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Several studies have shown that the thermic effect of

food, or the Increase in heat production following a meal,

1s affected by exercise. Miller et al (1) claimed that the

thermic effect of a meal during exercise 1s twice that

during rest. And 1n a similar study, Bray et al (2) noted

an enhanced thermic effect of a meal during exercise with a

meal size greater than 1000 kcal. More recently, Segal et

al (3) reported that eating significantly Increased energy

expenditure during exercise 1n lean men. Other studies

(4,5,6,7,8) have also provided evidence that the thermic

effect of food is enhanced during exercise. On the other

hand, some investigators (9,10,11,12) found that energy

expenditure during exercise was not greater following a meal

than 1n the fasted state.

Welle (9) examined the effects of intermittent exercise

on metabolic responses to a meal. He found no difference

between the thermic effect of the meal during exercise and

at rest. Dallosso and James (10) studied normal weight men

while the men occupied a whole-body indirect calorimeter and

observed no Interaction between the thermic effect of food

and exercise.

Lack of agreement between studies might be attributed

to the time interval following the meal at which the

subjects began exercising. Karst et al (13) found that the



thermic response to starch reached Its maximum one hour

after a meal and disappeared after 3 hours. Gl Ickman et al

(14) reported that a protein meal may cause an elevation 1n

metabolism which lasts as long as 16 hours. Consequently*

1t might be Important to compare the effects of exercise

when begun at different time Intervals following a standard

meal .

The objective of this study was to compare energy

expenditure during exercise 1n the fasted state and at 30,

60, and 90 minutes following a 940 kcal mixed meal. The data

showed that the timing of exercise relative to a meal was an

Important factor determining the amount of fat oxidized for

energy.
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Miller and Mumford (15) coined the term "dietary-

Induced thermogenesl s" (DIT) to describe all Increases 1n

energy expenditure associated with diet. DIT Includes spe-

cific dynamic action (SDA): SDA 1s also called the thermic

effects of a meal. SDA 1s the short-term Increase 1n heat

production required for digestion, absorption, and metabo-

lism of food. DIT also Includes 1 uxuskonsu mpt 1o_n. a term

created by Neumann (16) to represent the animal's ability to

convert excess energy Intake Into heat such that body weight

1s maintained over long periods of time.

£ai

The SDA of fat 1s lower than that of carbohydrate or

protein (13,17-21). Benedict and Carpenter (17), 1n one of

the earlier experiments of Its kind, found the SDA of fat to

be 2% of the calories Ingested. Wang et al (18) reported

little, 1f any, evidence of a SDA associated with fat. The

observed Increase 1n heat production was attributed to the

small amounts of carbohydrate and protein 1n the high fat

test meal. Karst et al (13) determined that the SDA asso-

ciated with fat was less than 1% of the net energy supplied

by the food.

One of the proposed mechanisms for DIT 1s metabolism 1n
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brown adipose tissue (BAT). BAT, despite Its very small

mass, 1s the site of considerable Increases 1n heat produc-

tion 1n cold-adapted and caf eterl a-f ed rats (22). As much

as 30% of cardiac output may flow through BAT (23). In

newborn and cold-adapted rodents living 1n cold conditions,

nonshlverlng thermogenes 1 s in BAT may account for 40-50% of

total energy expenditure (24). DIT in BAT accounts for less

of the total energy expenditure than does nonshiverlng ther-

mogenesls, however, due to the difficulty 1n measuring such

a value, the exact amount 1s not known (24). BAT is also

present and may be thermogenlcal ly active in humans (23).

Some Investigators believe that the relatively small SDA of

fat may be linked to decreased metabolism in BAT. Gl ick

(25) observed reduced respiration rates 1n the BAT tissue of

rats fed a high fat diet, despite an increase in net energy

consumption.

The type of fat consumed may affect the thermic

response. In a review on the regulation of energy balance,

Rothwell and Stock (26) cited studies by Bray et al (27) and

Gurr et al (28) which suggested that long-chain triglyce-

rides result In an Increase in body fat and that medium-

chain triglycerides lead to weight loss.

Ca_rJlQ_liy_d_£ajte.

Benedict and Carpenter (17) found the SDA of carbohy-

drate to be 6% of the calories Ingested as pure carbohy-

drate. Glickman et al (14) and Karst et al (13) estimated



1t to be 9.6% and 7%, respectively.

The type of carbohydrate Ingested Influences the ther-

mic response. For Instance, Sharlef and MacDonald (29)

stated that DIT 1s greater after sucrose Ingestion than

after glucose Ingestion. Similarly, MacDonald (30) found

the thermic response to sucrose to be greater than those of

other carbohydrates except fructose.

The mechanism by which carbohydrate elicits extra heat

production has been linked to BAT by many Investigators

(22,23,25,31,32). Gl 1ck et al (31) reported that the res-

piration rate and weight of BAT 1n rats Increased after a

single low protein, high carbohydrate meal. Another compo-

nent 1n the mechanism of the SDA of carbohydrate 1s the

sympathetic nervous system. Acheson et al (33) demonstrated

that glucose Ingestion stimulates the sympathetic nervous

system to the extent that 1t may constitute from 30 to 50%

of the total DIT. Welle et al (34), found that glucose

Ingestion caused a significant rise 1n plasma norepinephrine

levels. Whereas, protein and fat did not cause such a rise.

However, Welle and Campbell (35) later presented data which

contradicted earlier findings. They found that the SDA of

carbohydrate was not significantly Influenced by activity of

the sympathetic nervous system.

Rothwell and Stock (22) showed a significant increase

1n the temperature of the BAT area of rats who were Injected

with norepinephrine which indicated an increase 1n heat



production and/or elevated blood flow to this area. A

relationship between glucose Ingestion, plasma norephine-

phrlne levels, and BAT activity has been confirmed 1n the

literature. But, the mechanism by which glucose causes a

rise 1n plasma norepinephrine levels 1s still not known.

Extensive studies have been conducted on the SDA of

protein and the consensus 1s that it 1s greater than that of

fat or carbohydrate (13,14,17,20,21,3 4). Benedict and Car-

penter (17) reported a SDA associated with protein of 12% of

the calories Ingested in prote1n-r1ch food. Glickman et al

(14) and Karst et al (13) found the SDA of protein to be 17%

and 15%, respectively. Welle et al (34) demonstrated a

greater Increase 1n energy expenditure after Ingestion of

100 grams of protein than after Ingestion of equal caloric

amounts of fat or carbohydrate.

Mixed Diets

Although protein has the largest SDA of all nutrients

when taken alone, many Investigators have shown that mixed

low protein diets allow Increased caloric consumption for

weight maintenance (36,37,38,39,40,41). For example, Dole

et al (36) reported success after using a low protein diet

to reduce weight 1n obese patients. Stirling and Stock (37)

found that rats fed a low protein diet ate more and produced

690 more kcal of heat during 20 days. The rats fed the low



protein diet also exhibited Increased sensitivity to norepi-

nephrine injections.

Swlck and Grlbskov (38) conducted an experiment similar

to that of Stirling and Stock (37). They observed that rats

fed a 5% protein diet consumed 19% more food than rats fed a

15% protein diet. However, the rats fed the 5% protein diet

gained only 28% as much weight as the other rats. The rats

fed the low protein diet had twice the thermic response and

twice as much BAT. Rothwell et al (39) observed results

similar to those of Swick and Grlbskov (38). Their rats

which were fed a low protein diet had more BAT with greater

protein content and more mitochondria as compared to the

control rats and their oxygen consumption (V0
2

) was 15%

greater .

Miller and Payne (40) found that protein-restricted

pigs consumed five times as much energy as control pigs

consumed. Yet, the protel n-restr 1cted pigs weighed the same

as the controls. In a similar study conducted by Gurr et al

(41), pigs fed a low protein diet consumed three times as

many calories as pigs fed a high protein diet. And the pigs

fed the low protein diet had a greater thermic response to

norep 1 nephr 1 n e.

Miller and Mumford (15) found that, during overeating

periods, human subjects who were fed a low protein diet

gained a mean of 1.0 kg against an expected gain of 4.7 kg

and subjects who were fed a high protein diet gained 3.8 kg



against an expected gain of 4.9 kg. The researchers attri-

buted the discrepancy between actual and expected weight

gains to excess heat production.

As exemplified 1n these experiments on mixed diets*

dietary Imbalance can cause Increased DIT. As early as

1933, Forbes (42) wrote that nutrients cannot be evaluated

Individually and still have practical application and that

the most metabol 1cal ly efficient diet was a nutritively

complete diet. A year later* Mitchell (43) stated that the

SDA of the nutrients alone was considerably greater than

that of a mixture of nutrients and the more balanced the

combination of nutrients* the lower the SDA.

Lenaiii 0.1 £&& ff f_§c_±

The length of time that the resting metabolic rate

(RMR) 1s Increased due to the consumption of food depends on

the type of food consumed. In a review on energy metabo-

lism, Dauncey (44) stated that the RMR can be significantly

affected even 14 hours after a meal. And Gllckman et al

(14) found that a protein meal may cause a rise 1n metabo-

lism which lasts as long as 16 hours.

In general, the effect of carbohydrate Ingestion on

metabolic rate has shorter duration than that of protein

(13,14,20,21*34). Karst et al (13) reported that the ther-

mic response to starch reached Its maximum at one hour after

the meal and disappeared after three hours. The thermic



response that they observed after a casein Ingestion peaked

at two hours after the meal and lasted five hours. Gllckman

et al (14) noted that the effect of a sugar meal ended after

three hours and that the accelerating phase of the metabolic

rate after a 1000 kcal carbohydrate meal ended 1.5 hours

after the meal, whereas 1t lasted 2.5 hours after a 1000

kcal protein meal. Welle et al (34) found that the

difference 1n thermic responses to glucose and protein was

only measurable 2-3 hours post-

1

ngestlon. And four hours

was not sufficient to observe the full effect of the protein

meal .

Several Investigators found that the SDA of a meal was

dependent on the number of calories the meal contained

(11,13,15,25,33 »45). Some found that after a larger meal

the energy expenditure Increased more, others found that 1t

lasted longer, and some found both. Karst et al (13) ob-

served a higher Increase 1n energy expenditure, a longer

duration of Its maximum elevation, and a later return to the

baseline value after a doubling of protein caloric Intake.

They also reported that to obtain a similar effect from a

carbohydrate meal, four times as many calories were

required. H111 et al (45) found that the thermic effect

after 500, 1000, 1500 kcal meals Increased systemlcally as

the meal size Increased. Swindells (11) reported a greater

Increment 1n energy expenditure after a meal providing one-



half of the dally caloric allowance as compared to meals

providing one-ninth and one-third of the daily allowance.

Some researchers observed no relationship between meal

size and SDA (2,46). Bradfleld and Jourdan (46) fed obese

women meals of varying caloric content from 100% to 25% of

the calories required for weight maintenance and found no

significant difference 1n the SDA of the meals. Bray et al

(2) fed men 1,000 and 3,000 kcal breakfasts and observed no

greater SDA after the larger meal.

Long-term ffle.£±£. at &xsrjm.iL±i±QD.

There is considerable controversy 1n the literature as

to whether or not lU2SiiiJLfiH5iJ.m£iIcji exists. The studies

which support Its existence are 1n the minority

(15,22,47,48,49). S1ms et al (47) observed that long-term

overeating leads to a large Increase in energy expenditure.

In their experiment, lean volunteers Increased their food

intake enough to Increase their body weight by 20%. To

maintain this weight, they had to consume 2700 kcal/sq m/day

which is 900 kcal more than they consumed at their normal

weight. In another overeating experiment, Apfelbaum et al

(48) fed their subjects 22,500 extra kcal over a 15-day

period, yet their gain 1n adipose tissue was only approxi-

mately 10,000 kcal. This discrepancy translated to a 3 0%

rise over Initial energy expenditure.

Some investigators have concluded that to observe

10



lu.XiiSJiim^y.m£i±QIl» overeating must either occur for a given

minimum length of time or constitute a given minimum number

of calories (15,44,50). Dauncey (44) cited a study by

Garrow (50) which demonstrated that to sufficiently Increase

heat production during overeating such that there 1s little

or no weight gain, approximately 84,000 extra kj must be

consumed. And Miller and Mumford (15) suggested that

experiments testing the theory of luxuskonsu mpt ign should

last for at least two weeks.

Many other studies contradict the existence of

l^lL£Ji£Jls_llin.Bi_Lsn (49,51,52,53,54). W 11 ey and Newburgh (51)

tested the theory of luxuskonsgmpt jgn in 1931 on one subject

for 15 days and found no extra energy expenditure other than

the Increased SDA from the extra food consumed. Passmore et

al (49) reported no excess food oxidation, apart from a

small amount due to the SDA of the extra protein consumed,

during a 10 to 14 day overfeeding experiment.

Long-term overfeeding seems to have no potentiating

effect on the thermic effect of a single meal (2,6,35).

After 30 days of overfeeding 4,000 kcal per day, Bray et al

(2) observed no change in the thermic effect due to food

ingestion. Stock (6) examined the effect of overeating one

day on the thermic effect of a meal the next day. He found

no difference between the thermic effect after a day of

fasting and after a day of overeating.

The composition of the antecedent diet has been shown

11



to have an effect on the thermic response to a meal.

Acheson et al (53) found that subjects who consumed a high

carbohydrate diet during 3-6 days before testing responded

to a carbohydrate meal with a thermic effect of 8.6% of the

calories Ingested. Those subjects who consumed a high fat

diet responded with a thermic effect of 5.2% and subjects

who consumed a mixed diet responded with a thermic effect of

6.5%.

Individual laxialifin

Although studies on thermogenesl s have elucidated the

effects of different nutrients, different meal sizes, and

long-term overnutr 1 tlon, Investigators have consistently

noted large differences among Individual responses. For

Instance, Swindells (11) noted greater individual variation

1n the thermic responses to meals than variation associated

with different meal sizes. Those observed individual diffe-

rences in thermogenesls have been followed up by studies

examining a possible link between thermogenesls and obesity

(18,55,56,57,58) and thermogenesls and level of fitness

(11,59,60,61,62,63) .

Schutz et al (55) found that the thermic response of

obese women was blunted (8.7+0.8%) compared to that of non-

obese women (14.8+1.1%). They also observed an inverse

correlation between percentage body fat and SDA. Shetty et

al (56) observed women with a family history of obesity who

were either obese or of normal weight had a thermic response

12



equal to half that of lean women.

Level of fitness has been suggested as another cause of

Individual variation 1n DIT. However* the researchers'

conclusions seem to be equally divided as to the effect of

training and fitness. Kertzer et al (59) found that both

trained and untrained subjects had an Increased metabolic

rate after a meal, but the trained subjects with higher

maximum oxygen consumption (V0
2
max) showed DIT which was

60% greater 1n magnitude and duration than that of the

untrained subjects. Similarly, H111 et al (60) observed

that exercise training 1n rats led, not only to Increased

RMRs Independent of diet, but also to Increased thermic

responses to cafeteria food. H111 et al (45) demonstrated

that human subjects with high V0
2
max responded with greater

SDA to two different sized meals than subjects with low VO2

max. Also, with a given Increase 1n caloric load, the

subjects with the higher V0
2
max had a greater Increase 1n

SDA.

Different conclusions were arrived at by several other

groups of Investigators (4,61,62,63). Tremblay et al (61)

examined elite trained subjects and found that their SDA

after a 1,636 kcal meal was significantly lower than that of

untrained subjects. The metabolic response to the meal 1n

the untrained subjects was longer and greater 1n magnitude.

Since the trained subjects' respiratory quotient (RQ) after

the meal was lower than that of the untrained subjects, the

13



researchers claimed that there was an Increase In fat oxida-

tion and a concomitant sparing of carbohydrate. LeBlanc et

al (62) found that the SDA after feeding a 755 kcal meal to

trained subjects was 50% less than the response of untrained

subjects. The researchers suggested that this diminished

response may have been due to reduced activity of the

sympathetic nervous system or to a carbohydrate-sparing

mechanl sm.

II. £&&L£.±2£. ARA Metabol 1c Hals

Oxygen consumption Increases during exercise due to

Increased demands of the active muscles for oxygen. And most

earlier studies Indicated that oxygen consumption remains

Increased after exercise due to Increased metabolic rate,

aerobic removal of anaerobic metabolites, replenishing

oxygen-depleted stores, and Increased demand for oxygen by

the heart and respiratory muscles. Increases 1n metabolic

rate are caused by the rise 1n tissue temperature and

possible Increases 1n adrenalin output. The metabolic rate

rises 13% per degree centigrade Increase 1n tissue tempera-

ture ( 64)

.

J2iLr_a±io.n £l iJig Ellscl

The Increase 1n metabolic rate caused by exercise 1s

the major reason for energy loss (65). DeVrles (65)

observed that after a vigorous workout, the RMR Increased

from 7.5% to 28% for four hours and this elevated metabolic

L4



rate lasted for at least six hours after exercise had ended.

DeVries (65) cited Margarla et al (66) who also found that

the elevated RMR lasted several hours after exercise.

Recently B1el1nsk1 et al (67), found that moderate,

prolonged exercise Increased post-exercise energy expendi-

ture for 4-5 hours and RMR for at least one day.

DeVries and Gray (68) tested the RMRs of two healthy

middle-aged men during a six-week training program. They

found a significant Increase in metabolic rate for six hours

after exercise which returned to pre-exerdse level after

eight hours. Although most studies support the theory of

elevated metabolic rate after exercise, Freedman-Akabas et

al (69) concluded that there 1s no sustained effect of

moderate or Intense exercise on VO- 1n fit or unfit Indivi-

duals. And Pacy et al (70) observed no prolonged Increase

1n metabolic rate after exercise 1n nonobese subjects.

Effect Ql £x.erc1se In±.§ii£l±y. &M Duration

Slmonson (71) cited Stelnhaus (72) who observed a pro-

nounced Increase 1n metabolic rate only after maximum or

near maximum Intensity exercise performance. Hagberg et al

(73) noted that exercise at 50% to 65% of V0
2
max was not

sufficient to increase the magnitude of the slow component

of recovery oxygen consumption, but that exercise at 80% of

VO max was sufficient. Segal and Brooks (74) also found

that the slow component of recovery oxygen consumption was

15



more prominent at higher work loads. In addition, Segal and

Brooks (74) noted that exercise Intensity was the predomi-

nant factor Influencing the magnitude and kinetics of post-

exerdse oxygen consumption.

Hagberg et al (73) compared the effects of different

durations of exercise and found that exercise at 80% V0 max
2

for 20 minutes resulted 1n a slow component of recovery

oxygen consumption that was five times larger than after

exercising at the same Intensity for five minutes. However,

at 50% and 65% V0
2
max, this difference was not observed.

The rapid component of oxygen recovery was not changed by

different durations of exercise at the same Intensity, but

1t was proportional to the exercise Intensity.

III. f*e.r£±s..e. ajLd Xhs Ih&zmls. Effect q± Food

EiLfll S_eiLrc_g Djirino, Ex.e.r£±s_e. la XhS. Fasted State

At the very start of exercise, even at Intensities

lower than 60% V0
2
max, some anaerobic metabolism occurs for

45-90 seconds until oxygen can reach the active muscles.

Maximum work of short duration depends only on ATP and

phosphocreatlne muscles stores for fuel. During prolonged

exercise, however, aerobic metabolism of glycogen and free

fatty adds (FFA) provides the necessary ATP (75).

According to Brooks and Fahey (76), during hard

exercise the respiratory quotient (RQ) approaches 1.0 and

Indicates predominant oxidation of carbohydrate. However,

during prolonged exercise the RQ value 1s less than or equal
16



to 0.9 and indicates increased fat oxidation. A possible

reason for this difference 1s that* during hard exercise*

oxygen 1s limited and use of carbohydrate predominates since

6.4% more energy is derived from carbohydrate than from fat

per unit of oxygen consumed. During prolonged exercise,

glycogen stores are limiting, so more fat 1s oxidized for

energy ( 76)

.

Harris et al (77) found that during the first 5-15

minutes of mild exercise, the plasma FFA level was fairly

low. During prolonged exercise, the level of FFA was great-

er or equal to the level at rest. Then, after exercise, the

levels of FFA and glucose significantly increased for a

considerable length of time. Ahlborg et al (78) studied

substrate turnover during four hours of exercise at 3 0% V0
2

max. They found that exercising increased muscle uptake of

FFA and glucose and that after 40 minutes of exercise, the

relative contribution of FFA to total oxygen metabolism

Increased to 62%. From 90 to 240 minutes the contribution

from glucose metabolism decreased from 40 to 30%. Pruett

(79) studied FFA mobilization during exercise and observed

increases 1n plasma FFA levels during exercise at Intensi-

ties up to 70% VO max. However, at intensities greater

than 85% V0
2
max, the plasma FFA levels fell. After exer-

cise at 85-90% VO max, the plasma FFA levels remained

elevated for five hours or more. The author stated that the

magnitude and duration of the Increase 1n plasma FFA levels

17



after exercise did not depend on the total energy expended

but rather on the rate of energy expenditure during exer-

cise. FFA mobilization was more pronounced and long lasting

after exercise to exhaustion at 70-80% V02 max.

ELL&S.1 Ql D±§i cm fiLSl i£Jirc_e. Purine. Lzsls.Is.2

The source of calories 1n the diet affects the fuel

source during exercise. Costlll et al (80) examined the

effects of different amounts and types of dietary carbohy-

drate on exercise. After feeding a low carbohydrate diet

for 48 hours, the amount of fat burned during exercise was

higher than after a mixed diet. After feeding a high carbo-

hydrate d1et# the amount of carbohydrate oxidized was

greater than after a mixed diet. In an earlier study*

Pruett (81) showed similar results. He put male subjects on

three different diets for two weeks and then exercised them

at a work load slightly less than 70% V0
2
max. The subjects

who consumed a high carbohydrate diet burned a mean of 382

grams (1.98 grams/m1n) of carbohydrate. Those who had con-

sumed a standard diet burned a mean of 324 grams (1.73

grams/m1n) and those on a high fat diet burned 268 grams

(1.63 grams/m1n) during 2.5-4 hours of exercise.

Hurnl et al (82) found contrary results at a different

Intensity of exercise. They fed subjects either a high

carbohydrate, low fat diet (HCLFD) or a mixed diet for a

week and found that the diets had no Influence on the sub-



strates oxidized during light exercise. However* when

measured during an entire 24 hours, the fat and carbohydrate

oxidation rates were different depending on the diet con-

sumed. Subjects on the HCLFD oxidized twice as much carbo-

hydrate and about half as much fat as when they were on the

mixed diet.

The type of meal taken prior to exercise has been

demonstrated to have an effect on the fuel source during

exercise. Fal ecka-W 1 eczorek and Kaduba-Uscll do (83) inves-

tigated the metabolic responses of dogs during exercise four

hours after a high fat meal and four hours after a mixed

meal. The plasma FFA levels were higher 1n the dogs fed the

high fat meal than 1n the dogs fed the mixed meal. Their

plasma glycerol levels also were higher, but their plasma

triglyceride levels were lower. The researchers stated that

these results Indicate greater hydrolysis of triglycerides

and Increased fat oxidation during exercise 1n dogs fed a

single high fat meal.

IhS. IJlSHmlc. Effect ai f_pj2ii During Exercise

In 1975 Miller and Wise (7) reviewed several studies on

the effect of exercise on DIT. They found conflicting

results. Some researchers found that energy expenditure

during exercise was greater after a meal than before, some

found that energy expenditure was lower after a meal and

others found no change. Miller and Wise (7) themselves

showed that the cost of exercise after a meal depended on

19



the caloric Intake of the previous day, but that the cost of

exercise before a meal was unaffected by the previous day's

intake. Stock (6) observed no significant changes in

resting or exercise metabolic rates due to a previous day of

fasting or overeating. However, postprandial exercise ther-

mogenesls was greater on the day after overeating.

Obarzanek and Levitsky (5) tested the hypothesis that exer-

cise after a previous day of overeating resulted in an

Increased metabolic rate. They found that neither the RMR

nor the thermic effect of food or exercise alone was changed

by fasting or overeating on the previous day. But, the

difference between preprandlal and postprandial exercise

after a day of overeating was twice as much as after a day

of normal eating. They concluded that excess energy expend-

iture after overeating was apparent only during postprandial

exercise.

As for the size of the meal, Bray et al (2) suggested

that a test meal at least 1,000 kcal was necessary to elicit

an increase 1n DIT during exercise. Other studies which

support the potentiation of the thermic effect of food

during exercise used test meals equal to or larger than 900

kcal (4,15,84).

Segal and Gutln (4) showed that the thermic effect of

food Increased as much as 30% during exercise compared to

that at rest in lean women. In a later study, Segal et al

(3) demonstrated a similar Increase in the thermic effect of

20



food during exercise in lean men. Miller and Mumford (15)

reported that the thermic effect as a percentage of the

basal metabolic rate rose from 28% after breakfast alone to

56% after breakfast with exercise. They stated that the

thermic response to a 1,000 kcal meal was twice as high

during mild exercise as 1t was at rest. Gleeson et al (8)

conducted an experiment similar to that of Miller and

Mumford (15) using rats. They found that the thermic effect

of food was 7% of the fasting metabolic rate during rest and

11% of the fasting metabolic rate during exercise.

Dauncey (84) examined the effects of different 24 hour

energy Intakes on the metabolism of man. He showed that the

Increase in heat production during 30 minutes of cycling

after a meal during a 3300±100 kcal diet was no greater than

when the subjects consumed the same amount and rested after

the meal. He concluded that overeating for one day did not

significantly change the energy expenditure during the same

day. In an earlier experiment, Durnln and Norgan (52)

compared the metabolic rates of men when they were on a

normal diet and after six weeks of overeating. They obser-

ved increases of 10-12% in the metabolic rate after overeat-

ing. The metabolic rate after overeating did not Increase

more during exercise than while at rest.

Garby and Lammert (12) found no significant effect of

the preceding day's caloric Intake on oxygen consumption

during exercise before or after a test meal. But, they did
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find a significant difference 1n the respiratory exchange

ratio (R) during exercise before and after a test meal after

a day of high caloric Intake and after a day of low caloric

Intake. The R during exercise was lower before and after

the test meal after the day of low caloric Intake than after

the day of high caloric Intake. These Investigators con-

cluded that their results did not support the theory that

excess energy 1s burned during exercise after overeating.

A lack of Interaction between thermic response to a

meal and exercise was observed by Dalloso and James (10).

They studied men during one week on a weight-maintenance

diet and another week when the men were overfed by 50% with

fat. An Increase 1n thermic response to meals during the

overeating week was demonstrated* but there was no potentia-

tion of the thermic response to meals during exercise.

Welle (9) fed subjects an 800 kcal meal and measured changes

1n metabolic rate during Intermittent exercise. He found

that the thermic effect of food during exercise was not

different from the thermic effect without exercise.

£fie££s fil Exercise Intensity

Segal and Gutln (4) used two different work loads, one

subanaeroblc threshold and one just slightly below the

subjects' anaerobic thresholds. At both work loads, they

reported a thermic effect of food during exercise. A later

study by Segal et al (3) compared the difference 1n the

22



thermic effects of food across submaxlmal power outputs.

They found no significant difference. However, at maximum

output, they found no thermic effect of food.

Duration Q± IhS Thermic £fiec_±

Few of the studies examining the thermic effect of food

during exercise have looked at the duration of the effect.

Segal and Gutln (4) exercised subjects every half hour for

five minutes after a meal. They observed an Increase in

exercise metabolic rate due to food for as long as four

hours after the meal.

ImilYlilALal fiillsrjnc.es.

Gleeson et al (8) compared differences in energy

expenditure in trained and untrained rats. They observed

increased exerdse-1 nduced dietary thermogenesi s in the

trained rats. Segal and Gutln (4) found that eating

Increased the exercise metabolic rate more for lean women

than for obese women and Segal et al (3) found no evidence

of a thermic effect of food during exercise in obese men.

Segal and Gutln (4) also reported that the greatest poten-

tiation of the thermic effect of food durng exercise at

anaerobic and subanaerobic work loads was observed 1n lean

subjects of low fitness levels. And the lowest potentiation

of the thermic effect of food during exercise at anaerobic

work loads was observed 1n obese subjects of higher fitness

1 evel s.
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Eight fitness-oriented young college women (ages 21-

27 years) volunteered to serve as subjects. Prior to the

trial, they completed a self-report questionnaire 1n which

their medical history and exercise* eating, and other health

habits were determined (Appendix 1). Each reported that she

had been exercising at least 5d/wk, for a minimum of 30

mln/d for at least the previous 5 yrs. Running was the most

popular form of exercise reported, but biking, swimming, and

weight lifting were also cited. None of the subjects were

smokers, diabetic, or were on special or unusual diets.

Descriptive data of the subjects are shown 1n Table 1. All

experimental procedures, risks, and benefits were explained

to the women prior to the study and they signed an informed

subject consent form as required by the Subcommittee on

Research Involving Human Subjects, Kansas State University,

Manhattan (Appendices 2, 3, and 4).

PLQ.SL&4.1LL&S.

Maximal oxygen uptake (V0
2

ml • kg"' -ml n~' ) was assessed by

a continuous treadmill protocol. The subjects began running

at a slow speed (8.06 km/h) on a zero-grade treadmill.

After 2 min, the speed was Increased to 9.68 km/h, and held

constant for 2 min. Thereafter, the treadmill grade was

Increased 2.5% every 2 m1n until the subject was exhausted,

(usually 10-14 min). Each subject's V0 9 max was determined
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TABLE 1

Subject characteristics

Subject Age Weight Height Body Fat LBM V0 2 max
(yrs) (kg) (m) (%) (kg) (ml/m 1n/kg)

1 27 64.20 1.70 24.9 48.2 53.0

2 24 60.51 1.64 17.1 50.1 50.2

3 27 54.77 1.63 19.0 44.4 48.0

4 23 58.95 1.6 8 19.5 47.4 50.5

5 25 54.54 1.63 16.3 45.6 50.5

6 21 54.88 1.63 20.9 43.4 51.9

7 22 63.00 1.70 23.7 48.1 49.8

8 21 55.90 1.6 8 15.0 47.5 57.6

Mean
+SD

23.7
2.4

58.3
3.9

1.66
0.03

19.5
3 .5

46.9
2.2

51.4
2.9
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to be the point at which her V0
2

reached a plateau and the

respiratory exchange ratio (R) (VC0
2 /V0 2 ) was greater than

1.15.

The subjects agreed to consume their habitual diet and

to refrain from exhaustive exercise for 24 h prior to

exercise trials. Each subject completed 4 exercise trials

on separate mornings 1n a randomized order. For one trial*

the subjects exercised at 07:30h after a 12-h overnight

fast. For each of the other trials, the subjects consumed a

test meal after a 12-h overnight fast and began exercising

at 30, 60, or 90 m1n following the end of the meal. The 30,

60, and 90 m1n post-meal exercise trials began at 07:30h,

08:15h, and 09:00h, respectively. The 940 kcal test meal

consisted of 3 Carnation chocolate chip breakfast bars

(donated by Carnation Co., Los Angeles, CA) and 16 oz of

1.5% mllkfat chocolate milk. The composition of the meal

was 46.5% carbohydrate, 14.5% protein, and 39.0% fat. The

subjects sat quietly before their exercise bout began. The

exercise was 30 m1n of running on a Qulnton treadmill at a

workload that averaged 62% V0
2

max.

Oxygen consumption was determined by an open circuit

technique. Subjects breathed through a 2-way Daniel's valve

and exhaled air passed through a 4.0 1 mixing chamber. A

continuous gas sample of 500 ml/m1n was drawn from the

mixing chamber and passed in series through C0
2 and

2 gas

analyzers (Beckman LB-2 and 0M-11, respectively) which were
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calibrated before and after each exercise trial using a

certified commercial gas preparation. The analog output of

the gas analyzers was channeled through A/D converters

(Action Instruments) which allowed the display of the gas

concentrations of each minute on digital counters (Series

6100- DCI Inc.). Expired air volumes were measured with an

Alpha Technologies ventilation meter. The data sheet used to

collect indirect calorimetry data 1s shown in Appendix 5.

M1nute-by-m1nute oxygen consumption, carbon dioxide produc-

tion, respiratory exchange ratio, caloric expenditure, and

calories provided from fat were calculated for the last 23

min of each trial. Percentage kcal derived from carbohy-

drate and fat were calculated from respiratory exchange

ratios as shown 1n Appendix 6.

Body density was determined by hydrostatic weighing

using a Chatlllon scale. Residual lung volume was assessed

by the oxygen dilution technique using a nitrogen analyzer

(Hewlett-Packard, Model 47302A). Lean body mass was calcu-

lated as the difference between total body weight and the

product of percentage fat and body weight. The data sheet

used to calculate body composition is shown 1n Appendix 7.

Data were analyzed using the Least Significant

Differences Test following significant (p<0.05) analysis of

variance procedures (85). The computer program used is shown

1n Appendix 8.
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The mean caloric expenditures of the subjects during

the last 23 m1n of the 30-min treadmill runs begun 30, 60,

or 90 m1n after the meal, or 1n a fasted state, were not

significantly different (range 215-219 kcal) (F1g 1).

During the exercise trials 30, 60, and 90 min after the

meal, the mean caloric expenditures were 0.6%, 1.8%, and

0.9% greater, respectively, than in the fasted condition.

The mean respiratory exchange ratio (R) was

significantly higher 1n the subjects when they exercised 60

or 90 min after the meal than when they exercised in the

fasted state (p<0.05) (Fig 2). The difference in R is also

reflected in the subjects' calculated fat utilization. When

exercised at 60 or 90 m1n after the meal, the subjects

oxidized significantly (p<0.05) less fat than when exercised

in the fasted state (F1g 3). Fat oxidation was 23% and 37%

lower in the trials 60 and 90 min following the meal,

respectively, than during the fasted trial. The data for

each subject and the statistical analysis are presented in

Appendices 9-12.
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Previous research investigating a thermogenic effect of a

meal during exercise 1s beset with 1 neons 1 stanc 1es. This

study used subjects who were lean and physically-f it, consumed

a meal of 940 kcal (46.5% carbohydrate, 39.0% fat, and 14.5%

protein), and ran for a full 30 m1n at 62% V0
2

max at discrete

Intervals following a meal. All of these different factors

may have influenced the outcome of this study and contribute

to the agreement or disagreement with previous research. The

leanness and/or fitness level of the subjects has been Identi-

fied as an important variable, being associated with an

enhanced thermogenic effect 1n lean (3,4,86) and fit

(45,59,60) individuals and a blunted thermogenic effect in

obese (3,4,55,56,86) and fit (3,4,61,62) individuals. Meal

size has also been implicated, 1n that a 900 kcal meal appears

to be the caloric threshold for a response (2,3,4,7), yet

Swindells did not observe a thermogenic effect during exercise

following a meal of 1200 kcal (11).

To date, this is the only Investigation to use running as

the mode of exercise. The cycle ergometer (2,3,4,9,10,70,86),

the step test (6), and walking (5,11) have been employed

previously. Additionally, 1n most cases the subjects worked

at a common absolute workload (2,6,7,9,10,70) rather than at a

common relative workload, as 1n this study and a few others

(3,4,86). Finally, in the present Investigation, subjects
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exercised for 30 min, a typical workout time, at varied time

Intervals (30, 60, 90 min) following the meal. Earlier

studies did not truly Investigate the effect of different time

Intervals between the meal and the exercise, since all the

bouts of exercise (which were of only 5-15 m1n duration)

followed the same meal (4,9). Considering the many features

that differ among the many studies, 1t is not surprising that

the results have been Inconsistent. Obviously, the results of

this study are limited to the conditions of the experiment.

However, it 1s believed that the design incorporates more

realistic levels and modes of exercise than previous

Investigations and adds Insight into the time course for the

Influence of the meal on subsequent exercise.

Many studies have demonstrated that consumption of carbo-

hydrate prior to exercise Inhibits fat mobilization and

creates a greater reliance on carbohydrate sources of energy,

particularly, muscle glycogen (87,88,89). Few studies on the

thermogenic effect of a meal during exercise have considered

this Inhibition on fat oxidation, evaluating only total calo-

ric expenditure. Welle (9) reported a rise 1n respiratory

exchange values from exercise 1n the fasted state to

postprandial exercise without converting the these values to

the amounts of fat oxidized. With or without additional

caloric cost during exercise after a meal, 1t may be relevant

to the goals of fat reduction whether fat oxidation is
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affected. The results demonstrated that significantly less

fat was utilized during the sessions that began 60 and 90 m1n

after the meal, as compared to the fasted condition. Approxi-

mately 110 g of carbohydrate was consumed 1n the meal, which

probably led to an Increase in blood glucose and insulin.

Welle (9) observed increases 1n blood glucose and insulin

during exercise after a meal which also contained 110 g of

carbohydrate. Fat use during the session begun 30 m1n after

the meal was intermediate between the fasted and 60 m1n post-

meal conditions and not statistically different from either.

The Inhibitory effect of elevated Insulin, thus, was not fully

evident 1n the30 min post-meal trial, but by 60 and 90 min

post-meal, would most likely be responsible for the reduction

in fat oxidation. The data from the respiratory exchange

measures Indicate that only 32.7% and 31.6% of the total

caloric expenditure 1s provided by fat In the60 and 90 min

post-meal sessions, respectively, as compared to 43.1% during

the fasted state.

Further research could help explain the mechanism leading

to these results by measuring blood levels of Insulin, glu-

cose, and triglycerides, 1n addition to using indirect calori-

metry. Also, Investigation of the effects of meal composi-

tion, previous diet, and fitness level of the subjects is

warranted .

In summary, there was no evidence that exercising shortly

after a meal will capitalize on a thermogenic effect of the
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meal and enhance the caloric expenditure during the exercise.

The meal affects substrate utilization during the exercise,

however, causing a shift toward greater carbohydrate and

reduced fat oxidation.
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Appendix 1

EXERCISE, DIET, AND MEDICAL QUESTIONNAIRE

This information is strictly confidential and will be used only by the researchers.

Please fill out the following form as completely as possible.

Name: _Age:

Campus Address:

Home Address:

Height:

_Birthdate:

_Phone:

Phone:

Weight

:

Sex:

Type(s) of exercise done regularly:

Number of days you exercise per week:

Minutes per exercise bout:

Mileage or intensity of each exercise bout:

How long have you been a regular exerciser:

Why do you exercise?

Do you have an health problems that might limit you when exercising?

Do you have any disease that might influence your food intake? (i.e. diabetes,
hypoglycemia, etc.)

Do you take any regular medications?
for taking them.

Check if you have any of the following:

If so, list medications and give reason

thyroid disorder

heart murmur

chronic constipation or
laregularity
frequent indigestion

diabetes mellitus

chest pains

any type of infection

gastric or duodenal
ulcer
recent weight change poor appetite

asthma

How much did you weigh 1, 6, and 12 months ago?

Number of meals you usually eat per day:

Number of snacks you usually eat per day:

high blood pressure

kidney disorder

diarrhea

congenital heart
problems

Are you on a special diet? If so, what kind and why?
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Appendix 1 (cont'd)

Number of times per week you usually eat:the following and approximate serving sizes:

_ beef

_ pork

_ fish

fowl

eggs

variety meats

_ cheese

_ milk

other dairy products - list items

_ bread

_ cereal

cakes, cookies, pastries

_ other desserts - list items

_ fruit or juices

vegetables

_ fats - oils, salad dressing, butter, margarine, etc.

legumes, beans, etc.

_ regular soft drinks

_ diet soft drinks

_ beer

other alcoholic beverages

List any additional food items that you regularly consume that are not listed.
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Appendix 2

TITLE: METABOLIC EFFECTS OF EXERCISE DURING FASTED STATE AND AT 30, 60 OR
90 .MINUTES AFTER A MEAL

INVESTIGATORS: Kathy Grunewald and Tony Wilcox, Project Directors
Kace Willcuccs, Graduate Assistant

JUSTIFICATION: Reports of the effects of postprandial exercise are not in agreement.
Nor has a study been published which compares the effect of exercising after an over-
night fast and exercising at different times after a morning meal. In chis study, young
fitness-oriented women will be used to determine these effects by measuring oxygen
consumption and carbon dioxide expired and determining the source of substrate utilization.

AGREEMENT AND RELEASE

1. I volunteer to participate in this study to be conducted during the end of July and
the beginning of August, 1985 at Kansas State University. I am an asymptomatic,
physically active person without coronary heart disease CCHD) or CHD risk factors.
I have not experienced the following: pain in my chest or heart, episodes of rapid
heart rates, difficulty in breathing, or a diagnosis of an abnormal electrocardiogram.

2. I will not eat considerably more or less than usual on the days before testing sessions
and I will fast overnight and before testing time on the four exercise test mornings.

3. I will consume the test meal of J chocolate chip Carnation breakfast bars aud 1.6 oz
of low-fat chocolate milk on three mornings before exercise trials.

4. I will allow researchers to perform the following procedures co determine body com-
position, fitness level, and metabolic effects of exercise:

a. Hydrostatic (underwater) weighing. This involves sitting. submerged in a water tank,
exhaling maximally, and staying under water a few seconds until the weight is read.

b. Fitness level will be determined by measuring maximal oxygen consumption during
exercise on a treadmill. The test starts at a slow speed and OZ elevation, then
gradually increases elevation until the effort causes fatigue which occurs in 3 to
12 minutes. I will indicate to the investigator when I want the test ended. The
effort is similar to th« effort of competing in a half mile race.

c. Oxygen consumption will be measure during 30 minutes of jogging on a treadmill on
4 mornings. One morning I will be fasted, the other 3 mornings I will be fed a test
meal and exercised at 30, 60, or 90 minutes after the meal.

5. I have been completely informed as to and understand the nature and purpose of this
research. The researchers have offered to answer any further questions that I may have.
I understand that I will be able to withdraw from the study at any time of my own accord.

6. I realize that reports will be made of this 3tudy and I consent to publication of such
if strict confidentiality is maintained by Identifying my data only by a number and not
by my name.

7. I have informed that this study should increase our knowledge of the optimal time, with
respect to meals, to exercise for weight control. The benefits to me will include:
gaining information about my 1) caloric cost of jogging at different times after a meal
and after fasting, 2) body composition and 3) fitness level.

Dace: Signed:,
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Appendix Z

College of Home Economics

uace I

APPUCATIOH FOR APPROVAL TO iJS^ HUH/Ui Slin.irrrs

1. ACTIVITY OR PROJECT TITL£: "Metabolic effects of exercise during fasted
state and at 30, 50, or 90 minutes after a *ea1"

2. PROPOSED SPONSOR (IF ANY): (none)

3
* MT*

Srun?wld -
Ph - Q -- »-" roods and Nutrition 535 ssoa

4. RISK

A. Are there risks to human subjects? yes x n0

HMdSokff
'"* deSCribe

'
(S" *•««*«» of risk, JlgTTof the

SEE ?^T!g
,

5r
b,~- Then!fore - «<~ * '«ST.

B. Otscrfbe tha benefits of the research

* }

2r2f5SS? ! Sut>iKtS
1
iU learn «*" "'one exoenditure

SPt&mi exerci" following a fast or meal; also wi 1learn their body, composition and fitness levels.

6)
a^sw?r^

d1
ht
C
1-S!l

ne/proflssJ1on: Jtm ™ 1n question that will be

inSEEw^Lr&f*"**, 1*' does exercise « specific timeintervals following a meal enhance the tftermic effect fcainr^r

irJiL. X. i.?f *
H"0*ook- ^e wntt«n informed consent document *us-Include the following: (1) a fa1r explanation of procsdur-s to &• "oIlS"

8) d?Ll2S.
PS0B

°
f d1scomforts and r1slcs

« W ESXSJn oflenef ST(4) disclosure of appropriate alternatives available, (5) an offer "aanswer inquiries, and (6) Instructions that the subject s^rJTS Su*™consent and participation at any rtw. Specfa? ?nfo™ed pnse"t 1o I c' as

ftaS'LSShi!, '^ Pn300Sal ar« your ,

'

nformed «n«nt procedure and/or

fSL ££25*1 (If BOt * Part of your 3">opsal, the procedureslnd in-formed consent document must accompany this application.)
"aur" ina

is^on^ge^lttache^" "*" *
M

'
"taChed

-
The "*«-—« document

(OVER)
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Appendix 3 (cont'd)

G. EMERGENCIES

A. Are any possible emergencies anticipated? yes < no

If yes, describe briefly or give the page of the proposal where tfccsaare describod. , . .,(researchers will be well trained on use of equipment)

3. Describe procedures for dealing with emergencies, or give the page of
the proposal on wmch these descriptions may be found.

PRIVACY: On whit page of the proposal do you discuss procedures for kefs- —research data p-ivate? „. 7. t This should include procedures for siam-*
taining anonym ty of subjects. Supplemental information concerning oriva, yof data ray be iiscussed below. (See page 3 of the Handbook on "Safeguard

r

information.
J

8. STAT*MErr OF AG^EEKSNT: The below named individual certifies that he/sh-
has read and is willing to conduct these activities in accsrcance with th»-
Handbook for 3a;aarcn, Oevelooment. Demonstration, or ^tr«r AC-i»if'a<
igJojvjnojjuj^JjEuects,. fur-war, the be low namea maiviauai "citifies
that any change, in procedures from those outlined above or in the ittacm.-d
proposal will b j cleared through Committee 3290, The Corraittee on aesearc:!
Involving Human Sub^c^s via the College of Home economics Sudcsmmittae.

******
fflfc UflM^LA/ Date May 17, 1935

Send applications to:
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Appendix 4

KSCJi

STAnTE
DMiviinarrr

Department of Foods and Nutrition

.matin Hall

Manhattan, Kansas 66506
913-532-5508

May 30, 1985

TITLE: Metabolic Effects of Exercise During Fasted State and
at 30, 60, or 90 Minutes After A Meal

PRINCIPAL INVESTIGATOR: Katharine Grunewald Ph.D.
Foods & Nutrition

Research activities involving no more than minimal risk and
in which the only involvement of human subjects is within se-
lected categories may be reviewed by the expedited review proce-
dure authorized in 45CFR46:110 #3 4 8. The proposal is recom-
mended for approval for a period of 12 months. If this proposal
extends beyond 12 months from its date of approval, the propos-
al must again be reviewed by the subcommittee. Request for
an extension of approval is the responsibility of the principal
investigator. Any substantial, revision in this study relative
to human subjects should be reviewed again by the college sub-
committee.

ommittee on Research Involving Human Subjects
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Appendix 5

Name

Time _

Speed

min

1

2

3

4

5

5

7

3

9

10

11

12

13

14

15

Vol

Date

P
3

Time since last meal

CO- temp min Vol

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

CO- temo
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Appendix 6

TABLE 8-1. Thermal equivalent of oxygen for nonprotein respiratory quotient, including percent

kcal ana grams derived from carbohydrate and fat

PERCENTAGE KCAL GRAMS PER LITER O,

DERIVED FROM CONSUMED
NONPROTEIN

RO

KCAL PER UTER

OXYGEN CONSUMED CARBOHYDRATE FAT CARBOHYDRATE FAT

0.707 4.686 100 0.000 496

71 4.690 1.10 98.9 012 .491

72 4.702 4.76 95.2 .051 .476

73 4.714 8.40 91.6 090 460
.74 4.727 12.0 88.0 .130 .444

.75 4.739 15.6 84.4 .170 428
76 4.751 19.2 80.8 .211 412
77 4.764 22.8 77.2 .250 396
78 4.776 26.3 73.7 .290 380
79 4.788 29.9 70.1 .330 .363

80 4.801 33.4 66.6 .371 .347

81 4.813 36.9 63.1 .413 330
82 4.825 40.3 59.7 .454 .313

83 4 838 43.8 56.2 496 .297

84 4.850 47.2 52.8 .537 280
85 4 862 50.7 49.3 .579 263
86 4.875 54.1 45.9 .621 .247

87 4.887 57.5 42.5 663 230
88 4 899 60.8 39.2 705 .213

89 4.911 64.2 35.8 .749 195
90 4.924 67.5 32.5 791 178
91 4.936 70.8 29.2 .834 160
92 4.948 74.1 25.9 .877 .143

.93 4.961 77.4 22.6 .921 .125

94 4.973 80.7 19.3 964 .108

95 4.985 84.0 16.0 1.008 .090

96 4.998 87.2 12.8 1.052 072
97 5.010 90.4 9.58 1.097 .054

98 5.022 93.6 6.37 1.142 .036

99 5.035 96.8 3.18 1.186 018
1.00 5.047 100.0 1.231 .000
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Appendix 7

Name:

Body C ditido:

We

We

He

II

; i ti on

ght (kg):

ght (lbs):

ght (inches

Age:

Trial I Trial

Date: ):

Residual Volume

Volume 20°C

21

22

23

24

25

25

8TPS co rr.

1.102

N
2

(Initial)

N
2

(Equil)

N
2

(Final)

T°C

1.096

1.091

1.085

1.080

1.075

1.068

Trial I Volume

'2(1)

Trial II

+1.60 X(
N
2
EQ-

'2(f)

Imp 0.

.08' xBTPS'

Underwater Weighing

water weight (Kg)

ttw-tare

Ma
Ma-Mw

•RV

Tare Weight

Water Temo *

Water density .99

Residual Volume'

Fat * (jjpi- 4.5) x 100:

Fat (Kg)

Fat (lbs)«

LBW (Kg) »

LSW (lbs)-
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Appendix 3

/•NtiilON * *" '0 L r ' 'KATc' , r :tf£ = ^,-il)
II cXhC SAS
Ili1'ilt\ 33 *
OPTlOHi LS^Td;

I.NPUT°^|C»JSCT T««. TIM „cA1 v€*2 02 : 2 STPOl

IF Suaj|CT«8 A.NU TRIALS ' "'

then ve»^ive*2-vcAi '.i)»sfpo; H
.',5 c ' < .i cSl< VEA2-VEA1».5).sl-?o;

KCALL02=1.252«R«»3.815;

iAOO iXE-tCiS:
?soc soar; by suejecr tbui;

1U.*I = SV02 SRQ. SKCALniJK SfcCALfAT

?rOC amcva;
ifeii?'^ syejscr triac;
ffgft ?RtIc7^i; n,fCALmN »< c^FAr "»« s«".«< siccacfat. SJ9J£CT raiAL;
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Appendix 9

Mean caloric expenditure during 23 minutes of exercise
at different time Intervals after a meal and 1n the
fasted state

Subj ect Con dltlon

Fasted 30 m1n 60 m1n 90 m1n

1 241.8 246.8 259.6 236.4

2 243.0 255.5 248.2 236.6

3 192.5 166.6 215.4 208.4

4 209.9 221.8 205.2 208.3

5 186.2 188.1 195.2 191.1

6 232.7 217.7 209.3 237.4

7 207.0 216.0 215.0 212.6

8 209.0 219.8 206.0 207.1

215.3+21.6* 216.6+28.7 219.2±22.5 217.3±17.4

*Mean+SEM.
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Appendix 10

Mean respiratory exchange ratio during 23 minutes of
exercise at different time Intervals after a meal and
1n the fasted state

Subj ect Con d1t1 on

Fasted 30 m1n 60 m1n 90 m1n

1 0.858 0.825 0.860 0.884

2 0.880 0.878 0.906 0.874

3 0.825 0.894 0.873 0.869

4 0.869 0.896 0.936 0.879

5 0.841 0.899 0.896 0.950

6 0.924 0.894 0.927 0.910

7 0.843 0.900 0.924 0.940

8 0.879 0.871 0.885 0.928

0.865±0.03* 0.882±0.03 0.901+0.03 0.904±0.03

*Mean±SEM.
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Appendix 11

Mean calories expended from fat during 23 minutes of
exercise at different time Intervals after a meal and
1n the fasted state

Subject Condition

Fasted 30 m1n 60 m1n 90 m1n

1 112.3 143.3 120.1 89.8

2 95.0 102.5 75.6 98.0

3 111.9 57.9 89.3 90.1

4 90.5 75.2 42.3 82.5

5 97.7 61.7 65.6 30.7

6 57.4 75.3 49.7 70.1

7 107.6 70.2 53.6 41.2

8 82.4 92.8 77.1 48.0

.3+18.3* 84.9±27.9 71.7+25.194 68.8±25.6

*Mean±SEM.
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TffUL

i

2
-z

TRIAL

1

Z
3
1

una
C'SNEAK

.86529728

.8621 7216

.90101588

.90*1 215X

"SKCALHTN
L^E'AN

2 12.903073
216.S*8-93J
219.230706
2 I 7.26<«<.54

SAi

GENERAL LINEAS MODELS PROCEDURE
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STO ES.<
Li»ES5

0.010295^1
0.0102954J
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ABSTRACT

The objective of this study was to compare caloric

expenditure and type of fuel used during exercise begun

at different time Intervals following a standard test

meal or 1n the fasted state. Eight phys 1call y-f 1 t young

women (ages 21-27) participated 1n four separate

exercise trials after fasting overnight. In three

trials, the subjects consumed a 940 kcal breakfast and

began exercising either 30, 60, or 90 minutes after the

meal. In one trial the subjects did not consume any

breakfast but exercised after an overnight fast. Energy

expenditure and substrate utilization were determined by

Indirect calorlmetry during the last 23 minutes of a 30-

mlnute run on a treadmill at an average workload of 6 2%

V0
2

max. There were no significant differences among

trials when comparing the total caloric expenditures

(range 215-219 kcal). However, subjects oxidized

significantly more fat (94.3 kcal) when exercised on an

empty stomach than they did when exercised 60 and 90

minutes after the meal (71.6 and 68.8 kcal,

respectlvel y)

.
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