg, sin 3wy — Ee‘l‘fg coS 4uy ¥ Ee‘i’ sin 5wy +

i%el sin(5w1 — 2g;) + ! e1 cos(Guy — Zgl), (B.17)

5
Ka(er, w1,01) = F€1Cosr — 201) — —e2f4 Sin(2w1 - 201) + el f7 cos(3v1 — 201) + 61 fs sin(4w1 — 201)

3 7
1 6el cos(av1 — 2g1) - el sin(6w1 — 201), (B.18)
Ka(er, w1.01) = —€fscos(2w; + 201) F €] sin(3wy + 20;) + 29411 coS(4v1 + 201), (B.19)
Ks(er, w1, 01) = —€fssin(2wy + 2g;) + € cos(3v1 + 201) + ge‘l1 sin(4wy + 2g1), (B.20)
and
. 25, 15, 95,
fi =1+ §e§ + g+ e (B.21)
L= 1+ o1&+ 2o (B:22)
1, 1,
f3 = 1+ éei + 1—661, (823)
1, 1,
fo = 1+ Zeﬁ +5& (B.24)
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