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Harmonic Manifolds and Tubes

Balázs Csikós∗, Eötvös Loránd University, Budapest,

Márton Horváth†, Budapest University of Technology and Economics, Budapest

Abstract

The authors showed [1] that in a connected locally harmonic manifold, the volume of a tube of small
radius about a regularly parameterized simple arc depends only on the length of the arc and the radius.
In this paper, we show that this property characterizes harmonic manifolds even if it is assumed only
for tubes about geodesic segments. As a consequence, we obtain similar characterizations of harmonic
manifolds in terms of the total mean curvature and the total scalar curvature of tubular hypersurfaces
about curves. We find simple formulae expressing the volume, total mean curvature, and total scalar
curvature of tubular hypersurfaces about a curve in a harmonic manifold as a function of the volume
density function.

1 Introduction

Locally harmonic manifolds were introduced by E. T. Copson and H. S. Ruse [2] as Riemannian manifolds
admitting a non-constant harmonic function in a punctured neighborhood of any point p which depends only
on the distance of the variable point from p. They showed that locally harmonic manifolds have constant
curvature in dimensions 2 and 3. In 1944 A. Lichnerowicz [3] conjectured that locally harmonic manifolds
of dimension 4 are necessarily locally symmetric spaces and posed the question whether this holds in higher
dimensions as well. Locally harmonic manifolds were classified within the family of symmetric spaces by
A. J. Ledger [4], who showed that a locally symmetric space is locally harmonic if and only if it is flat
or has rank one. The Lichnerowicz conjecture was proved by A. G. Walker [5] in dimension 4, and by
Y. Nikolayevsky [6] in dimension 5. Z. I. Szabó [7] proved the Lichnerowicz conjecture for manifolds having
compact universal covering space. By a result of A.-C. Allamigeon [8], a complete simply connected harmonic
manifold is either compact or it has no conjugate points along the geodesic curves. G. Knieper [9] proved
that if a compact harmonic manifold has no conjugate points, then it is either flat or a rank one symmetric
space, completing the proof of the Lichnerowicz conjecture for all compact harmonic manifolds. As for the
non-compact case, the answer to the question of Lichnerowicz is negative in infinitely many dimensions
starting at 7. E. Damek and F. Ricci [10] noticed that certain solvable extensions of some Heisenberg-type
Lie groups become globally harmonic manifolds if we choose a suitable left invariant Riemannian metric on
them, but they happen to be symmetric only if the used Heisenberg-type group has a center of dimension 1,
3 or 7. We refer to the book [11] by J. Berndt, F. Tricerri, and L. Vanhecke for more details on Damek–Ricci
spaces. At present harmonic symmetric spaces and Damek–Ricci spaces are the only known examples of
harmonic manifolds. In 2006 J. Heber [12] showed that a simply connected homogeneous harmonic manifold
is either flat, or a rank one symmetric space, or a Damek–Ricci space. The existence of non-homogeneous
harmonic manifolds is still an open problem.

There are several notions of harmonicity: infinitesimal, local, global and strong harmonicity, each of
which implies the preceding one. As it is remarked by Z. I. Szabó [7], infinitesimal and local harmonicity
are equivalent properties and they are also equivalent to global harmonicity if the manifold is complete.
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D. Michel [13] showed that a complete simply connected Riemannian manifold is globally harmonic if and
only if it is strongly harmonic. In the rest of the paper, we shall use the term harmonic manifold as a short
name for locally harmonic manifolds. All manifolds are assumed to be connected, smooth, and of dimension
at least 2.

There are many characterizations of harmonic manifolds. We refer to [11, Section 2.6] for a list of the
most important ones. E. T. Copson and H. S. Ruse [2] proved that local harmonicity holds if and only if
small geodesic spheres have constant mean curvature. It was proved by Z. I. Szabó [7] that in a harmonic
manifold, the volume of the intersection of two geodesic balls of small radii depends only on the radii and
the distance between the centers. The authors [14, 15] proved that this property characterizes harmonic
manifolds even if this property is assumed only for balls of the same radius.

The present paper deals with another geometrical characterization, related to the characterization by
the volume of the intersection of geodesic balls. In 1939 H. Hotelling [16] showed that in the n-dimensional
Euclidean or spherical space, the volume of a tube of small radius about a curve depends only on the length
of the curve and the radius. Hotelling’s result was generalized in different directions. H. Weyl [17] proved
that the volume of a tube of small radius about a submanifold of a Euclidean or spherical space depends only
on intrinsic invariants of the submanifold and the radius. A. Gray and L. Vanhecke [18] extended Hotelling’s
theorem to rank one symmetric spaces. Answering a question asked by G. Thorbergsson, the authors [1]
showed that Hotelling’s theorem is also true in harmonic manifolds and it holds in a symmetric space if and
only if the space is flat or has rank one. This result raised the conjecture that Hotelling’s theorem is true
in a Riemannian manifold if and only if the manifold is harmonic.

Our main goal is to prove the missing ‘only if’ part of this conjecture in a stronger form. Namely, we
prove that if a Riemannian manifold has the property that the volume of a tube of small radius about a
geodesic segment depends only on the radius of the tube and the length of the geodesic, then the manifold
is harmonic (Theorem 3).

The above result poses the problem of finding a formula for the volume of tubes about curves in a
harmonic manifold. Such formulae were computed by A. Gray and L. Vanhecke [18] in rank one symmetric
spaces and by the authors [1] in Damek–Ricci spaces. These computations make use of the underlying
algebraic structures of symmetric and Damek–Ricci spaces, respectively, and do not give straightforward
clue for the general case. However, the proof of our main theorem will provide a simple geometrical way to
express the volume of tubes about curves in terms of the volume density function for all harmonic manifolds,
generalizing the already known formulae.

The paper is structured as follows. In Section 2, we collect those definitions and facts that will be used
in the rest of the paper. Section 3 is devoted to the proof of the main theorem. As a corollary of the theorem
and a byproduct of its proof, some further results were obtained. These include some characterizations of
harmonic manifolds with the help of the volume, the total mean curvature, and the total scalar curvature of
tubular hypersurfaces, collected in Section 4. We shall compute the listed intrinsic-volume-type invariants
of tubular hypersurfaces for harmonic manifolds in terms of the volume density function. Our formula for
the total mean curvature extends the results of A. Gray and L. Vanhecke [19] expressing the total mean
curvature of tubes in rank one symmetric spaces. In Section 5, some novel characterizations of D’Atri spaces
are discussed.

2 Preliminaries

Let (M, 〈 , 〉) be a Riemannian manifold. Denote by T̊M ⊆ TM the domain of the exponential map of M , by
exp: T̊M → M the exponential map, and by expp : T̊pM → M the restriction of exp to T̊pM = TpM ∩ T̊M .
The injectivity radius at p will be denoted by inj(p).

For p ∈ M and r > 0, we shall denote by Bp(r) ⊂ TpM and Sp(r) ⊂ TpM the closed ball and the sphere
of radius r centered at the origin 0p ∈ TpM , respectively. The unit sphere Sp(1) will be denoted simply by
Sp. Denote by SM =

⋃

p∈M Sp ⊂ TM the total space of the unit sphere bundle of the tangent bundle.
Associated to a non-zero tangent vector v ∈ TpM \ {0p}, we shall consider the great subsphere

S0(v) = {w ∈ TpM | 〈w,v〉 = 0, ‖w‖ = ‖v‖},
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the hemisphere
S+(v) = {w ∈ TpM | 〈w,v〉 ≥ 0, ‖w‖ = ‖v‖},

the “disk”
B0(v) = {w ∈ TpM | 〈w,v〉 = 0, ‖w‖ ≤ ‖v‖},

and the half-ball
B+(v) = {w ∈ TpM | 〈w,v〉 ≥ 0, ‖w‖ ≤ ‖v‖}.

When these sets are contained in the interior of Bp(inj(p)), we can take their exponential images

Bp(r) = exp(Bp(r)), B0(v) = exp(B0(v)), B+(v) = exp(B+(v)),
Sp(r) = exp(Sp(r)), S0(v) = exp(S0(v)), S+(v) = exp(S+(v)).

The sets Bp(r) and Sp(r) are the geodesic ball and sphere of radius r centered at p, respectively. Analogously,
the sets B0(v), B+(v), S0(v), and S+(v) will be called a geodesic disk, a geodesic half-ball, a geodesic great
subsphere, and a geodesic hemisphere, respectively.

Let ωm = πm/2/Γ(m/2 + 1) be the volume of an m-dimensional Euclidean unit ball.

Definition. For a smooth injective regular curve γ : [a, b] → M and r > 0, set

T (γ, r) = {v ∈ TM | ∃t ∈ [a, b] such that v ∈ Tγ(t)M,v ⊥ γ′(t), and ‖v‖ ≤ r},

and
P (γ, r) = {v ∈ TM | ∃t ∈ [a, b] such that v ∈ Tγ(t)M,v ⊥ γ′(t), and ‖v‖ = r},

Assume that r is small enough to guarantee that the exponential map is defined and injective on T (γ, r).
Then we define the (solid) tube of radius r about γ by

T (γ, r) = exp(T (γ, r)),

while the tubular hypersurface of radius r about γ is defined as

P(γ, r) = exp(P (γ, r)).

Denote the volume of T (γ, r) by Vγ(r) and the (n− 1)-dimensional volume of P(γ, r) by Aγ(r).

Definition. We say that a Riemannian manifold has the tube property if there is a function v : [0,∞) → R

such that
Vγ(r) = v(r)lγ (1)

for any smooth injective regular curve γ : [a, b] → M of length lγ and any sufficiently small r.
The manifold is said to have the tube property for geodesic curves if equation (1) holds with a fixed

function v for all geodesic segments γ and for any sufficiently small r.

The authors proved the following two theorems in [1].

Theorem 1. A Riemannian manifold has the tube property if and only if it is a D’Atri space and satisfies
the tube property for geodesic curves.

Theorem 2. Every connected harmonic manifold has the tube property.

Our goal is to strengthen these two theorems as follows.

Theorem 3. The following properties are equivalent for a connected Riemannian manifold:

(i) the manifold has the tube property;

(ii) the manifold has the tube property for geodesic curves;

(iii) the manifold is harmonic.
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Implication (i)⇒(ii) is trivial, (iii)⇒(i) is just Theorem 2, (ii)⇒(iii) will be proved in the next section.
We note that our proof can be simplified substantially if we want to show only the implication (i)⇒(iii).
Details of how to adapt our proof to obtain this weaker statement will be given in the remark at the end of
Section 5.

The proof will use the characterization of harmonic manifolds with the help of the volume density
function. By definition, the volume density function θ : T̊M → R assigns to a tangent vector v ∈ T̊pM , the
volume stretch factor of the derivative map Tv expp : Tv(TpM) → Texp(v)M . If e1, . . . , en is an orthonormal
basis of Tv(TpM) ∼= TpM with respect to the Euclidean structure 〈 , 〉p, then θ(v) =

√
det g, where g is the

n× n matrix with entries gij = 〈Tv expp(ei), Tv expp(ej)〉.
A Riemannian manifold is known to be harmonic if and only if the volume density function is radial,

which means that θ(v) depends only on ‖v‖ (see [11, Section 2.6]).
For a tangent vector v ∈ TM , γv will denote the maximal geodesic curve with initial velocity γ′

v
(0) = v.

The canonical geodesic involution is the involutive diffeomorphism ι : T̊M → T̊M defined by
ι(v) = −γ′

v
(1).

Theorem 4 ([20, Lemma 6.12]). The volume density function has the symmetry θ ◦ ι = θ.

The geodesic spray G : TM → T (TM) is the vector field on the tangent bundle that generates the

geodesic flow. Its value at v ∈ TM is the tangent vector Gv = dγ′
v
(t)

dt

∣

∣

t=0
∈ Tv(TM). In particular, the

derivative of a smooth function f : TM → R with respect to the geodesic spray is given by the formula

Gvf = df(γ′
v
(t))

dt

∣

∣

t=0
.

The Liouville vector field X is the natural vector field on TM generating the flow Φt(v) = etv. Denote
by r̄ : TM → R the function r̄(v) = ‖v‖. The normalization X/r̄ of X, defined on the complement of the
zero section of TM , will be denoted by ∂r. The derivative ∂rf of a smooth function f : U → R defined on
an open subset U of TM is called the radial derivative of f . Its value at a nonzero tangent vector v ∈ U is
∂rf(v) =

d
dtf((1 + t/‖v‖)v)|t=0 .

The following lemma shows that invariance under the canonical geodesic involution is not inherited by
the radial derivative of a function.

Lemma 1. If the smooth function f is defined on a ι-invariant open subset of T̊M and f ◦ ι = f , then
(∂rf) ◦ ι = ∂rf −Gf/r̄. In particular, ∂rf is ι-invariant if and only if f is a first integral of the geodesic
flow.

Proof. If u ∈ SM , and the non-zero tangent vector ru is in the domain of f , then

(∂rf) ◦ ι(ru) = (∂rf)(−rγ′
u
(r)) =

d

dρ
f(−(r + ρ)γ′

u
(r))

∣

∣

ρ=0
=

d

dρ
f ◦ ι(−(r + ρ)γ′

u
(r))

∣

∣

ρ=0

=
d

dρ
f((r + ρ)γ′

u
(−ρ))

∣

∣

ρ=0
= ∂rf(ru)−

Gruf

r
.

Harmonicity can also be characterized with the help of the mean curvature of geodesic spheres. Consider
the open subset T̆M = {v ∈ T̊M | θ(v) · ‖v‖ 6= 0} in TM and its intersection T̆pM = T̆M ∩ TpM with
TpM . If v ∈ T̆pM , then the exponential map expp : T̊pM → M maps an open neighborhood U ⊂ T̆pM of
v diffeomorphically onto its image. In particular, the image of U ∩ Sp(‖v‖) under the exponential map is
a smooth hypersurface of M . By the Gauss lemma, the tangent vector γ′

v
(1)/‖v‖ is a unit normal of the

hypersurface exp(U ∩ Sp(‖v‖)). Let Lv denote the shape operator of the hypersurface exp(U ∩ Sp(‖v‖))
with respect to the unit normal γ′

v
(1)/‖v‖ and let h(v) = tr(Lv) be the trace of Lv.

Theorem 5 ([21, Theorem 3.11]). The mean curvature function of geodesic spheres can be expressed with
the help of the volume density function as follows

h = −∂r(ln(r̄
n−1θ)) = −n− 1

r̄
− ∂rθ

θ
.

We shall use the big O notation in the following sense. For two functions F and G defined on a
neighborhood of the zero section of TM , we write F (ru) = G(ru) + O(rm) if for any compact subset
K ⊆ M , there exist positive numbers CK > 0 and rK > 0 such that |F (ru) − G(ru)| ≤ CKrm for any
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u ∈ SM with base point in K, and any r for which |r| < rK . Typically we shall apply this notation in the
case whenM is a real analytic manifold and F−G is analytic in a neighborhood of the zero section of TM . In
that case, we can choose a chart φ = (x1, . . . , xn) from the Cω-atlas of M around any point p ∈ M mapping
p to φ(p) = 0. The chart φ induces a chart (x̂1, . . . , x̂n, y1, . . . , yn) = (x1 ◦π, . . . , xn ◦π,dx1, . . . ,dxn) on the
tangent bundle, where π : TM → M is the projection of the bundle. The difference F −G can be written as
the sum of a power series F −G =

∑

α,β aα,β x̂
αyβ around 0p ∈ TpM , where the sum goes for all multiindices

α and β. Then equation F (ru) = G(ru) + O(rm) is equivalent to the condition that aα,β = 0 for all α, β
such that |β| < m, for any choice of p and φ.

3 Proof of Theorem 3

In this section, we prove that if a Riemannian manifold M satisfies equation (1) for any geodesic segment γ
and any sufficiently small radius r with a given function v, then M is harmonic.

It was proved in [1] that the tube property implies that the manifold is Einstein. As the proof used
the tube property only for geodesic curves, we obtain that M must be an Einstein manifold, thus, by the
Kazdan–DeTurck theorem [22], normal coordinate charts give a Cω-atlas on M with respect to which the
metric tensor is real analytic.

As M is a real analytic Riemannian manifold, SM is also a real analytic manifold, and there exist
analytic functions ai : SM → R for i = 0, 1, 2, . . . , so that

θ(ru) =

∞
∑

i=0

ai(u)r
i (2)

for any u ∈ SM and any r with sufficiently small absolute value. The identity θ(ru) = θ((−r)(−u)) gives
at once that

ai(−u) = (−1)iai(u). (3)

Equation (2) shows that M is harmonic if and only if all the functions ai are constant. Observe that if
ai is constant for an odd i, then ai ≡ 0 by equation (3).

Definition. We shall say that a real analytic Riemannian manifold M is harmonic up to order k if the
functions ai are constant for 0 ≤ i ≤ k.

When ai is a constant function, we shall write ai instead of ai(u), whatever the unit tangent vector
u ∈ SM is, and think of ai as a real number.

We are going to prove that M is harmonic up to order 2k by induction on k. It is well-known that
a0 ≡ 1 ([21, Corollary 9.9]) for any Riemannian manifold, so the base case k = 0 is settled. Assume that M
is harmonic up to order 2k.

Lemma 2. If a real analytic manifold is harmonic up to order 2k, then it is also harmonic up to order
2k + 1.

Proof. L. Vanhecke formulated and proved a slight modification of this statement in [23], but in fact his proof
implies our lemma as well. We recall Vanhecke’s proof for the reader’s convenience. Choose an arbitrary
unit tangent vector u ∈ SM . Then Theorem 4 implies

∞
∑

i=0

ai(u)r
i = θ(ru) = θ(−rγ′

u
(r)) =

∞
∑

i=0

ai(γ
′
u
(r))(−r)i.

Writing the analytical functions αi(r) = ai(γ
′
u
(r)) as the sum of their Taylor series, we obtain

∞
∑

i=0

ai(u)r
i =

∞
∑

i=0

∞
∑

j=0

(−1)i
α
(j)
i (0)

j!
ri+j.

Since αi(0) = ai(u), equating the coefficients of r2k+1 on the two sides gives

2a2k+1(u) =

2k+1
∑

j=1

(−1)2k+1−j
α
(j)
2k+1−j(0)

j!
. (4)
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As the functions α2k+1−j are constant for 1 ≤ j ≤ 2k + 1 by our assumption, their derivatives vanish,
therefore a2k+1 ≡ 0.

A Riemannian manifold is a D’Atri space if and only if the mean curvature function of geodesic spheres
satisfies the symmetry relation h = h ◦ ι (see [11, Section 2.7]). The following lemma is a “stability version”
of the fact that harmonic manifolds are D’Atri spaces.

Lemma 3. If M is harmonic up to order 2k, then

h(ru)− h(ι(ru)) = O(r2k+2).

Proof. Using Lemma 2, we can write θ as

θ(ru) = p(r) + a2k+2(u)r
2k+2 +O(r2k+3),

where p is a polynomial of degree 2k with p(r) =
∑2k

i=0 air
i = 1 +O(r2). Thus, p−1(r) = 1 +O(r2), and

ln(θ(ru)) = ln(p(r))+ln
(

1+p−1(r)(a2k+2(u)r
2k+2+O(r2k+3))

)

= ln(p(r))+a2k+2(u)r
2k+2+O(r2k+3). (5)

If an analytic function F defined on an open neighborhood of the zero section of TM can be written as

F (ru) =

∞
∑

i=1

bi(u)r
i

for u ∈ SM and r > 0, then

GruF

r
=

∞
∑

i=1

(Gubi)r
i.

Applying this statement to the series (5) of the ι-invariant function ln ◦θ, and using Theorem 5 and Lemma
1, we obtain

h(ru)− h(ι(ru)) = ∂r(ln ◦θ)(ι(ru)) − ∂r(ln ◦θ)(ru) = −(Gua2k+2)r
2k+2 +O(r2k+3) = O(r2k+2).

We shall need the following Fubini-type formula.

Lemma 4. For any continuous function f : V2(R
n) → R defined on the Stiefel manifold

V2(R
n) = {(u,v) ∈ S

n−1 × S
n−1 | u ⊥ v} ∼= O(n)/O(n− 2),

we have
∫

Sn−1

(
∫

S
n−2
u

f(u,v) dv

)

du =

∫

Sn−1

(
∫

S
n−2
v

f(u,v) du

)

dv, (6)

where S
n−1 is the sphere of unit vectors in R

n, S
n−2
u

denotes the sphere of unit vectors orthogonal to u,
integrations over the unit spheres are always taken with respect to the volume measures induced by the
standard Riemannian metric on them.

Proof. Both sides of (6) define an O(n)-invariant positive linear functional on the space of continuous
functions on V2(R

n), thus, by the Riesz representation theorem, there exist unique regular Borel measures
µ and ν on V2(R

n) such that for any continuous function f : V2(R
n) → R, we have

∫

Sn−1

(
∫

S
n−2
u

f(u,v) dv

)

du =

∫

V2(Rn)
f dµ and

∫

Sn−1

(
∫

S
n−2
v

f(u,v) du

)

dv =

∫

V2(Rn)
f dν.

Both µ and ν are O(n)-invariant, and normalized so that µ(V2(R
n)) = ν(V2(R

n)) = n(n− 1)ωnωn−1, hence
µ = ν. The equality of the measures implies the lemma.

Our aim is to show that the function a2k+2 is constant. As an intermediate step, we prove a weaker
statement.
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Lemma 5. Assume that a Riemannian manifold M having the tube property for geodesic curves is harmonic
up to order 2k. Then the integral

∫

Sp

a2k+2(u) du does not depend on p ∈ M .

Proof. Fix a point p ∈ M and choose an arbitrary unit tangent vector u ∈ Sp. Consider the tube T (γ, r)
about the geodesic segment γ = γu|[0,l]. Using equation (1) and the results of L. Vanhecke and T. J. Willmore
[24, equations (3.10) and (3.37)], the volume of T (γ, r) can be written as

Vγ(r) = v(r)l = −
∫ l

0

∫ r

0
ρn−1

∫

S0(γ′(t))
〈Lι(ρv)(γ

′(t)), γ′(t)〉θ(ρv) dv dρdt.

Differentiating this equation with respect to l at l = 0 and with respect to r, we obtain

v′(r) = −
∫

S0(u)
〈Lι(rv)(u),u〉rn−1θ(rv) dv. (7)

Integrating equation (7) as u is running over the unit sphere Sp, and applying first Lemma 4 then Lemma
3 and Theorem 5, we obtain

nωnv
′(r) = −

∫

Sp

∫

S0(u)
〈Lι(rv)(u),u〉rn−1θ(rv) dv du = −

∫

Sp

∫

S0(v)
〈Lι(rv)(u),u〉rn−1θ(rv) dudv

= −ωn−1

∫

Sp

h(ι(rv))rn−1θ(rv) dv = −ωn−1

∫

Sp

h(rv)rn−1θ(rv) dv +O(r2k+n+1)

= ωn−1

∫

Sp

∂r(r
n−1θ(rv)) dv +O(r2k+n+1).

Integration with respect to r yields

nωn

ωn−1
v(r) =

∫

Sp

rn−1θ(rv) dv+O(r2k+n+2) =

2k+2
∑

i=0

(

∫

Sp

ai(v) dv

)

rn+i−1 +O(r2k+n+2). (8)

From this, we get
∫

Sp

a2k+2(v) dv =
nωn

ωn−1
· v(2k+n+1)(0)

(2k + n+ 1)!
,

where the right hand side does not depend on p.

Lemma 6. If M is harmonic up to order 2k and satisfies the tube property for geodesic curves with function
v, then for u ∈ Sp and r ∈ (0, inj(p)), the volume of the geodesic half-ball B+(ru) can be expressed as

voln(B+(ru)) =
nωn

2ωn−1

∫ r

0
v(ρ) dρ+O(r2k+n+3).

Proof. The volume of the half-ball B+(ru) is expressed by the integral

voln(B+(ru)) =

∫ r

0

∫

S+(u)
ρn−1θ(ρv) dv dρ =

k+1
∑

i=0

(

∫

S+(u)
a2i(v) dv

)

rn+2i

n+ 2i
+O(r2k+n+3).

Since the functions a2i are even, this implies that

voln(B+(ru)) = voln(B+(−ru)) +O(r2k+n+3).

As the opposite half-balls B+(±ru) have equal volumes up to an error term O(r2k+n+3), their volumes
are equal to half the volume of the geodesic ball Bp(r) up to an error of the same order. The latter volume
can be obtained by integrating (8), thus,

nωn

ωn−1

∫ r

0
v(ρ) dρ+O(r2k+n+3) =

∫ r

0

∫

Sp

ρn−1θ(ρv) dv dρ = voln(Bp(r)).

7



Now we are ready to complete the induction step.
For v ∈ T̊pM , let Πv : TpM → Texp(v)M denote the parallel transport map along the geodesic γv. Let

u ∈ Sp be an arbitrary unit tangent vector and consider the geodesic curve γ = γu. Consider the isotopy
Φt = expγ(t) ◦Πtu ◦exp−1

p defined on a small neighborhood of p for small values of t. Let X(q) = d
dtΦt(q)

∣

∣

t=0
be the initial velocity vector field of the isotopy.

It is clear from the definitions that the image of B+(ru) under Φt is the half-ball B+(rγ′(t)) for small
r > 0 and t. The boundary ∂B+(ru) of the half-ball is the union of the geodesic disk B0(ru) and the
geodesic hemisphere S+(ru).

The outer unit normal vector field N of B+(ru) is a smooth vector field on the smooth part ∂B+(ru) \
S0(ru) of the boundary ∂B+(ru), thus, although it does not extend continuously to S0(ru) it is defined
almost everywhere. Then, by Lemma 6, we have
∫

B0(ru)
〈X,N〉dσ +

∫

S+(ru)
〈X,N〉dσ =

∫

∂B+(ru)
〈X,N〉dσ =

d

dt
voln(B+(rγ′(t)))

∣

∣

∣

t=0
= O(r2k+n+3). (9)

The images Φt(B0(ru)) of the geodesic disk B0(ru) under the isotopy sweep out the tube about γ, i.e.,

T (γ|[0,ε], r) =
⋃

t∈[0,ε]

Φt(B0(ru)).

Differentiating the volume of this tube with respect to ε at ε = 0, and using equation (9), we obtain

v(r) =

∫

B0(ru)
〈X,−N〉dσ =

∫

S+(ru)
〈X,N〉dσ +O(r2k+n+3). (10)

For a unit tangent vector v ∈ S+(u), the map Γ: [0, r] × [−ε, ε] → M , Γ(s, t) = Φt(γv(s)) is a geodesic
variation of γv. Thus, J(s) = X(γv(s)) is a Jacobi field along γv with initial values J(0) = u and J ′(0) =
0p. The tangential component 〈J, γ′

v
〉 of J must be a linear function of the form 〈J(t), γ′

v
(t)〉 = at + b

for some constants a, b ∈ R. The initial conditions for J give a = 0 and b = 〈u, γ′
v
(0)〉 = 〈u,v〉. As

γ′
v
(r) = N(exp(rv)) by the Gauss lemma, we have

〈X(exp(rv)), N(exp(rv))〉 = 〈J(r), γ′
v
(r)〉 = b = 〈u,v〉. (11)

Therefore, equations (10) and (11) yield

v(r) =

∫

S+(u)
〈u,v〉θ(rv)rn−1 dv+O(r2k+n+3). (12)

The coefficients of r2k+n+1 of the Taylor series of the two sides must be equal, thus, using the symmetry
(3), we obtain

2
v(2k+n+1)(0)

(2k + n+ 1)!
=

∫

Sp

|〈u,v〉|a2k+2(v) dv. (13)

We recall some facts about the cosine transform. See [25] for more details. The cosine transform C is
the integral transform C : C0(Sn−1) → C0(Sn−1) defined by

(C (f))(u) =

∫

Sn−1

|〈u,v〉|f(v) dv.

It is known that C (g) = 0 if and only if g is odd (see [25, Proposition 3.4.10]). We also have that the cosine
transform of the constant 1 function is

(C (1))(u) =

∫

Sn−1

|〈u,v〉|dv = 2ωn−1,

(see [25, Lemma 3.4.5]).
The above facts and formula (13) imply that the function

f(v) = a2k+2(v)−
v(2k+n+1)(0)

ωn−1(2k + n+ 1)!
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is an odd function. On the other hand, as a2k+2 is an even function, so is f . Therefore, f must vanish, and

a2k+2(v) =
v(2k+n+1)(0)

ωn−1(2k + n+ 1)!

is a constant function. This completes the induction step and the proof of Theorem 3.

Corollary 1. In a harmonic manifold, the volume of solid tubes of small radius r about a curve γ is given
by equation (1) with the function

v(r) = ωn−1r
n−1θ(r) =

ωn−1

nωn
voln−1(Sp(r)),

where θ : [0,∞) → R is a function for which θ = θ ◦ r̄, and p is an arbitrary point of M .

Proof. Indeed, as (12) holds for every k, we have

v(r) =

∫

S+(u)
〈u,v〉θ(rv)rn−1 dv =

1

2
rn−1θ(r)C (1) = ωn−1r

n−1θ(r).

Remark. A. Gray and L. Vanhecke [26] posed the general question to what extent a Riemannian manifold
is determined by the volumes of small geodesic balls. An analogue of this question for the volumes of tubes
about curves was studied by them in [18]. They proved that some families of Riemannian manifolds can be
characterized by the volumes of their geodesic balls or tubes. For example, they proved in [26], that if, in a
Riemannian manifold, the volume of geodesic balls of small radius r equals ωnr

n, then the manifold is flat.
In [18, Section 7] they show some characterizations of flat and rank one symmetric spaces in terms of the
volumes of the tubes about curves. As the volumes of geodesic balls and volumes of tubes of small radius
can be expressed with the help of the volume density function in harmonic manifolds, these results suggest
the question whether a harmonic manifold is determined up to local isometry by its volume density function
θ. The answer to this question is negative, and counterexamples can be found among the Damek–Ricci
spaces. Damek–Ricci spaces are solvable Lie groups with a left invariant Riemannian metric, the Lie algebra
of which is a one dimensional extension of a generalized Heisenberg Lie algebra n = v ⊕ z with center z.
It is known ([10, Theorem 1]) that the dimensions p = dim v and q = dim z determine the volume density
function of the Damek–Ricci space by θ(v) = θ(‖v‖), where

θ(r) = coshq(r/2)

(

sinh(r/2)

r/2

)p+q

.

However, if q ≡ 3 (mod 4), then the numbers p and q do not determine the isomorphism class of the Lie
algebra n uniquely, and the corresponding Damek–Ricci spaces are not necessarily isometric. An explicit
example when this happens is given in [11, Section 4.1.9, Theorem, (ii)]: There are two non-isomorphic
generalized Heisenberg Lie algebras with dimension parameters p = 8 and q = 3, and the corresponding
Damek–Ricci spaces are not isometric, because one of them is the quaternionic hyperbolic space, hence
symmetric, while the other is not symmetric.

4 Total mean curvature and total scalar curvature of tubular hypersur-

faces

When the volume of the tube T (γ, r) depends only on the radius r and the length of the curve γ for small r,
then the same is true for the derivatives of this volume function with respect to the radius. The derivatives
are geometric invariants of the tubular hypersurface P(γ, r). As P(γ, r + ∆) is a parallel hypersurface of
P(γ, r) lying at distance ∆ away from it, we can apply the Steiner-type formula of E. Abbena, A. Gray, and
L. Vanhecke [27, Theorem 3.5] to compute the power series of the volume of T (γ, r +∆) with respect to ∆
for fixed γ and r. The formula gives

Vγ(r +∆) = Vγ(r) +Aγ(r)∆ +

∫

P(γ,r)

[

−µP (p)
∆2

2
+
(

ρ(N(p)) + τP (p)− τ(p)
)∆3

6

]

dp+O(∆4), (14)
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where µP (p) is the sum of the principal curvatures of P(γ, r) at p ∈ P(γ, r) with respect to the outer unit
normal N(p) of the solid tube T (γ, r) at its boundary point p, ρ(N(p)) = Ric (N(p), N(p)) is the Ricci
curvature of M in the direction N(p), τ(p) and τP (p) are the scalar curvatures of M and P(γ, r) at p,
respectively.

Since we have Vγ(r) = ωn−1r
n−1lγ +O(rn) for any fixed curve γ, the volume function Vγ is uniquely de-

termined by its kth derivative V
(k)
γ if k ≤ n. Thus, the following statement is a straightforward consequence

of Theorem 3.

Corollary 2. For a connected Riemannian manifold M , the following properties are equivalent:

(i) M is harmonic.

(ii) For any regularly parameterized simple arc γ, the (n − 1)-dimensional volume Aγ(r) of the tubular
hypersurface P(γ, r) depends only on r and the length lγ of γ.

(iii) For any geodesic segment γ, the volume Aγ(r) depends only on r and the length of γ.

(iv) For any regularly parameterized simple arc γ, the total mean curvature

Hγ(r) =
1

n− 1

∫

P(γ,r)
µP (p) dp

of P(γ, r) depends only on r and the length of γ.

(v) For any geodesic segment γ, the total mean curvature Hγ(r) depends only on r and the length of γ.

If M is harmonic, then the volume and the total mean curvature of the tubular hypersurface can be expressed
as

Aγ(r) = v′(r)lγ = ωn−1(r
n−1θ′(r) + (n− 1)rn−2θ(r))lγ , (15)

and

Hγ(r) = − v′′(r)

n− 1
lγ = −ωn−1

(

rn−1

n− 1
θ′′(r) + 2rn−2θ′(r) + (n− 2)rn−3θ(r)

)

lγ .

The total scalar curvature of the tubular surface appears in the third derivative of the volume of T (γ, r)
with respect to r. This observation enables us to prove the following theorem.

Theorem 6. If M is harmonic, then the total scalar curvature of the tubular hypersurface P(γ, r) about a
regularly parameterized simple arc γ is given by

∫

P(γ,r)
τP (p) dp =

(

v′′′(r)− 3(n − 1)θ′′(0)v′(r)
)

lγ (16)

for small values of r, hence it depends only on r and the length lγ of γ.
Conversely, if dimM > 3, and for all geodesic segments γ, the total scalar curvature of P(γ, r) depends

only on the length of γ and r, then the manifold is harmonic.

Proof. Assume first that M is harmonic. Then the third derivative of Vγ = vlγ at r equals

v′′′(r)lγ =

∫

P(γ,r)

(

ρ(N(p)) + τP (p)− τ(p)
)

dp (17)

by equation (14). Harmonic manifolds are Einstein manifolds with constant Ricci curvature ρ = −3θ′′(0)
and scalar curvature τ = nρ by [21, Corollary 9.9]. Expressing the total scalar curvature of P(γ, r) from
(17) and using (15), we obtain equation (16).

For the second part of the theorem, assume that dimM > 3 and M has the property that the total scalar
curvature Cγ(r) of the tubular hypersurface P(γ, r) depends only on r and the length lγ if γ is a geodesic
segment and r is small. Since the total scalar curvature is obviously an additive function of lγ , it must have
the form Cγ(r) = c(r)lγ . The initial terms of the Taylor series of Cγ(r) were computed by L. Gheysens and
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L. Vanhecke [28]. According to [28, Theorem 5.1], if γ : [a, b] → M is a fixed injective unit speed curve, then
for small radii we have

Cγ(r) = (n− 1)ωn−1r
n−4

∫ b

a

[

(n− 2)(n − 3)− n− 3

6(n− 1)
{(n − 4)τ(γ(t)) + (n+ 2)ρ(γ′(t))}r2 +O(r4)

]

dt.

Using the special form of Cγ(r), we get from this equation that

lim
r→0

6
(

(n− 1)(n − 2)(n − 3)ωn−1r
n−4 − c(r)

)

(n− 3)ωn−1rn−2
= (n− 4)τ(γ(t)) + (n + 2)ρ(γ′(t))

holds for any t ∈ [a, b]. Since γ(t) can be any point p of M , and γ′(t) = u can be any unit tangent vector
at p, we obtain that the quantity (n − 4)τ(p) + (n + 2)ρ(u) does not depend on the choice of p ∈ M and
the unit tangent vector u ∈ Sp. This implies that M is an Einstein manifold with constant Ricci curvature
equal to

ρ = lim
r→0

6
(

(n− 1)(n − 2)(n − 3)ωn−1r
n−4 − c(r)

)

(n− 1)(n − 2)(n − 3)ωn−1rn−2
.

Differentiating (14) three times with respect to ∆ at ∆ = 0 and using the fact that M is Einstein, we
obtain that the function Vγ satisfies the differential equation

V ′′′
γ (r) = (1− n)ρV ′

γ(r) + c(r)lγ (18)

for small positive values of r, for any geodesic segment γ. Let v be the unique non-extendable solution of
the differential equation

v′′′ = (1− n)ρv′ + c (19)

with initial condition v(0) = v′(0) = v′′(0) = 0. Since Vγ(0) = V ′
γ(0) = V ′′

γ (0) = 0, comparing the differential
equations (18) and (19), we see that Vγ(r) = v(r)lγ must hold for any geodesic segment γ and any sufficiently
small r, hence M is harmonic by Theorem 3.

Remark. We do not know whether condition dimM > 3 can be dropped in the second half of the theorem.
As for the specialities of the case of 3-dimensional manifolds, see the comments in [28] following the proof
of Theorem 5.4.

5 Some characterizations of D’Atri spaces

Ball-homogeneous spaces were introduced by O. Kowalski and L. Vanhecke [29] as Riemannian manifolds
in which the volume of geodesic balls of small radii depends only on the radius of the ball. Analogously,
we say that a Riemannian manifold is half-ball homogeneous if the volume of a geodesic half-ball of small
radius depends only on the radius of the half-ball.

Theorem 7. The following conditions for a Riemannian manifold M are equivalent:

(i) The manifold is a D’Atri space.

(ii) The manifold is half-ball homogeneous.

(iii) The manifold is real analytic, and the functions t 7→ ak(γ
′(t)), are constant for every k and every unit

speed geodesic curve γ, where the functions ak : SM → R are defined by equation (2).

(iv) The volume density function θ is a first integral of the geodesic flow.

Proof. (i)⇒(ii). P. Günther and F. Prüfer [30] proved that every D’Atri space is ball-homogeneous. Local
central geodesic reflections preserve volume by the definition of a D’Atri space. Reflecting a small half-ball
in its center takes the half-ball to the complementary half-ball. As these half-balls have equal volumes, their
volume is half the volume of a ball of radius r.
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(ii)⇒(i). If the volume of a half-ball of radius r is b(r), then for any unit tangent vector u ∈ SM and
any small r > 0, we have

b(r) =

∫

B+(ru)
θ(v) dv =

∫ r

0
ρn−1

∫

S+(u)
θ(ρv) dv dρ.

Differentiating with respect to r, we obtain

b′(r) = rn−1

∫

S+(u)
θ(rv) dv.

This means that for any p ∈ M , and any small r, the hemispherical transformation of the function v 7→ θ(rv)
defined on the unit sphere Sp is constant. This implies that the restriction of θ onto the sphere Sp(r) is an
even function [25, Proposition 3.4.11], so local geodesic symmetries are volume-preserving.

(i)⇒(iii) D’Atri spaces are real analytic by a result of Z. I. Szabó [31]. As θ is even for a D’Atri space,
a2k+1 ≡ 0 for all k, hence it is enough to deal with the even coefficients a2k. For these, we show by induction
on k that if γ is a unit speed geodesic, then a2k ◦γ′ is constant. As a0 ≡ 1, the base case is obvious. Assume
that the functions a2j ◦ γ′ are all constant for 0 ≤ j < k. Then for any t0 in the domain of γ, applying
equation (4) for u = γ′(t0), we obtain 0 = α′

2k(0) = (a2k ◦ γ′)′(t0), therefore a2k ◦ γ′ is constant.
(iii)⇒(iv). If γ is an arbitrary geodesic with γ′(t0) = ru, where u ∈ SM , then

θ(γ′(t)) =

∞
∑

k=0

ak(γ
′
u
(r(t− t0)))r

k.

As the functions ak ◦ γ′u are constant, θ ◦ γ′ is constant as well.
(iv)⇒(i). If (iv) holds, then for any v ∈ T̊M for which −v ∈ T̊M as well, we have

θ(v) = θ(γ′
v
(0)) = θ(γ′

v
(−1)) = θ(ι(γ′

v
(−1))) = θ(−v),

so local geodesic symmetries are volume-preserving.

Remark. As it was noted in Section 2, our proof of Theorem 3 reduces to a short proof of the fact that
the tube property implies harmonicity. Indeed, by Theorems 1 and 7, the tube property implies that the
manifold is D’Atri, and half-ball homogeneous. For this reason, assuming the tube property, one can skip all
the lemmata of Section 3 and start the proof of harmonicity right after Lemma 6. Then equations (9)-(12)
will be true without the error terms. In particular, equation (12) gives that the cosine transform of the even
function Sp → R defined by v 7→ θ(rv) is the constant 2v(r)/rn−1 function for any p ∈ M , and r < inj(p).
Using the properties of the cosine transform, this yields that θ(rv) = v(r)/(ωn−1r

n−1) depends only on r
for v ∈ SM .
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