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We model quantum transport, described by continuous-time quantum walks (CTQW), on deterministic Sier-
pinski fractals, differentiating between Sierpinski gaskets and Sierpinski carpets, along with their dual structures.
The transport efficiencies are defined in terms of the exact and the average return probabilities, as well as by the
mean survival probability when absorbing traps are present. In the case of gaskets, localization can be identified
already for small networks (generations). For carpets, our numerical results indicate a trend towards localiza-
tion, but only for relatively large structures. The comparison of gaskets and carpets further implies that, distinct
from the corresponding classical continuous-time random walk, the spectral dimension does not fully determine

the evolution of the CTQW.

PACS numbers: 05.60.Gg, 05.60.Cd, 05.45.Df

I. INTRODUCTION

Networks are sets of connected nodes [1}[2]], and their static
and the dynamic properties are of much interest. Applications
range from, say, polymer science [3]], over traffic and power
grid studies [4], up to social networks [5]. A special class
of networks are deterministic fractals which as such can be
built iteratively. We remark that for them sometimes analytic
results can be obtained, see, e.g., Refs. [6H8]].

Now, the classical dynamics of random walks (RW) over
networks has been extensively investigated in the last decades
[9,[10]. This effort has led to a very detailed understanding of
the influence of the network’s topology on RW. When the effi-
ciency of transport is concerned, the question whether the RW
is recurrent or transient boils down to determining the proba-
bility of the RW to return to its origin, which is also related to
the Pélya number [T1]. Moreover, the global properties of the
RW can also be captured by introducing the local probabil-
ity decay channels and calculating the averaged decay time of
the excitation, known as the averaged mean first passage time
(MFPT) [9} [12]]. For simple undirected networks the transfer
matrix of the continuous-time random walk (CTRW) is given
by the connectivity matrix of the network [13]]. Many net-
works show scaling behavior for the lower part of the spec-
trum of the connectivity matrix, with an exponent ds which
is called spectral dimension [14]. As it turns out, d, deter-
mines many of the dynamical properties of the network, e.g.,
the return to the origin or the MFPT.

For the quantum mechanical aspects of transport on net-
works, we choose as a model the continuous-time quantum
walk (CTQW), which is related to the classical CTRW [13]].
In this way, the Hamiltonian is determined by the connectiv-
ity of the network. Therefore, by analyzing the connectivity
matrix, we obtain results for both, CTRW and CTQW. While
in recent years CTQW over several types of networks have
been analyzed [13]], there is no unambiguous classification
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according to, say, the spectral dimension. In many aspects,
the quantum dynamics is much richer (i.e., more complex)
than the classical CTRW counterpart, since it also involves
the wave properties of the moving object. In several cases
of tree-like networks, such as stars [13) [16] or dendrimers
, it has been shown that the (average) quantum mechani-
cal transport efficiency, defined by the return to the origin, is
rather low compared to structures which are translationally in-
variant. Quantum walks are interesting models also from the
point of view of quantum information processing [18]]. Search
via quantum walks on fractal graphs has been considered in
Refs. [6} 191 20].

A similar mathematical model arises for condensed matter
systems, in which one considers a particle moving on an un-
derlying fractal lattice (a Sierpinski gasket); here the solution
of Schrodinger’s equation has been studied within the tight-
binding approximation [21, 22]. For several fractals consid-
ered, the dynamics has been shown to be subject to localiza-
tion effects, similar to the classical waves in fractal waveg-
uides [23]]. From an experimental point of view, recent years
have seen a growing number of possible implementations of
CTQW, for example, using interference effects of light. Those
experiments range from photonic waveguides to fiber-
loops [23].

In this paper we study quantum transport over fractal net-
works, namely over Sierpinski gaskets (SG) and their dual
structures (DSC) as well as over Sierpinski carpets (SC) and
their dual structures (DSC). In the case of the SG and of their
duals we find clear signatures of localization around the ini-
tial starting node, indicating recurrent behavior. We seek to
answer the question whether the spectral dimension d, of the
graph determines the transport properties for CTQW. Given
the great experimental control over, say, coupling rates and de-
coherence, we believe that our results for fractal structures can
also be experimentally realized, say, through photonic waveg-
uides.

The paper is organized as follows, Sec.[[lgives an overview
over the quantities we use to determine the performance of
CTQW over networks. In Sec.[[l| we outline the deterministic
construction rules of the SG and SC and their dual transfor-
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mations, along with their spectral properties. These systems
are then analyzed in detail in Secs. [VHVII] We close with a
summary of results in Sec. |VIII

II. METHODS

We model the quantum dynamics of an excitation over a
given fractal network by CTQW and compare this to its classi-
cal counterpart, the CTRW, over the same network. A network
is determined by a set of /N nodes and a set of bonds. With
each of the nodes we associate a state |k) corresponding to an
excitation localized at node k. For both, CTQW and CTRW,
the dynamics is determined by the network’s connectivity, i.e.,
by its connectivity matrix A. The off-diagonal elements of A
are Ar; = —1 if the nodes k and j are connected by a single
bond and are Akj = 0 otherwise; the diagonal elements are
Agr = fx, where f is the functionality of node k, i.e., the
number of nodes connected to k through a single bond. The
matrix A is real and symmetric and has only real and non-
negative eigenvalues. For networks without disjoint parts all
eigenvalues are positive except one, E,,;, = 0.

Now, we take for CTRW the transfer matrix T = —A
and for CTQW the Hamiltonian H = A (i.e. in the fol-
lowing we set A = 1 and normalize the transfer capac-
ity of each bond to unity), see also [13| 26], such that the
transition probabilities read py ;(t) = (k|exp(Tt)|j) and
7k, (t) = (k| exp(—iHt)|j)|?, respectively. By diagonaliz-
ing A we obtain the eigenvalues E,, and the eigenstates |®,,)

(withn =1,...,N) of A, resulting in
N
P (t) = Y exp(—Ent) (k[@,,) (D) (1)
n=1
for CTRW and

N 2
g (1) = | Y exp(—iEut) (k[ @n)(®nlf)| (@)

n=1

for CTQW. In principle all quantities of interest can be calcu-
lated on the basis of the transition probabilities. In order to
quantify the efficiency of the transport, we will focus on three
quantities: the exact return probability and the related Pélya
number, the average return probability, and the mean survival
probability.

A. Pélya number

The so-called Polya number allows to assess the local trans-
port properties. In classical systems, the definition of the re-
currence is straightforward: it characterizes the event that the
walker returns to its initial position. For quantum walks one
can imagine different definitions depending on the envisaged
measurement procedure [27H33]].

Ref. [34] suggests a possible quantum definition for the
Pélya number, which is directly related to the return proba-

bility to the initial node (|1(0)) = |1)):

ma(t) = [(1] exp(—iHt) [1)]* . 3)
The formal definition of the P6lya number reads

o0

P: 1_H[1_77171(ti)]a (4)

i=1

where the set {t;,7 = 1, ... 00} is an infinite time series which
can be chosen regularly or be determined by some random
process. It can be shown that its value depends on the conver-
gence speed of 7y 1 (t) to zero: if 7y 1 () converges faster than
t—! then the CTQW is transient, otherwise it is recurrent [34]].
For a finite network of N sites the probability that we find
the walker at the origin can be written as a finite sum of cosine
functions,
2

M, 1 1|6_1E”t|¢ <(I)n|1>

= HMZ

Z (1|®,

nm:

V(1| @) |2 cos [(Ep — En)t] . (5)

A finite sum of cosine functions cannot be a decaying func-
tion of time and thus for any finite system the P6lya number
equals one, meaning that the walk is recurrent. On the other
hand, in an infinite network (N — 00), 7 1(¢) might tend
to zero in the t — oo limit. If the return probability has the
asymptotic form 7y 1 (t) ~ f(t) - t~% where f(t) is a periodic
or an almost periodic analytical function, then, with regular
and Poissonian sampling, the walk is recurrent if § < 1, and
it is transient if the envelope decays faster (6 > 1) [34]. For
CTRW on the fractals considered in the following, the decay
of the probability p; 1 (¢) is slower than ¢~', which can be
seen from the fact that on a fractal pq 1 (¢) scales as t=%+/2 and
the fractals considered in this paper have spectral dimension
ds < 2 [351136].

B. Average return probability

As a global efficiency measure, the average return proba-
bility is defined as the probability to remain or return to the
initial node 7, averaged over all nodes:

)=~ me (©)

Z 7j,5( )

While p(t) only depends on the elgenvalues, 7(t) also de-
pends on the eigenstates. However, by using the Cauchy-
Schwarz inequality a lower bound, independent of the eigen-
states, has been introduced in [15]):

and )=

N N

7(t) = % > o) > % D ait)

j=1 j=1

e[l o

= ’ a(t)



In Eq. (8) v ;(t) = (j|exp(—iHt)|j) is the transition am-
plitude between two nodes. In the following we will compare
p(t) with [a(t) |2 and express both quantities in terms of the
(discrete) density of states (DOS)

1 N
A(E) =+ D 0(E—Ey). )
n=1

Here §(E — E,,) is the Dirac delta-function. Integrating p(E)
in a very small neighborhood of an eigenvalue, say, E,,, gives

E..+e
lim p(E)dE = D(E)/N = p(Ey).  (10)
e—07+ Epm—c
where D(E,,) is the degeneracy of F,, and we introduced
p(E). This yields

T)(f') = Z p(Em) exp(_E’mt)
!
:/_ 5(E) exp(—Et) dE (11)

and
2
‘ 3 p(En) exp(—iEmt)’
(B}

—‘/ E) exp(

where the sums run over the set { E,,, } of distinct eigenvalues.

Now, if both p(t) and |al(t) |2 decay very quickly in time,
the average probability to find the excitation at any node but
the initial node increases quickly. Then we call the transport
over the network efficient, because (on average) the excitation
will efficiently explore parts of the network away from the
initial node. In contrast, if these quantities decay very slowly,
we regard the transport as being inefficient.

For CTRW and not too short times, p(t) is dominated by
the small eigenvalues. For fractals, the DOS typically scales
with the so-called spectral dimension d [14], i.e., p(E) ~
E?/2=1_ Then, one finds in an intermediate time range, be-
fore the equilibrium value is reached, that p(t) ~ t~%/2,
However, for CTQW such a simple analysis does not hold due
to the coherent evolution. Instead, highly degenerate eigen-

values dominate ]a(t) 2, see Ref. [21, 37]]. In the case that
one has a single highly degenerate eigenvalue F,,, the lower
bound of the average return probability can be approximated

by [16]
E,,—¢
E,) 1 o(E
);g[ [

p(E) cos [(E — Ep)t]dE

2
—iEtdE| ., (12)

a(t)]* ~ 5 (Em) + 5

oo

cos [(E — Ep,)t]dE + /

E,,+e

13)

If there is at least one eigenvalue for which p(E,,) is O(1),
then the average transition amplitude does not tend to zero.

Then the long time average , of the transition probabil-
ity also allows to quantify the global performance of CTQW
through [[L6]]

N Y e _
W= fim [ a(tf at = 37 (WEWF - a9

C. Mean survival probability

In order to corroborate our findings for the average return
probabilities, we define another (global) transport efficiency
measure which is based on the mean survival probability, see
also [38] for CTQWSs and [39] for discrete time quantum
walks. Here, the original network is augmented by local decay
channels which act as traps for the walker. These traps are lo-
calized at a set M of nodes m of the original network. For this
the total number of nodes of the system is not changed, but the
transfer matrix T as well as the Hamiltonian H get augmented
by additional terms, such that the new (effective) matrices read
Teg =T — T and Heg = H — T, respectively, where the
trapping matrix is diagonal, namely I' = I') . |m)(m|
with a trapping rate I' which we set equal for all traps. We
note that such an effective Hamiltonian can be obtained within
the framework of quantum master equations of Lindblad type,
where the network is only coupled to the environment at the
trap nodes, see Ref. [40]. For CTRW, such traps will still lead
to a real symmetric transfer matrix, but now with only posi-
tive eigenvalues [9]. For CTQW, the new Hamiltonian Hg
becomes non-Hermitian. Such Hamiltonians can have com-
plex eigenvalues F, — 17y, with a real part €, and an
imaginary part v,,. As has been shown in [38]], by averaging
the transition probabilities over all possible initial and final
nodes one obtains the mean survival probability for CTQW as
a function solely of the ~,,

1 Y 1
=5 ; T Nzexp(a%t). (15)

J,k=1 n=1

= €p

Note the slightly different definition of II(¢) compared to the
one in Ref. [38]]. Here we do not exclude the trap nodes from
the sum, thus Eq. @]) becomes exact. For CTRW a similar
approach with the new transfer matrix Teg yields [41]

T N N 5
D prslt Z (=) D2 (1w)

jk=1 n=1 j=1

(16)

where \,, and |¥,,) are the eigenvalues and eigenstates of
T.g, respectively. Thus, P(t) will eventually decrease to zero
and the asymptotical behavior will be dominated by the small-
est eigenvalue. Now, if TI(¢) and P(t) decrease quickly we
also call the transport efficient (on average) because then an
initial excitation will reach the trap rather quickly.

For CTQW one can relate the -,, to the eigenstates of the
original Hamiltonian H within a (non-degenerate) perturba-

tive treatment, v, = I'>, ‘(m\fbn>|2 [13]. Thus, the

P(t)




imaginary parts y,, are determined by the overlap of the eigen-
states |®,,) of H with the locations of the traps. This implies
that for localized eigenstates this overlap can be zero, such
that for some n the imaginary parts vanish, v, = 0. This
yields a mean survival probability which does not decay to
zero but which reaches the asymptotic value

Mo = lim TI(¢) = No

t—o0 N ’

a7

where Ny is the number of eigenstates for which the ,, van-
ish. For the SG it has been shown that such eigenstates exist,
which in fact gives rise to localization effects [21]].

We have now defined the asymptotic quantity II., which
allows us to assess the transport properties of CTQW by cal-
culating the probability that the walker will stay forever in the
network.

III. THE SYSTEMS UNDER STUDY

We now discuss the systems under study and their topolog-
ical properties. We consider two groups of Sierpinski fractals,
namely, gaskets and carpets, along with their dual transfor-
mations. These fractals are built in an iterative manner: In
order to construct the SG, one starts from a triangle of three
nodes. In the next step two additional triangles are attached
to the corner nodes by merging them, so that they form a big-
ger self-similar triangle. The procedure is then iterated, see
Fig. [T{a) for a gasket at generation g = 3. A similar idea
is used for creating SC, where instead of triangles the central
building blocks are squares, see also Fig.[[c). At generation
g the total number of nodes of the SG is Nsg = (39 + 3)/2
and of the SC is Ng¢ = & -89+ -39+ 2, so that at the same
(large) g the carpet has much more nodes than the gasket.

The dual networks of the Sierpinski fractals are easily ob-
tained by the following procedure: In the original structure
one replaces each of the smallest building blocks (triangles for
gaskets and squares for carpets) by a node and connects then
the nodes which belong to building blocks sharing a node (for
carpets we only allow connections in the horizontal and in the
vertical direction but not diagonally), see also Figs. [[(b) and
[[(d), which illustrate the procedure by also showing the un-
derlying lattices of the SG and SC, respectively. The number
of nodes of the DSG of generation g is N = 39 and of the
DSC of generation g is N = 89.

Based on real space renormalization arguments, one can
show that a structure and its dual have the same fractal dy
and spectral d; dimensions. For the SG and the DSG, the cor-
responding values are dy = In(3)/In(2) ~ 1.5849... and
ds = 2In(3)/In(5) ~ 1.3652..., see Ref. [6]. For the SC
and the DSC, one has dy = In(8)/In(3) ~ 1.8928... and
ds =~ 1.805 [36].

For our calculations of the average return probabilities we
assume that every single node of the network can be the ori-
gin of the walk with the same probability and that the average
runs over all sites 5 = 1,..., N. For the individual return
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FIG. 1: (Color online) The graphs under study. The graphs
are at third generation (g = 3), except the DSC for which
g = 2. We denoted the g = 1 graphs with green, and the

holes with a gray (striped) background. Traps are put either
at the positions indicated by the small diamonds or at the

positions indicated by the small squares.

probability 7, ;(t) we use the outer corner node 1 as initial
node. As for the mean survival probabilities, we will distin-
guish between two situations: (1) when there are three (four)
trap nodes at the outer corners of the gasket (carpet), see the
red diamonds in Fig|I|, and (2) when the three (four) trap nodes
are placed at the corners of the largest empty inner triangle
(square) of the gasket (carpet), see the red squares in Fig. [T]
Since the quickest decay of TI(t) for the linear networks stud-
ied in Ref. [38] is obtained when the trapping strength I' is
of the same order of magnitude as the coupling between the
nodes, we choose I' = 1 in all calculations involving traps.

Let us first consider systems without traps. Since the eigen-
value distributions are crucial for determining the global effi-
ciency measures, we start by considering the differences be-
tween our four fractal structures. In Fig. 2] we plot for sev-
eral structures the normalized cumulative eigenvalue counting
function

N
=¥ Z (z— (18)
where 0(x) is the Heaviside-function. Now, E,,;, = 0 is the
smallest and F,,,, the largest eigenvalue, hence, the range of
xis [0, 1].

Already here we can exemplify the role of highly degener-
ate eigenvalues. For large IV the eigenvalue counting function

maoc



for an N x N square lattice is a quite smooth function, which
for N — oo we plot as a reference in Fig.

Also the SC for g = 6 leads to a quite smooth form for
N (z). However, N (z) for the DSC of g = 5 displays marked
steps, but its overall shape is close to the one for the SC. For
the SG for g = 9 and its dual, the DSG for ¢ = 9, N (z)
has sharp discontinuities, which reflect the presence of many
highly degenerate eigenvalues. Already at this point we see
a clear distinction between gaskets and carpets: at similar g
the carpets do not have eigenvalues of such high degeneracy
as the gaskets.

2D lattice —
SC g=6 —
0.8 | psc g=>5 — | DSC
SG g=9 —
DSG ¢g=9 —
0.6
\Z 2D
04 \
02 DSG
0 L
0 0.2 0.4 0.6 0.8 1

X

FIG. 2: (Color online) The eigenvalue counting function
N(z), Eq. , for several systems under study, compared to
the simplest case of an infinite discrete square lattice, see text

for details.

IV. DUAL SIERPINSKI GASKET

We start by considering the DSG, see also Fig. [[[b). As
the SG, the DSG is a deterministic fractal, iteratively built up
generation by generation. CTQW on DSG of different genera-
tions have been studied by us in Ref. [6]. We will recapitulate
the major results, since we will use the DSG as a reference
for our new results presented below. In fact, DSG is special,
in that its eigenvalues, and hence its DOS can be determined
iteratively, in a simple way. This does not hold for the other
fractals considered here.

For DSG the results for the CTRW and CTQW return prob-
abilities pq1(¢) and 71 1(¢), along with the CTQW lower
bound [a(t) ’2 of 7w(t) (see Egs. , , and , respectively)
have been already presented in Ref. [6]. There it has been ver-
ified that for the classical average return probability, the decay
to the equipartition value is determined solely by d [42], hav-
ing namely 5(t) ~ t~%/2_ It follows that the classical walk on
DSG is recurrent and that the Pélya number equals unity. As
we will show below for all the fractal types considered here,
such a quite simple law does not hold for CTQW.

Turning now to the quantum case and evaluating the lower

bound |@(t) |2 of 7(t) of the quantum average return probabil-

ity 7(t), see Eq. (8), it has been found in [6] that its envelope
does not show a strong dependence on the size of the DSG.
Since the two eigenvalues 3 and 5 make up for about 1/3 of all
eigenvalues, they control most of the behavior of 7(¢). Then
p(3) and p(5) are known in closed form,

p(3) = (3971 +3) (19)

239
and

1
P06) =535 (3971 —1). (20)

In particular, also the long time average ;;, can be calculated
exactly, based on Eq. (I4)

1 39 10 3
Y= (39 (142 ) 42292 21
Xib = 334 {3 < +14>+ - 2] ; (2D

which for large g is much larger than the equipartition value
379. The limit g — oo yields

lim X, = 1/14 ~ 0.0714. (22)
g*)OO

For both highly degenerate eigenvalues, TABLE shows p(3)
and p(5), Eq. , for successive generations g from 2 to 8,
calculated according to Egs. (I9) and (20). Also the exact
value of Yy, see Eq. 1)), is shown. Both p(3) and p(5) tend
to the exact limiting value 1/6, see Egs. and , rather
fast, which, together with Eq. @]), means that the transport is
quite inefficient.

Now, we calculate for the DSG Hg,) and Hg) using
Eq. . In order to do this, we numerically determine the
eigenvalues of the non-Hermitian H.g, paying particular at-
tention to their imaginary parts . We do this using the MAT-
LAB/GNU Octave eig() function, and in order to be more
precise, we employed the LAPACK zgeev() function in our
Fortran code with quadruple precision. Despite these efforts,
the procedure may not be exact, however. First, we cannot
exclude the existence of very small, but nonzero imaginary
parts which are smaller than 10~3! and are set to zero. Sec-
ond, numerical errors may induce small imaginary contribu-
tions where there should be none. Thus, the values in our table
for IT, may not be as exact as their form seems to imply.

Counting all the eigenvalues with vanishing imaginary part

we then obtain Nj. From it we readily evaluate Hgl) and Hg),

see Eq. (I7). In the next sections, the same procedure will be
employed for the other fractals studied. The analysis of the
data of TABLE [l shows that Hg? and Hg) increase with in-
creasing g, which means that Ny increases faster than N. Al-
ready for g = 7, corresponding to a network of N = 2187
nodes, the probabilities Hg) and Hg) that the walker survives
within the network are close to 0.855 and to 0.826, respec-

tively. We note that the values of Hg) are somewhat below

the ones for Hg,), implying that here traps on the periphery
act somewhat less efficiently than centrally located traps.



p(3)

1/3 ~0.3333

2/9 ~ 0.2222

5/27 ~ 0.1852
14/81 ~ 0.1728
41/243 ~ 0.1687
122/729 ~ 0.1674
365/2187 ~ 0.1669

0 N O Tk W N

p(5) Xip
1/9~0.1111 0.2346
4/27 ~ 0.1481 0.1221
13/81 ~ 0.1605 0.0870
40/243 =~ 0.1646 0.0763
121/729 ~ 0.1660 0.0730
364/2187 ~ 0.1664 0.0719
1093/6561 = 0.1666 0.0716

TABLE I: The p(FE) for the eigenvalues £ = 3 and E = 5 and the long time average Y, for different generations of the DSG.

n) = N/N ne = N?/N
1/9~0.111 0

9/27 ~0.333 6 /27 ~ 0.222

43 /81 ~ 0.531 36 /81 ~ 0.444

165 /243 ~ 0.679 150 / 243 ~ 0.617
571729 ~ 0.783 540 / 729 ~ 0.741
1869 / 2187 ~ 0.855 1806 / 2187 ~ 0.826

~N N kW

TABLE II: The asymptotic limit [T, of II(¢) for DSG of
generations g = 2,3...,7; case (1): the traps are placed on
the corner nodes, diamonds in Fig. b); case (2): the traps
are placed on the central nodes, squares in Fig.[[|b), see text

for details.

V. SIERPINSKI GASKET

While the DSG allows for partly analytical results, we have
to resort to numerical calculations for the other structures
considered in this paper. We proceed our investigation with
the SG. In analogy to our study on DSG, we start with the
CTRW and CTQW return probabilities as well as with the
lower bound for the CTQW decay. These quantities involve
the eigenvalues and (depending on the functions considered)
sometimes also the eigenstates of the Hermitian operators T
and H, see Eqgs. (I)-(2). Unlike the DSG case, for SG general
recursive expressions for the eigenvalues of T and H are not
known. Therefore, we calculate both the eigenvalues and the
eigenfunctions numerically. For this, we again use the MAT-
LAB/GNU Octave eig() and eigs() functions. For large gen-
erations, we calculate only the spectrum in order to evaluate
|a(t)|? and the D(E,,) degeneracy of the eigenvalue E,, us-
ing the filtered Lanczos algorithm in C++ [43], and the MAT-
LAB/GNU Octave eigs() function.

Figure [3| shows the classical p1,1(t) and the quantum me-
chanical 7 () return probabilities to the initially excited
node j = 1 for a SG with g = 7. The red dashed line in Fig.[3]
gives the CTRW return probability p; 1(¢). While the alge-
braic decay of p; 1 () ~ ¢t~%/2 holds asymptotically only for
an infinite fractal, one can still recognize this scaling behav-
ior in an intermediate time domain in Fig. [3| before p; 1 (t)
saturates to the equipartition value 1/N at long times. Fig-
ure [3[also shows the exact quantum return probability 7 1 (%)

(green solid line). After an initial decay to a local minimum,
the return probability starts to oscillate around its long time
average. In the inset of Fig. [3| we present the quantum me-

. 2
chanical lower bound |a(t)| of the quantum average return

probability 7(t); |a(t) ]2 does not decay eventually, but shows
strong oscillations with a long time average ;;, (dashed black
line in Fig. |3) which is orders of magnitude larger than 1/N.
Now, in contrast to CTRW, there is no apparent relation be-
tween the spectral dimension and the return probability.
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FIG. 3: (Color online) Quantum return probability 7 1 (t) to
the corner node j = 1 (green solid line) along with its
classical analogue (red dashed line) for the SGof g = 7.

Inset: CTQW lower bound |a/(t) ]2 of 7(t) on the SG at
g = 7 (blue solid line) and ;,, the long time value (black
dashed line).

The spectrum of the Hamiltonian already reveals whether
CTQW shows localization. For different generations of the
SG, we calculate, based on Eq. (TI0), the p(E) of the highly
degenerate eigenvalue 6, p(6) and, based on the r.h.s. of
Eq. (T4), the long-time average X;,. The data are presented
in TABLE[II] As in the case of the DSG, also for SG the p(6)
seem to converge with increasing g to the finite limiting value
1/3. As before, such a relatively large nonvanishing value lets
us infer that the transport is not very efficient.

We now turn to CTQW on SG in the presence of traps, pro-
cess which introduces non-Hermitian operators. In TABLE



9 p(6) Xip

2 0 0.2778
3 3/15=0.2 0.1378
4 12/42 ~ 0.2857 0.1179
5 39/123 =~ 0.3171 0.1296
6 120/366 ~ 0.3279 0.1374
7 363/1095 ~ 0.3315 0.1408
8 1092/3282 ~ 0.3327 0.1421
9 3279/9843 ~ 0.3331 0.1426

TABLE III: The p(FE) for the eigenvalue F = 6 and the long
time average X, for different generations of the SG.

) = NV /N nl = N /N

0 0
4/15~0.27 1/15 = 0.067
21/42=0.5 15 /42 =~ 0.357

82/123 ~ 0.67
285 /366 ~ 0.78
934 /1095 ~ 0.85

70 /123 ~ 0.569
261 /366 ~ 0.713
886 /1095 ~ 0.809

~N N bW

TABLE IV: The asymptotic limit T, of TI(¢) for SG of
generations g = 2,3...,7; case (1): the traps are placed on
the corner nodes, diamonds in Fig. a); case (2): the traps
are placed on the central nodes, squares in Fig.[T[a), see text

for details.

we show Hgi) and Hg,) for two situations, namely when
the traps are placed on the corners and when the traps are
placed in the center of the structure, see Fig.[T(a) for details.
TABLE [[V] suggests that the situation is quite similar to the
one for the DSG: the higher g the less it is probable that the
excitation will be absorbed even after a very long time, see the
increase in the II,.-values. However, the amount of excitation
which stays localized in the network is higher in case (1) than

in case (2), since o) >l

VI. DUAL SIERPINSKI CARPET

We continue our analysis by considering the SC and the
DSC. We start with the DSC, the spectrum and harmonic func-
tions of which have been considered recently [44] 45]].

Figure E| presents the lower bound [@(t)|? of the quantum
7(t) for g = 5, see Eq. (). The inset of Figure[d] depicts the
classical return probability p; 1(¢) given by Eq. (I). We note
that at intermediate times p171(t) shows an algebraic decay
with slope d, /2. Furthermore, |a(t)|? displays at short to in-
termediate time a decay of the maxima, while at longer times
it slowly approaches X;;,, given in Fig. [ through a dotted line
around which it oscillates. Given that for DSC %, is much
smaller than the corresponding %, for SG and for DSG, we
infer that localization effects are smaller for DSC than for SG

and for DSG.
100
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| =
1076 F = -4 |
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FIG. 4: (Color online) The average return amplitude |a(¢)|?
on the DSC of g = 5 (blue solid line) and the long time
average (black dotted line). Inset: classical return probability
p1,1(t) for DSC of g = 2, 3, and 4 (dotted blue, dashed
green, solid red line, respectively) as well as the fitted decay

(solid straight black line), 0.4 - t—1-8/2,

9 p(3) Xup
2 2/64~313 x 1072 2.44 x 1072
3 4/512~7.81 x 107° 2.98 x 107°
4 20 /4096 = 4.88 x 1073 3.89 x 107*
5 148 / 32768 ~ 4.52 x 1073 6.60 x 107°
6 1172 /262144 ~ 4.47 x 1073 -

TABLE V: The p(3) for the eigenvalue F = 3 and the long
time average X, for different generations of the DSC.

e = NV/N nl = N /N

15 /64 ~ 0.234
126 /512 ~ 0.246
1030 / 4096 ~ 0.251

14 /64 ~ 0.219
126 /512 ~ 0.246
1030 / 4096 ~ 0.251

A W N

TABLE VI: The asymptotic limit IT,, of T1(¢) for DSC of
generations g = 2,3, and 4; case (1): the traps are placed on
the corner nodes, diamonds in Fig. d); case (2): the traps
are placed on the central nodes, squares in Fig.[[(d), see text
for details.

However, from the above results we cannot deduce whether
the walk is recurrent or not. Therefore, for DSC we again
consider the spectrum of T and H and calculate, based on
Eq. , p(E) for the most highly degenerate eigenvalue, see
TABLE [V] Clearly, our calculations are limited by computa-
tional power and for the DSC we could not obtain results for g
larger than 6; for g = 6 there are already N = 262144 nodes



in the network. It seems as if for very large g the p(3) series
will converge to a value somewhat above 4.4 x 1073, This
finite limit again seems to indicate that there is localization in
the system, so that CTQW may be recurrent in general.

Now, let us consider the CTQW trapping process for the
DSC. TABLE presents 11, for two different trap place-
ments on DSC of g = 2, 3, and 4, as shown in Fig. Ekd). Our
calculations of the mean survival probabilities I1(¢) and their
asymptotic values I, do not allow for a clear-cut statement

for the DSC. The first thing to note is that Hg,) and Hg) are
very similar and that with increasing g their values stay rather
constant. This again is only a weak indication that also the
DSC shows localization.

VII. SIERPINSKI CARPET

Let us now consider the transport properties of CTRW and
of CTQW on SC. We start again by calculating the lower
bound |@(t)|? of the quantum average return probability 7 (t),
Eq. (8), see Fig. 5] for the DSC with g = 6. The inset shows
the behavior of the corresponding CTRW p; 1 (t) for various
g, which for intermediate times scales with d as expected.

100 : . .
100 b . E N — e ]
F102 N\ .
S0t b £
10,2 [ L L L i
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FIG. 5: (Color online) Average return amplitude on the SC at
g = 6 (blue solid line) and the long time average ;;, (black
dotted line). Inset: classical return probability to the corner
node for the SC at g = 2, 3, 4, and 5 (pink dash dotted, blue

dotted, green dashed, red solid line, respectively) and the
decay according to the spectral dimension dg (black straight
solid line).

Again the finite size of the network does not allow for a
definite statement about the recurrent behavior of the CTQW.
Therefore, we again calculate p(E), see Eq. (10), for the
highly degenerate eigenvalue Y = 4; the corresponding val-
ues are displayed in TABLE[VII] There we also show the long
time average Y, calculated using the r.h.s. of Eq. (T4). Simi-
lar to the DSC case, there is no strong evidence that CTQW on
SC show localization. Again, as for DSC, the limiting value
of p(4) lies above 3 x 1073, such that at this point we can-
not make any precise statement. We could not obtain results

9 p(4) Xup

2 3/16~1.88 x 1072 1.25 x 107!
3 6/96 =6.25 x 1072 1.89 x 1072
4 8/688 ~ 1.16 x 1072 2.29 x 1072
5 16 /5280 & 3.03 x 10™3 2.92 x 107*
6 128 /41584 ~ 3.08 x 1073 4.54 x 107°

TABLE VII: The p(E) for the eigenvalue £ = 4 and the long
time average X, for different generations of the SC.

s = NV/N n = N/N

2/16 =0.125

23 /96 ~ 0.240

168 / 688 ~ 0.244
1314 / 5280 ~ 0.249

2/16 = 0.125

22 /96 ~ 0.230
168 / 688 ~ 0.244
1314 /5280 ~ 0.249

T W N

TABLE VIII: The asymptotic limit T, of TI(¢) for SC of
generations g = 2, 3,4, and 5; case (1): the traps are placed
on the corner nodes, diamonds in Fig. c); case (2): the
traps are placed on the central nodes, squares in Fig.[IT|c), see
text for details.

for larger generations because (at present) we do not have the
computational facilities to calculate p(4) for g > 7; the size of
the corresponding matrix for a DSC of g = 7 is already larger
than 300 000 x 300 000.

Considering now absorption processes, when there are traps
placed on three nodes of each network (see, e.g., Fig. |Ikc)),
we again calculate the quantum mechanical limit IT,, of TI(¢);
the corresponding results are given in TABLE [VIII} Here we
find that CTQW on SC are quite different from those on the

gaskets, but that they are similar to CTQW on DSC: both, Hg,)
and H(O%), show a slow increase with increasing g.

VIII. SUMMARY

Our analysis of CTQW over different types of Sierpinski
fractals revealed interesting aspects of quantum mechanical
transport. At first, for SG and for DSG we find strong local-
ization effects, supported by the fact that the long time aver-
ages X, approach a finite limiting value with increasing g, see
TABLES [[|and [[TI} For the carpets we cannot make a definite
statement based on our numerical results for %, for genera-
tions up to g = 6.

Turning now to the DOS and monitoring in each case the
eigenvalues with the highest degeneracy, we find that p(3) and
p(5) for DSG and p(6) for SG tend with growing g each to a
constant, quite significant value, see TABLES [[| and [T} This
supports our view that the walkers are localized even for very
large g, in line with Refs. [13}[15]]. For the carpets, for which
the eigenvalue with the highest degeneracy is 3 for DSC and 4
for SC, we find that the corresponding values p(3) for the DSC
and p(4) for the SC are rather small, which renders a clear cut



decision on localization difficult. We hence conclude that one
needs much larger carpets than the ones we could (at present)
numerically handle, in order to attain a definite conclusion.

These results are confirmed by our findings for the mean

survival probabilities HSEJ (7 = 1, 2) for both arrangements of
traps. Here, the mean survival probability for SG and DSG in-
creases with IV, meaning that for larger networks it becomes
less and less probable that the excitation will leave the net-
work. Since in each case we consider only three trap nodes,
with increasing g the number of nodes without traps increases.
Hence, due to localization, an excitation starting from a node
far away from the traps will not be able to reach them. For SC
and DSC, the mean survival probabilities show only a slight
increase with g (for the network sizes considered here), thus
the probability of being trapped is almost independent of the
size of the network, see TABLES [VI|and [VITI] In this respect,
it would be also interesting to investigate the effect when the
number of traps also increases with g.

In addition and in contrast to the corresponding classical
CTRW, for CTQW there is no apparent scaling behavior with
the spectral dimension d,. This is obvious for the gaskets,
see Ref. [6] for DSG and Fig. E]for SG. However, for the car-
pets one might still argue that for large generations g such a
scaling could exist for the envelope of [a(¢)|? at intermediate
times, see Figs. 4] and E} But from our numerical results for
generations up to g = 7 we cannot draw this conclusion.

Nevertheless, the long time behavior of the CTQW with
and without traps reveals clear-cut differences between gas-
kets and carpets for the generations studied here. While clas-
sically the difference is only manifested in a different scaling
according to d,, quantum-mechanically we find there appears
to be a fundamental difference between gaskets and carpets -
at least for the finite networks studied here. Our main results
are summarized in Fig.[6] where we plot, as a function of the
number of nodes [V, the long time average of the lower bound
of the averaged return probability, ;;, and (for practical pur-
poses) the long time value of the mean trapping probability,

9

ie., 1— Hg,) (7 = 1, 2), for the two situations of trap arrange-
ments.

Already the spectra of the gaskets and of the carpets are
significantly different and contain - in principle - all the essen-
tial information. Now, for the classical CTRW only the low-
energy part of the spectrum is important for the intermediate-
to-long time behavior, whereas for CTQW the whole spec-
trum matters. Clearly, further investigations of these facts are
in order, but go beyond the scope of the present paper. In
general, a systematic study of the importance of the so-called
ramification number (the number of nodes/bonds which has
to be removed in order for the fractal to fall apart), along with
a careful analysis of localized eigenstates (e.g., “dark states”
for the trap) deserves further studies. From the point of view
of bond percolation, we have studied localized eigenstates of
two dimensional lattices with traps and with randomly placed
bonds [46]. There, we found that the localization feature is
also mirrored in the survival probablity. While these aspects
have been already touched upon in Ref. [21] for the SG, no
detailed analysis has been carried out for the SC.
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