
ar
X

iv
:1

51
1.

03
10

7v
3 

 [
he

p-
th

] 
 2

3 
Fe

b 
20

16

ITP-Budapest Report 667

Prepared for submission to JHEP

Algebraic Bethe Ansatz for O(2N) sigma models

with integrable diagonal boundaries

Tamás Gombor, a,b László Palla, b

aMTA Lendület Holographic QFT Group, Wigner Research Centre, H-1525 Budapest 114, P.O.B.

49, Hungary
bInstitute for Theoretical Physics, Roland Eötvös University, 1117 Budapest, Pázmány s. 1/A

Hungary

E-mail: gombor.tamas@wigner.mta.hu, palla@ludens.elte.hu

Abstract: The finite volume problem of O(2N) sigma models with integrable diagonal

boundaries on a finite interval is investigated. The double row transfer matrix is diago-

nalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle

rapidities and the accompanying Bethe Ansatz equations are derived.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333612755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1511.03107v3
mailto:gombor.tamas@wigner.mta.hu
mailto:palla@ludens.elte.hu


Contents

1 Introduction 1

2 O(2N) sigma model with integrable diagonal boundaries 2

2.1 Boundary O(2N) model in finite volume 4

3 Diagonalization of the DTM by algebraic BA 5

3.1 Definitions of the ‘reduced’ monodromy and transfer matrices 5

3.2 The pseudovacuum and the Aa(θ), Da(θ) operators 7

3.3 The commutation relations between the elements of MA 9

3.4 First level of ABA 11

3.5 Nesting 13

4 The Bethe Ansatz equations 20

4.1 The magnonic Bethe Ansatz equations 21

4.2 The boundary Bethe Yang equations for the massive particles 23

5 The case with different boundaries 24

6 Conclusions 26

A Notation 27

B Derivation of eq.(3.28) 28

C The relation between the wanted and unwanted terms 28

1 Introduction

Quantum integrable models in two dimensions have been the subject of intensive investi-

gations recently, for at least two reasons. On the one hand they are interesting on their

own, since in them one can compute many physically relevant quantities (e.g. finite volume

spectra) exactly. On the other integrability based methods and specific integrable models

play very important role in solving the spectral problem of AdS/CFT [1].

A particularly interesting class of integrable models is the class of boundary integrable

ones [2]; they are defined on an open interval with integrability preserving boundary condi-

tions at the ends of the interval1. To solve these models one has to find first the reflection

matrices (or boundary S matrices) by solving the boundary Yang-Baxter, unitarity and

1In these models the bulk interactions remain unchanged, the only change is that the particle like

excitations have some additional - but integrability preserving - interactions with the boundaries.
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crossing equations. The next step to solve their finite volume problem is to construct

the double row monodromy (DM) and double row transfer (DTM) matrices [3], since the

boundary Bethe Yang equations for the particle rapidities are formulated with the help of

the eigenvalues of the DTM.

In this paper we consider the O(2N) sigma model with integrability preserving diagonal

boundaries. Sigma models with integrability preserving boundaries were considered both

in the classical field theoretic framework [4] [5] [6] [7], and in the quantum theory [8] [9]

[10], where the various reflection matrices were obtained. We take the diagonal ones and

construct with them the double row monodromy and transfer matrices.

In the periodic case several methods have been devised to diagonalize the transfer

matrices (and determine also the eigenvectors) of various DN symmetric models [11] [12]

[13]. We generalize the algebraic Bethe Ansatz (ABA) method of [12] to the boundary case

to obtain the eigenvalues of our DTM.

ABA has been used earlier to solve boundary problems. Building on earlier results [14]

[15] [16] the algebraic Bethe Ansatz was used to solve the SU(N) vertex model with open

boundaries [17] while the open GL(N) spin chain case was considered in [18]. In these cases

the bulk R matrix (which, apart from a scalar factor, coincides with the bulk S matrix of

the sigma models) contains only two terms, one proportional to the identity and another

one proportional to the permutation matrices. In our case, as seen in (2.8), there is a third

term also, and its presence leads to difficulties already in the periodic case [12] .

The paper is organized as follows: in sect.2 we review the bulk S matrix and the diag-

onal reflection matrices of the boundary O(2N) sigma model and formulate the boundary

Bethe Yang equations. In sect.3 we go through in details the diagonalization of our DTM

when the reflection matrices at the two ends of the interval are identical, and building on

these results we construct the Bethe Ansatz equations in sect.4. In sect.5 we summarize

the same results for the case of different boundaries. We make our conclusions in sect.6.

The paper is closed by three appendices, our notation is collected in Appendix A, while

Appendix B and C are devoted to the derivation of some important technical details.

2 O(2N) sigma model with integrable diagonal boundaries

The quantum O(2N) σ model with integrable boundaries is specified by its S matrix and

reflection matrices describing the scattering of the particles on each other and on the bound-

aries respectively. The particles transform according to the vector representation of O(2N)

and the simplest way to describe the scattering processes is to use the Zamolodchikov -

Fateev (ZF) operators [19] associated to the particles A
†
I(ϑ) where I = 1, . . . 2N and the

rapidity ϑ determines the energy momentum of the particles as

p = m sinh

(
π

N − 1
ϑ

)
, E = m cosh

(
π

N − 1
ϑ

)
. (2.1)

The two particle S matrix S(ϑ1, ϑ2) and the reflection matrix R(ϑ) are encoded into the

algebra of the ZF operators as

A
†
I(ϑ1)A

†
J (ϑ2) = SKL

IJ (ϑ1 − ϑ2)A
†
L(ϑ2)A

†
K(ϑ1), A

†
I(ϑ)B = RJ

I (ϑ)A
†
J (−ϑ)B, (2.2)
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where B is the operator describing the boundary. As a result of the associativity of the

ZF algebra the S matrix and the reflection matrix satisfy the Yang Baxter (YB) and the

boundary Yang Baxter (BYB) equations respectively:

S
PQ
I1K1

(ϑ2 −ϑ3)S
RK2
I1Q

(ϑ1 −ϑ3)S
I2J2
RP (ϑ1 −ϑ2) = S

PQ
I1J1

(ϑ1 −ϑ2)S
I2R
PK1

(ϑ1 −ϑ3)S
J2K2
QR (ϑ2 −ϑ3),

(2.3)

SKL
I1J1

(ϑ1−ϑ2)R
P
K(ϑ1)S

QI2
LP (ϑ1+ϑ2)R

J2
Q (ϑ2) = RL

J1
(ϑ2)S

KQ
I1L

(ϑ1+ϑ2)R
P
K(ϑ1)S

J2I2
QP (ϑ1−ϑ2).

(2.4)

In addition to these restrictions, on physical grounds, the scattering and reflection matrices

satisfy the unitarity

SKL
IJ (ϑ1 − ϑ2)S

NM
LK (ϑ2 − ϑ1) = δMI δNJ , RJ

I (ϑ)R
K
J (−ϑ) = δKI , (2.5)

crossing

SJK
LI (i(N − 1)− ϑ) = SKL

IJ (ϑ), (2.6)

and boundary crossing [2]

SLJ
IK(2ϑ)RL

K(i(N − 1)− ϑ) = RJ
I (ϑ), (2.7)

conditions respectively.

For the O(2N) sigma model the two particle S matrix is known from the classic paper

[20]. Later on we separate its matrix and scalar parts thus we write it in the form2

ŜAB = σ2(ϑ)SAB = σ2(ϑ)
[
IAB − i

ϑ
PAB − i

i(N − 1)− ϑ
KAB

]
, (2.8)

where

IAB = δA2
A1

δB2
B1

, PAB = δB2
A1

δA2
B1

, KAB = δA1B1δ
A2B2 (= P

tA
AB), (2.9)

and

σ2(ϑ) =
Γ
(
1
2 +

1
2N−2 + ϕ

)
Γ
(
1 + ϕ

)
Γ
(
1
2 − ϕ

)
Γ
(

1
2N−2 − ϕ

)

Γ
(
1
2 + 1

2N−2 − ϕ
)
Γ
(
−ϕ
)
Γ
(
1
2 + ϕ

)
Γ
(
1 + 1

2N−2 + ϕ
) , ϕ =

iϑ

2N − 2
. (2.10)

(Note that this matrix structure differs from the most well known SU(N) case by the

presence of the KAB term).

For the boundary case the solutions of (2.4-2.7) with diagonal R matrices were found

in [10]. The consistency of (2.4) allows only two different elements in R

RA(ϑ) = diag(R1, . . . , R1︸ ︷︷ ︸
K

, R2, . . . , R2︸ ︷︷ ︸
2N-K

) = R2(ϑ)diag(c, . . . , c︸ ︷︷ ︸
K

, 1, . . . , 1︸ ︷︷ ︸
2N−K

) (2.11)

with

c ≡ R1(ϑ)

R2(ϑ)
=

i
2(N −K) + ϑ
i
2(N −K)− ϑ

. (2.12)

2see Appendix A for our notation
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Physically these reflection matrices describe the case when K of the fundamental fields

satisfy Neumann, while the remaining 2N − K ones Dirichlet boundary conditions, (and

generalize the pure Neumann (K = 2N) and one Dirichlet 2N − 1 Neumann cases investi-

gated in [8]). Note that these boundary conditions break the global O(2N) symmetry of the

bulk model to O(K)×O(2N −K). R2(ϑ) is determined from the unitarity and boundary

crossing conditions as

R2(ϑ) =
Γ
(
1
4 + ρ+ ϕ

)
Γ
(
3
4 + ρ− ϕ

)
Γ
(
1
4 + ρ(K − 1) + ϕ

)
Γ
(
3
4 + ρ(K − 1)− ϕ

)

Γ
(
1
4 + ρ− ϕ

)
Γ
(
3
4 + ρ+ ϕ

)
Γ
(
1
4 + ρ(K − 1)− ϕ

)
Γ
(
3
4 + ρ(K − 1) + ϕ

)K(ϑ),

(2.13)

where ρ = 1
4(N−1) and K(ϑ) is the pure Neumann scalar factor

K(ϑ) =
Γ
(
1
2 + ρ− ϕ

)
Γ
(
1 + ϕ

)
Γ
(
3
4 + ρ+ ϕ

)
Γ
(
1
4 − ϕ

)

Γ
(
1
2 + ρ+ ϕ

)
Γ
(
1− ϕ

)
Γ
(
3
4 + ρ− ϕ

)
Γ
(
1
4 + ϕ

) . (2.14)

2.1 Boundary O(2N) model in finite volume

We are interested in the behaviour of a system of n particles put into a strip of length L

with integrable boundaries at the ends of the strip (described by reflection matrices R(+),

R(−) respectively) in the limit L → ∞. (This condition guarantees that we may regard the

system as a free gas with point like interactions). The energy of the system is

E ({ϑi}) =
n∑

i=1

m cosh

(
π

N − 1
ϑi

)
. (2.15)

The rapidities of the particles are determined by the boundary Bethe Yang equations

e2ip(ϑi)L
n∏

j=i+1

Si,j(ϑi−ϑj)R
(−)
i (ϑi)

1∏

j=n

Sj,i(ϑj +ϑi)R
(+)
i (ϑi)

i−1∏

j=1

Si,j(ϑi−ϑj) = I, i = 1, . . . n

(2.16)

where Si,j acts as the two particles S matrix on the tensor product space of the i-th and j-th

particles and as the identity on the others (similarly Ri acts as R on the i-th particles and as

the identity on the others). This equation states that the total change in phase (including

also the exp(i2piL) factor coming from free propagation) vanishes for the process, in which

the i-th particle is pushed through the others to the right boundary, gets reflected there,

pushed through all the others until it gets to the left boundary, gets reflected, and again is

pushed through until it gets back to its original position.

In the Bethe-Yang equation (2.16) the product of reflection and scattering matrices has

to be diagonalized for all i. This can be done by introducing the double row monodromy

and double row transfer matrices [3]. To this end we introduce an auxiliary space V 2N

denoted by A and define the double row monodromy matrix as

ωA(ϑ; {ϑi}) =
n∏

j=1

SA,j(ϑ− ϑj)R
(−)
A (ϑ)

1∏

j=n

Sj,A(ϑj + ϑ), (2.17)
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while the double row transfer matrix is given as

T (ϑ) = trA

[
R
(+)c
A (i(N − 1)− ϑ)ωA(θ)

]
. (2.18)

Here R
c denotes the charge conjugated reflection matrix R

c = CRC
−1. Please note that

R
(+)c(i(N − 1) − ϑ) satisfies the boundary Yang Baxter, unitarity and boundary crossing

conditions whenever R(+)(ϑ) does. Thus using the YB equation (2.3) and the BYB equation

(2.4) one can show that [T (ϑ),T (λ)] = 0, i.e. T (ϑ) and T (λ) can simultaneously be

diagonalized. We define T this way [21], because then (2.16) can be written as

e2ip(ϑ)LT (ϑ)|ϑ=ϑi
= −I, (2.19)

since according to (2.7) R(+)c((i(N−1)−ϑi) and S(2ϑi) combine into the required R
(+)(ϑi).

Thus, eventually, denoting by Λ(ϑ, {ϑi}) the eigenvalue of T (ϑ) the boundary Bethe-Yang

equations for the particle’s rapidities can be written as

e2ip(ϑj)LΛ(ϑj , {ϑi}) = −1, j = 1, . . . n (2.20)

In the bulk of the paper (in sect.3-4) we determine this eigenvalue when on the two ends

of the strip the boundary conditions are identical R(−)(ϑ) = R(+)(ϑ), and in sect.5 we

summarize the results when the two reflection matrices are different.

3 Diagonalization of the DTM by algebraic BA

We diagonalize the double row transfer matrix introduced in (2.18) by the algebraic Bethe

Ansatz. To this end we adapt to the boundary case the procedure developed in [12] for the

periodic case.

3.1 Definitions of the ‘reduced’ monodromy and transfer matrices

We find it convenient to introduce a new rapidity variable θ related to ϑ as

θ =
2ϑ

i
, θj =

2ϑj

i

and define

θ̂ = 2N − 2− θ =
2

i
(i(N − 1)− ϑ),

such that the crossing transformation on the rapidity variable in (2.6) (2.7) corresponds to

θ → θ̂. Furthermore in the 2N dimensional target space V 2N we introduce a complex basis

|a〉 = 1√
2
(|2a− 1〉r + i |2a〉r), |ā〉 = 1√

2
(|2a− 1〉r − i |2a〉r) a = 1, . . . , N.

corresponding to V 2N = V N + V̄ N . In this basis the matrix part of the two particle S

matrix in (2.8) takes the form

SAB =




Sab 0 0 0

0 Qab Uab 0

0 Uab Qab 0

0 0 0 Sab


 , (3.1)
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where

Sab = Iab −
2

θ
Pab, Qab = Iab −

2

θ̂
Kab, Uab = −2

θ
Pab −

2

θ̂
Kab.

When transforming also the reflection matrices (2.11) into the complex basis it turns out

that only for K even, K = 2M , is the reflection matrix also diagonal in this basis. Indeed

in this case one finds

RA(θ) = R2(θ)(R
0
a,R

0
ā) = R2(θ)RA (3.2)

with

R0
a = diag(c, . . . , c︸ ︷︷ ︸

M

, 1, . . . , 1︸ ︷︷ ︸
N−M

), c =
N − 2M + θ

N − 2M − θ
,

while for K = 2M − 1 R(θ) becomes non diagonal. Since we insist on having a diagonal

reflection matrix we consider the K = 2M case only.

Since the diagonalization of the double row transfer matrix concerns the matrix parts

we separate them from the scalar ones in eq.(2.8) (3.2)3. Thus we introduce the following

“reduced” monodromy and transfer matrices

T (θ) = R2(θ)R2(θ̂)

n∏

i=1

σ2(θ − θi)σ2(θ + θi)D(θ), (3.3)

ωA(θ, {θi}) = R2(θ)

n∏

i=1

σ2(θ − θi)σ2(θ + θi)MA(θ, {θi}), (3.4)

which are constructed from the matrix parts of eq.(2.8) (3.2) only

D(θ; {θi}) = trA
[
RA(θ̂)MA(θ; {θi})

]
, (3.5)

MA(θ; {θi}) = TA(θ; {θi})RA(θ)T̂A(θ; {θi}), (3.6)

where

TA(θ; {θi}) = SAn(θ−θn) · · ·SA1(θ−θ1), T̂A(θ; {θi}) = S1A(θ+θ1) · · ·SnA(θ+θn). (3.7)

Note that T̂A and TA depend on bulk quantities only (and TA is nothing but the periodic

monodromy matrix), and using the crossing property one readily proves, that T̂A(θ) =

T
tA
A (θ̂).

After the repeated application of the bulk Yang-Baxter equation to change the order

of the neighbouring S matrices in the reduced double row transfer matrix in (3.5-3.6) one

can write

D(θ, {θi}) = StrA
[
RA(θ̂)SA1(θ− θ1) . . .SAn(θ− θn)RA(θ)SnA(θ+ θn) . . .S1A(θ+ θ1)

]
S−1.

Using the cyclic property of the trace the on the r.h.s. gives

D(θ; {θi}) = StrA
[
RA(θ)S

tn
An(θ+θn) · · ·St1

A1(θ+θ1)RA(θ̂)S
t1
1A(θ−θ1) · · ·Stn

nA(θ−θn)
]t
S−1,

3Clearly the matrix parts alone satisfy the homogeneous Yang-Baxter and boundary Yang Baxter equa-

tions, and the matrix part SAB also satisfies SAB(θ) = S
tA
AB(θ̂)
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where t denotes transposition in the quantum space. Exploiting the crossing property of

the bulk S matrices this can be written as

D(θ; {θi}) = StrA
[
RA(θ)SAn(θ̂−θn) · · ·SA1(θ̂−θ1)RA(θ̂)S1A(θ̂+θ1) · · ·SnA(θ̂+θn)

]t
S−1.

Comparing to (3.5-3.6) leads to

D(θ, {θi}) = SDt(θ̂, {θi})S−1, (3.8)

thus the eigenvalues of the reduced double row transfer matrix exhibit the crossing property

λ(θ, {θi}) = λ(θ̂, {θi}). (3.9)

In the complex basis we write

TA(θ) =

(
αa(θ) βa(θ)

γa(θ) δa(θ)

)
, T̂A(θ) =

(
α̂a(θ) β̂a(θ)

γ̂a(θ) δ̂a(θ)

)
,

while for the reduced double row monodromy matrix MA

MA(θ) =

(
Aa(θ) Ba(θ)

Ca(θ) Da(θ)

)
.

In this basis the double row transfer matrix - that we have to diagonalize - can be written

as

D(θ) = tra(R
0
a(θ̂)Aa(θ)) + tra(R

0
a(θ̂)Da(θ)). (3.10)

Implementing the algebraic Bethe Ansatz consists of three steps: first one has to find

the so called pseudovacuum and the action of Aa and Da on it, then one has to determine the

commutators among the elements of MA, and finally (for N ≥ 2) one has to find a recursion

relation among the successive “Bethe Ansatz steps” - a procedure known as “nesting”. We

turn to these steps now.

3.2 The pseudovacuum and the Aa(θ), Da(θ) operators

To obtain the pseudovacuum and the action of the transfer matrix on it it is useful to write

the elements of M0 in terms of the elements of T0 and T̂0

Aa(θ) = αa(θ)R
0
aα̂a(θ) + βa(θ)R

0
aγ̂a(θ), (3.11)

Ba(θ) = βa(θ)R
0
aδ̂a(θ) + αa(θ)R

0
aβ̂a(θ), (3.12)

Ca(θ) = γa(θ)R
0
aα̂a(θ) + δa(θ)R

0
aγ̂a(θ), (3.13)

Da(θ) = δa(θ)R
0
aδ̂a(θ) + γa(θ)R

0
aβ̂a(θ). (3.14)

We want Ca to act as annihilation and Ba as creation operators on the pseudovacuum

|φ〉. Recalling the definitions of αa, . . . , δa it is straightforward to see that one can achieve

Ca(θ)|φ〉 = 0 if all the quantum particles belonging to |φ〉 are in the unbarred space V N ,

i.e. if

|φ〉 ∈ Ω0 = V N
n ⊗ · · · ⊗ V N

1 . (3.15)
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On this pseudovacuum Ba(θ) indeed acts as a creation operator, but please note that it is

creating a pair of bulk excitations. The second term in (3.11) annihilates any state in Ω0,

thus on |φ〉 Aa(θ) may be replaced by

Aa(θ) → San(θ − θn) . . .Sa1(θ − θ1)R
0
a(θ)Sa1(θ + θ1) . . .San(θ + θn), (3.16)

i.e. Aa(θ) has indeed a simple action. However we have to change the order of γa(θ) and

β̂a(θ) in (3.14) to get a simple action for Da(θ) on |φ〉.
We compute this commutator starting from the bulk relation

TA(θ)SAB(θ + θ′)T̂B(θ
′) = T̂B(θ

′)SAB(θ + θ′)TA(θ) (3.17)

which gives

γa(θ)Sab(θ+θ′)β̂b(θ
′) = β̂b(θ

′)Sab(θ+θ′)γa(θ)+α̂b(θ
′)Uab(θ+θ′)αa(θ)−δa(θ)Uab(θ+θ′)δ̂b(θ

′).

Since we are interested in the action of Da(θ) on |φ〉 we may neglect the first term, as it

annihilates it. For the same reason, in all computations in the rest of this subsection we

drop all terms ending with γ; we denote them simply by . . . . Using (3.17) also to compute

the terms arising from commuting α̂b(θ
′) and αa(θ) together with the explicit forms and

properties of Sab, Uab and Qab eventually we find

γa(θ)R
0
aβ̂a(θ) =

2

θ − θ̂

(
[αa(θ)R

0
aα̂a(θ)]

ta − tra[αa(θ)R
0
aα̂a(θ)]−

− δa(θ)[R
0
a]

ta δ̂a(θ) + tra[R
0
a]δa(θ)δ̂a(θ)

)
+ . . . (3.18)

Since terms corresponding to Aa(θ) appear here it is useful to introduce Da(θ) which is free

from these terms

Da(θ) = Da(θ) +
2

θ − θ̂

[
traAa(θ)− A

ta
a (θ)

]
. (3.19)

Also combining the third and fourth terms in (3.18) with (3.14) one finds

Da(θ) = δa(θ)Ra
0
δ̂a(θ) + . . .

where we introduced the notation

Ra
0
(θ) = R0

a(θ)−
2

θ − θ̂

(
[R0

a(θ)]
ta − tra[R

0
a(θ)]

)
,

which explicitly can be written as

Ra
0
(θ) =

θ −N

θ + 1−N
· θ

θ + 2M −N
diag(−1, . . . ,−1︸ ︷︷ ︸

M

, 1, . . . , 1︸ ︷︷ ︸
N−M

) =

( θ −N

θ + 1−N
· θ

θ + 2M −N
Ra

1
(θ)
)
. (3.20)

(We defined Ra
1
(θ) for later reference). Thus on any state in Ω0, including the pseudovac-

uum |φ〉 Da(θ) may be replaced by

Da(θ) → Qan(θ − θn) . . .Qa1(θ − θ1)Ra
0
(θ)Qa1(θ + θ1) . . .Qan(θ + θn). (3.21)

– 8 –



Finally the transfer matrix (3.10) takes the following form

D(θ) = tra
[
Ra

0
(θ̂)Aa(θ)

]
+ tra

[
R0

a(θ̂)Da(θ)
]

(3.22)

in terms of these quantities.

Note that eq.(3.15) guarantees only that Ca(θ)|φ〉 = 0, which is a neccesary condition

for any |φ〉 being the pseudovacuum, i.e. the eigenvector of D(θ). To obtain this eigenvector

and the corresponding eigenvalue explicitly would require the diagonalization of (3.22) in

Ω0 (a problem equivalent to solving an SU(N) nesting problem). Instead of doing this

now we proceed in deriving the general (i.e. non vacuum) eigenvalues of D(θ) since for

this (3.16) and (3.21) are sufficient. From the expressions for the general eigenvalues the

vacuum eigenvalue is obtained by specializing them to the absence of magnons.

3.3 The commutation relations between the elements of MA

In the framework of Algebraic Bethe Ansatz we look for eigenvectors of D(θ) in the form

|Ψ〉 =
[ m∏

r=1

B
irjr(vr)

]
Fi1,..im,j1,..jm |φ〉 , (3.23)

(where Fi1,..im,j1,..jm are rapidity independent constants) and determine under what condi-

tions becomes |Ψ〉 an eigenvector 4. To obtain these conditions one has to push Aa(θ) and

Da(θ) through the product of B-s, and to do this the commutation relations between these

operators are needed.

We derive these commutation relations from the following equation satisfied by MA

SAB(θ − θ′)MA(θ)SAB(θ + θ′)MB(θ
′) = MB(θ

′)SAB(θ + θ′)MA(θ)SAB(θ − θ′). (3.24)

This equation follows from the definition of Ma(θ) (3.6) and the fact that SAB(θ) (R0
A(θ))

satisfy the Yang Baxter (2.3) (boundary Yang Baxter (2.4)) equations respectively [3] 5.

After some simple manipulations on the appropriate elements of eq.(3.24) one finds

Aa(θ)Sab(θ + u)Bb(u) = Sab(u− θ)Bb(u)Qab(θ + u)Aa(θ)Q
−1
ab (u− θ)−

− Ba(θ)Qab(θ + u)Ab(u)Uab(u− θ)Q−1
ab (u− θ)− Ba(θ)Uab(θ + u)Db(u). (3.25)

To get a reasonable commutation relation we have to get rid of the Sab matrix standing

between Aa(θ) and Bb(u) on the l.h.s. Therefore we take the transpose of this equation

in the b space, multiply both sides with the inverse of Stb
ab(θ + u), and take once more its

transpose in the b space to obtain

Aa(θ)Bb(u) =

[{
Sab(u− θ)Bb(u)Qab(u+ θ)Aa(θ)Q

−1
ab (u− θ)

}tb
Q−1

ab (û− θ)

]tb
−

−
[{

Ba(θ)Qab(θ + u)Ab(u)Q
−1
ab (u− θ)Uab(u− θ)

}tb
Q−1

ab (û− θ)

]tb
−

−
[{

Ba(θ)Uab(θ + u)Db(u)
}tb

Q−1
ab (û− θ)

]tb
. (3.26)

4Here we displayed the auxiliary space indexes of the B operators explicitly. Also sometimes

Fi1,..im,j1,..jm |φ〉 is abbreviated simply as |φ〉{i,j}.
5Eq.(3.24) may be regarded as the generalization of the so called “RTT” relation to the boundary case
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The first term on the r.h.s. - where Aa and Bb retained their argument - is the so called

’wanted term’ (since looking for an eigenvector in the form of |Ψ〉 it may give a contribution),

while the other two, that contain Ba(θ), are the ’unwanted ones’ (as they can not contribute

to an eigenvector in the form of |Ψ〉). It is important to establish a relation between

the coefficients of the wanted and unwanted terms, as using this relation one can impose

conditions on the wanted terms, guaranteeing the vanishing of the unwanted ones when

constructing the eigenvectors. To this end, using the properties of the matrices Sab, Qab

and Uab summarized in [12], we rewrite (3.26)

Aa(θ)Bb(u) =

[{
Sab(u− θ)Bb(u)Qab(u+ θ)Aa(θ)Q

−1
ab (u− θ)

}tb
Q−1

ab (û− θ)

]tb

− 1

θ − u
Res
θ′=u

[{
Sab(u− θ′)Bb(θ)Qab(u+ θ)Aa(θ

′)Q−1
ab (u− θ′)

}tb
Q−1

ab (û− θ)

]tb

+
1

θ − û
Res
θ′=u

[
Sab(θ

′ − u)Bb(θ)Da(θ
′)taQ−1

ab (θ
′ − u)

]tb
. (3.27)

In this form it is obvious, that the coefficient of the first unwanted term (i.e. the second

term) is obtained as an appropriate residue of the coefficient of the wanted term -and in this

respect eq.(3.27) is similar to the analogous periodic expression in [12]. However, the third

term makes eq.(3.27) significantly different from the analogous periodic expression: on the

one hand this term has a different analytic structure then the first one and on the other it

contains a new type of operator. Next we relate this term to the wanted term appearing in

the Da(θ)Bb(u) commutator.

First we rewrite eq.(3.27) in terms of the Da(θ) operator introduced in eq.(3.19). After

some manipulations described in Appendix B we get

Aa(θ)Bb(u) =

[{
Sab(u− θ)Bb(u)Qab(u+ θ)Aa(θ)Q

−1
ab (u− θ)

}tb
Q−1

ab (û− θ)

]tb
−

− 1

θ − u
Res
θ′=u

[{
Sab(u− θ′)Bb(θ)Qab(u+ θ′)Aa(θ

′)Q−1
ab (u− θ′)

}tb
Q−1

ab (û− θ′)

]tb
−

+
1

θ − û
Res
θ′=u

[
Sab(θ

′ − u)Bb(θ)Da(θ
′)taQ−1

ab (θ
′ − u)

]tb
. (3.28)

We start to derive the Da(θ)Bb(u) commutator with the Da(θ)Bb(u) one. From the

appropriate elements of eq.(3.24) one obtains

Da(θ)Qab(θ + u)Bb(u) = Q−1
ab (θ − u)Bb(u)Sab(θ + u)Da(θ)Sab(θ − u)−

−Uab(θ − u)Q−1
ab (θ − u)Ba(θ)Sab(θ + u)Db(u)+

+Q−1
ab (θ − u)Ab(u)Uab(θ + u)Ba(θ)Sab(θ − u)−

−Uab(θ − u)Q−1
ab (θ − u)Aa(θ)Uab(θ + u)Bb(u). (3.29)

We convert this into a reasonable commutator in the same way as in the previous case, i.e.

by taking the transpose of the equation in b space, multiplying both sides by the inverse of

Q
tb
ab(θ + u) and taking once more its transpose. However here, on the r.h.s., the order of
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A-s and B-s is ‘wrong’ as the latter ones stand on the right, thus we have to change them.

When doing so, we get terms containing Bb(u)Aa(θ), which is the ‘wanted’ term in (3.28).

We want to get rid of these terms as we want diagonal ‘wanted’ terms in our commutation

relations. We claim, that introducing Da(θ), eq.(3.19), in place of Da(θ) does precisely this,

and eventually in terms of this new operator we find

Da(θ)Bb(u) =

[{
Q−1

ab (θ − u)Bb(u)Sab(θ − û+ 2)Da(θ)Sab(θ − u)
}tb

Sab(θ − û)

]tb
−

−
[{

Uab(θ − u)Q−1
ab (θ − u)Ba(θ)Sab(θ − θ̂ + 2)Db(u)

}tb
Sab(θ − θ̂)

]tb
+

+ . . . (3.30)

where dots stand for the remaining unwanted terms containing only Ab(u) type operators.

What we really need is the commutation relations between the transfer matrix D(θ),

eq.(3.22), and B
ij(u). This problem is solved in Appendix C, where we establish the precise

relation between the wanted and unwanted terms in these commutators.

3.4 First level of ABA

The commutation relations presented in eqs.(3.28) (3.30) have a somewhat unusual form

containing the transpositions. To emphasize that in spite of this they make it straightfor-

ward to evaluate the action of D(θ) on the states generated by a chain of B-s from the

pseudovacuum we consider first the action of Aa on a state obtained by using a single B

only:

Aa(θ)B
ij(u)Fi,j |φ〉 =

[{
Sa1(u− θ)B1(u)Qa1(u+ θ)Aa(θ)Q

−1
a1 (u− θ)

}t1
Q−1

a1 (û− θ)

]ji
Fi,j |φ〉+ · · · =

{
Sa1(u− θ)B1(u)Qa1(u+ θ)Aa(θ)Q

−1
a1 (u− θ)

}kj

Q−1i
ak (û− θ)Fi,j |φ〉+ · · · =

Skl
a (u− θ)Bm

l (u)Qn
am(u+ θ)Aa(θ)Q

−1j
an (u− θ)Q−1i

ak (û− θ)Fi,j |φ〉+ · · · =
B
m
l (u)St1lk

a (u− θ)Qn
am(u+ θ)Aa(θ)Q

−1j
an (u− θ)Q−1i

ak (û− θ)Fi,j |φ〉+ · · · =

B
lm(u)

[
S
t1
a1′(u− θ)Qa1′′(u+ θ)Aa(θ)Q

−1
a1′′(u− θ)Q−1

a1′(û− θ)
]ij
lm
Fi,j |φ〉+ . . .

where dots stand for the contribution of the ‘unwanted’ terms. Using this the action of

Aa(θ) on |Ψ〉, (3.23), containing m B excitations is obtained as

Aa(θ) |Ψ〉 =
m∏

r=1

B
krlr(vr)

[
S
t1
a1′(v1 − θ)Qa1′′(v1 + θ) . . .Stm

am′(vm − θ)Qam′′(vm + θ)×

×San(θ − θn) . . .Sa1(θ − θ1)R
0
a(θ)Sa1(θ + θ1) . . .San(θ + θn)×

×Q−1
am′′(vm − θ)Q−1

am′(v̂m − θ) . . .Q−1
a1′′(v1 − θ)Q−1

a1′(v̂1 − θ)
]{ij}
{kl}

|φ〉{i,j} + . . . ,

(3.31)
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where eq.(3.16) is used on the r.h.s. to write the action of the Aa operator on the pseu-

dovacuum, and dots denote the contribution of the ‘unwanted’ terms. This shows that,

similarly to the periodic case [12], it is useful to enlarge the space Ω0 (3.15) to

Ω1 = (V N
1′ ⊗ · · · ⊗ V N

m′)⊗ (V N
n ⊗ · · · ⊗ V N

1 )⊗ (V N
m′′ ⊗ · · · ⊗ V N

1′′ ), (3.32)

and reinterpret the set of vectors |φ〉{i,j} as a vector in Ω1

∣∣ΨΩ1
〉
|Ω0∈Ω1

= |φ〉{i,j} ,
∣∣ΨΩ1

〉
∈ Ω1. (3.33)

We can rewrite the tra
[
Ra

0
(θ̂)Aa(θ)

]
|Ψ〉 part of D(θ) |Ψ〉 in terms of |ΨΩ1〉 by defining new

monodromy and transfer matrices acting in Ω1. Indeed defining

M
Ω1
a (θ; {θi, v, w}) =S

t1
a1′(v1 − θ)St1

a1′′(ŵ1 − θ) . . .Stm
am′(vm − θ)Stm

am′′(ŵm − θ)×
×San(θ − θn) . . .Sa1(θ − θ1)R

1
a(θ)Sa1(θ + θ1) . . .San(θ + θn)×

×Q−1
am′′(wm − θ)Q−1

am′(v̂m − θ) . . .Q−1
a1′′(w1 − θ)Q−1

a1′(v̂1 − θ), (3.34)

DΩ1(θ; {θi, v, w}) =tra

[
R

1
a(θ̂)M

Ω1
a (θ; {θi, v, w})

]
(3.35)

one finds

tra
[
Ra

0
(θ̂)Aa(θ)

]
|ΨΩ1〉 =

θ −N + 2

θ −N + 1
· θ − 2N + 2

θ −N − 2M + 2

m∏

r=1

B
irjr(vr)

[
DΩ1(θ; {θi, v, w})

∣∣ΨΩ1
〉]

{ij}
+ . . . , (3.36)

where dots stand for the ‘unwanted’ terms, we introduced R1
a(θ) ≡ R0

a(θ), and also used

Ra
1

defined in (3.20). For later convenience we also introduced the parameters w1, . . . , wm;

at the end of the procedure they have to be identified with v1, . . . , vm after a specific limit

( see [12]).

In an analogous way, defining

M̃
Ω1
a (θ; {θi, v, w}) =Q−1t1

a1′ (θ − v1)Q
−1t1
a1′′ (θ − ŵ1) . . .Q

−1tm
am′ (θ − vm)Q−1tm

am′′ (θ − ŵm)×
×Qan(θ − θn) . . .Qa1(θ − θ1)R

1
a(θ)Qa1(θ + θ1) . . .Qan(θ + θn)×

×Sam′′(θ − wm)Sam′(θ − v̂m) . . .Sa1′′(θ −w1)Sa1′(θ − v̂1), (3.37)

D̃Ω1(θ; {θi, v, w}) =tra

[
R1

a(θ̂)M̃
Ω1
a (θ; {θi, v, w})

]
, (3.38)

the tra
[
R0

a(θ̂)Da(θ)
]
|Ψ〉 part of D(θ) |Ψ〉 can be written in terms of these quantities as

tra
[
R0

a(θ̂)Da(θ)
]
|ΨΩ1〉 =

θ −N

θ −N + 1
· θ

θ −N + 2M

m∏

r=1

B
irjr(vr)

[
D̃Ω1(θ; {θi, v, w})

∣∣ΨΩ1
〉]

{ij}
+ . . . (3.39)

From the explicit form of MΩ1
a and M̃

Ω1
a and the fact that R1

a(θ) satisfies the boundary

Yang Baxter equation it follows that

Sab(θ − θ′)MΩ1
a (θ)Sab(θ + θ′)MΩ1

b (θ′) = M
Ω1
b (θ′)Sab(θ + θ′)MΩ1

a (θ)Sab(θ − θ′), (3.40)

Qab(θ − θ′)M̃Ω1
a (θ)Qab(θ + θ′)MΩ1

b (θ′) = M
Ω1
b (θ′)Qab(θ + θ′)M̃Ω1

a (θ)Qab(θ − θ′) (3.41)
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hold. (M̃Ω1
a also satisfies (3.40)). Using these and the properties of R1

a one can prove, that

DΩ1(θ) and D̃Ω1(θ′) commute

[DΩ1(θ),DΩ1(θ′)] = [DΩ1(θ), D̃Ω1(θ′)] = [D̃Ω1(θ), D̃Ω1(θ′)] = 0,

i.e. they can be diagonalized simultaneously.

On the basis of eq.(3.36) and (3.39) one can relate the eigenvalue λ(θ, {θi}) of the

double row transfer matrix D(θ) to the eigenvalues of DΩ1(θ) and D̃Ω1(θ)

λ =
θ −N + 2

θ −N + 1
· θ − 2N + 2

θ −N − 2M + 2
Λ1 +

θ −N

θ −N + 1
· θ

θ −N + 2M
Λ̃1, (3.42)

DΩ1
∣∣ΨΩ1

〉
= Λ1(θ, {θi, v, w})

∣∣ΨΩ1
〉
, D̃Ω1

∣∣ΨΩ1
〉
= Λ̃1(θ, {θi, v, w})

∣∣ΨΩ1
〉
, (3.43)

provided one can have a handle on the vanishing of the contributions of the unwanted

terms (represented by dots) in (3.36) (3.39), i.e. if one can formulate the vanishing of these

terms as some conditions on the eigenvalue λ. Since D(θ) is independent of vi and |ΨΩ1〉 is

independent of θ it is clear that

Res
θ=vi

λ(θ, {θi, v, v}) = 0 (3.44)

is a necessary condition for this. On the basis of evidence we collected in Appendix C we

argue that this condition is also sufficient.

The DΩ1(θ) and D̃Ω1(θ) operators (together with their eigenvalues) can be related by

an argument similar to the one employed to derive the crossing property of D(θ), (3.8).

From the bulk YB equations one finds

Sab(θa − θb)Sac(θa − θc)Sbc(θb − θc) = Sbc(θb − θc)Sac(θa − θc)Sab(θa − θb),

Sab(θa − θb)Qac(θa − θc)Qbc(θb − θc) = Qbc(θb − θc)Qac(θa − θc)Sab(θa − θb),

while the crossing property of SAB implies Qab(θ) = Sta
ab(θ̂). Using these equations and the

argument leading to (3.8) one can show that DΩ1 and D̃Ω1 satisfy the following crossing

relation

D̃Ω1(θ, {θi, vi, wi}) = O
[
DΩ1(θ̂, {θi, vi, wi})

]t1
O−1,

where t1 denotes transposition in Ω1. This implies that the eigenvalues satisfy

Λ̃1(θ, {θi, v, w}) = Λ1(θ̂, {θi, v, w}). (3.45)

Please note that this also implies that the λ(θ, {θi}) eigenvalue of D(θ), (3.42), satisfies the

crossing condition (3.9).

3.5 Nesting

In this subsection we determine the eigenvalue Λ1 using the so called ‘nesting’ procedure

[22] [23] . The basic idea is the following: first we split the auxiliary space V N into the

direct sum V N = V 1 + V N−1 and write the monodromy matrix M
Ω1
a

M
Ω1
a =

(
A
Ω1 B

Ω1
a

C
Ω1
a D

Ω1
a

)
, (3.46)
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(where A
Ω1 is a scalar, BΩ1

a is an N − 1 component row vector, CΩ1
a is a N − 1 component

column vector and D
Ω1
a is a (N − 1) × (N − 1) matrix in the auxiliary space), and try to

construct Λ1 using a “second” Bethe Ansatz step. In this step we assume B
Ω1
a as creation

and C
Ω1
a as annihilation operators using an appropriate pseudovacuum and express DΩ1(θ)

in terms of AΩ1 and D
Ω1
a . The term containing A

Ω1 has a simple action on |ΨΩ1〉, while

the action of the term containing D
Ω1
a can be described in terms of new monodromy and

transfer matrices M
Ω2
a and DΩ2 acting on a new space Ω2. Thus the eigenvalue problem of

DΩ1(θ) is reduced to that of DΩ2(θ) and Λ1 can be expressed as a known term (the action

of A
Ω1) plus Λ2 (the eigenvalue of DΩ2). In the next step we split V N−1 = V 1 + V N−2

and repeat the procedure. The success of these iterations depends on whether one is able

to handle the various monodromy and transfer matrices appearing in the successive steps.

If so then the procedure ends after the N − 2-th step, when the new monodromy matrix is

a scalar in the auxiliary space.

In the first ‘nesting’ step the pseudovacuum is determined by the condition, that it is

annihilated by C
Ω1
a This condition is satisfied for the vectors

∣∣ϕΩ1
〉
{i}

∈ Ω
(0)
1 =

(
V N−1
1′ ⊗ · · · ⊗ V N−1

m′

)
⊗ Vn ⊗ · · · ⊗ V1 ⊗

(
V N−1
m′′ ⊗ · · · ⊗ V N−1

1′′

)
(3.47)

thus we look for the eigenvectors of DΩ1 in the form

∣∣ΨΩ1
〉
=

n1∏

r=1

B
Ω1
ir
(u(1)r )

∣∣ϕΩ1
〉
{i}

(3.48)

We need the actions of AΩ1 and D
Ω1
a on the pseudovacuum. To determine them it is

useful to introduce the following operators

T
Ω1
a (θ; {θi, v, w}) =S

t1
a1′(v1 − θ)St1

a1′′(ŵ1 − θ) . . .Stm
am′(vm − θ)Stm

am′′(ŵm − θ)×
× San(θ − θn) . . .Sa1(θ − θ1) (3.49)

T̂
Ω1
a (θ; {θi, v, w}) =Sa1(θ + θ1) . . .San(θ + θn)×

×Q−1
am′′(wm − θ)Q−1

am′(v̂m − θ) . . .Q−1
a1′′(w1 − θ)Q−1

a1′(v̂1 − θ), (3.50)

that depend on bulk quantities only. They satisfy the commutation relation

T
Ω1
a (θ)Sab(θ + θ′)T̂Ω1

b (θ′) = T̂
Ω1
b (θ′)Sab(θ + θ′)TΩ1

a (θ). (3.51)

We write these new operators in the auxiliary space -similarly to M
Ω1
a - as

T
Ω1
a =

(
αΩ1 βΩ1

a

γΩ1
a δΩ1

a

)
, T̂

Ω1
a =

(
α̂Ω1 β̂Ω1

a

γ̂Ω1
a δ̂Ω1

a

)
, (3.52)

and using them one can write the M
Ω1
a , AΩ1 and D

Ω1
a operators as

M
Ω1
a = T

Ω1
a R1

aT̂
Ω1
a , (3.53)

A
Ω1 = αΩ1c1α̂

Ω1 + βΩ1
a R1

aγ̂
Ω1
a , (3.54)

D
Ω1
a1a2

= δΩ1
a1b1

R1
b1b2

δ̂Ω1
ba2

+ γΩ1
a1

c1β̂
Ω1
a2

, (3.55)
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where (for later reference) we introduced c1(θ) = c(θ) in (3.2). To compute the action of

the D
Ω1
a operator on the pseudovacuum we need the commutation relations of the γΩ1

a , β̂Ω1
a

operators. One can find this from (3.51)

γΩ1
a (θ)β̂Ω1

b (θ) =
1

θ − 1
δΩ1
ac (θ)δ̂

Ω1
cb (θ)−

1

θ − 1
α̂Ω1(θ)αΩ1(θ) +

θ

θ − 1
Sdb
ac(2θ)β̂

Ω1
c (θ)γΩ1

d (θ),

and substituting this into eq.(3.55) leads to

D
Ω1
a (θ) = δΩ1

a (θ)

[
R1

a(θ) +
c1(θ)

θ − 1

]
δ̂Ω1
a (θ)− c1(θ)

θ − 1
α̂Ω1(θ)αΩ1(θ) + . . . , (3.56)

where again dots represent the uninteresting terms ending with γ-s (that annihilate
∣∣ϕΩ1

〉
{i}

).

Note that again a term corresponding to A
Ω1 appears here thus we change again D

Ω1
a into

D
Ω1

a which is free from this term

D
Ω1

a (θ) = D
Ω1
a (θ) +

A
Ω1(θ)

θ − 1
. (3.57)

To express the DΩ1(θ) transfer matrix in terms of the new quantities we introduce

R
2
a(θ) = diag(−1, . . . ,−1︸ ︷︷ ︸

M-1

, 1, . . . , 1︸ ︷︷ ︸
N-M

),

appropriate for the V N = V 1 + V N−1 decomposition, then from (3.35) we find

DΩ1(θ) = −θ +N − 2M

θ − 1
A
Ω1(θ) + tra

[
R

2
a(θ̂)D

Ω1

a (θ)
]
. (3.58)

To obtain under what conditions (3.48) becomes an eigenvector of this DΩ1(θ) we

need the commutation relations A
Ω1(θ)BΩ1

a (u) and D
Ω1

a (θ)BΩ1
b (u). From (3.40) - using the

explicit form of the various matrices - one can derive

A
Ω1(θ)BΩ1

a (u) =
θ − u+ 2

θ − u

θ + u

θ + u− 2
B
Ω1
a (u)AΩ1(θ)− 2

θ − u

θ + u

θ + u− 2
B
Ω1
a (θ)AΩ1(u)+

+
2

θ + u− 2
B
Ω1
a (θ)DΩ1

a (u), (3.59)

D
Ω1
a (θ)BΩ1

b (u) =B
Ω1
b (u)Sab(θ + u)DΩ1

a (θ)Sab(θ − u) +
2

θ − u
B
Ω1
b (θ)Sab(θ + u)DΩ1

a (u)Pab−

− 2

θ − u

2

θ + u
A
Ω1(θ)BΩ1

b (u)− 2

θ + u
A
Ω1(u)BΩ1

b (θ)PabSab(θ − u). (3.60)

Please note, that in (3.60) the order of the A
Ω1 and B

Ω1
b operators is wrong, changing them

using (3.59) we get

D
Ω1
a (θ)BΩ1

b (u) = B
Ω1
b (u)Sab(θ + u− 2)DΩ1

a (θ)Sab(θ − u) + . . . , (3.61)

where dots represent not only the unwanted terms but also some wanted ones containing

A
Ω1(θ). We claim, that introducing D

Ω1

a in place of D
Ω1
a just removes these terms and

converts (3.61) to

D
Ω1

a (θ)BΩ1
b (u) = B

Ω1
b (u)Sab(θ + u− 2)D

Ω1

a (θ)Sab(θ − u) + . . . , (3.62)
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where . . . represent now only the various unwanted terms.

Using the commutation relations (3.59) and (3.62) one can compute the action of

DΩ1(θ), (3.58), on |ΨΩ1〉. Indeed one finds

A
Ω1(θ)

∣∣ΨΩ1
〉
= c1(θ)

n∏

i=1

θ − θi − 2

θ − θi
· θ + θi − 2

θ + θi

n1∏

i=1

θ − u
(1)
i + 2

θ − u
(1)
i

· θ + u
(1)
i

θ + u
(1)
i − 2

∣∣ΨΩ1
〉
+ . . . ,

(3.63)

Computing the action of the tra

[
R

2
a(θ̂)D

Ω1

a (θ)
]

part of DΩ1 one realizes that it is useful to

enlarge the space Ω
(0)
1 (given in (3.47)) to Ω2

Ω2 = Ω
(0)
1 ⊗

(
V N−1
n1

⊗ · · · ⊗ V N−1
1

)
, (3.64)

introduce the ‘reduced’ reflection matrix R2
a(θ) (obtained from (3.56))

R2
a(θ) = diag(c2(θ), . . . , c2(θ)︸ ︷︷ ︸

M-1

, d2(θ), . . . , d2(θ)︸ ︷︷ ︸
N-M

), c2(θ) =
θ

θ − 1
c(θ), d2(θ) =

θ − 1 + c(θ)

θ − 1
,

and define new monodromy and transfer matrices acting on Ω2:

M
Ω2
a (θ) =Sa1(θ + u

(1)
1 − 2) · · · San1(θ + u(1)n1

− 2)×
S
t1′
a1′(v1 − θ)S

t1′′
a1′′(ŵ1 − θ) · · ·Stm′

am′(vm − θ)S
tm′′

am′′(ŵm − θ)R2
a(θ)×

Q−1
am′′(wm − θ)Q−1

am′(v̂m − θ) · · ·Q−1
a1′′(w1 − θ)Q−1

a1′(v̂1 − θ)×
San1(θ − u(1)n1

) · · ·Sa1(θ − u
(1)
1 ), (3.65)

DΩ2(θ) =tra

[
R

2
a(θ̂)M

Ω2
a (θ)

]
, (3.66)

since using them one can write

traR
2
a(θ̂)D

Ω1

a (θ)
∣∣ΨΩ1

〉
=

n1∏

r=1

B
Ω1
ir
(u(1)r )

[
DΩ2(θ)

∣∣ΨΩ2
〉]

{i}
+ . . . ,

∣∣ΨΩ2
〉
∈ Ω2. (3.67)

(Here
∣∣ΨΩ2

〉
is an appropriate state in Ω2

∣∣ΨΩ2
〉
|
Ω

(0)
1 ∈Ω2

=
∣∣ϕΩ1

〉
{i}

;

its explicit form as a BA state is determined in the next nesting step). This way the

eigenvalue problem of DΩ1(θ) is reduced to that of DΩ2(θ) and the eigenvalue Λ1 is related

to Λ2

Λ1 =
θ +N − 2M

θ − 1
·θ +N − 2M

θ −N + 2M

n∏

i=1

θ − θi − 2

θ − θi
·θ + θi − 2

θ + θi

n1∏

i=1

θ − u
(1)
i + 2

θ − u
(1)
i

· θ + u
(1)
i

θ + u
(1)
i − 2

+Λ2,

(3.68)

where DΩ2
∣∣ΨΩ2

〉
= Λ2(θ, {θi, v, w, u(1)})

∣∣ΨΩ2
〉
. One can prove, that the condition for the

vanishing of the unwanted terms in (3.63) and (3.67) is (see the end of App. C)

Res
θ=u

(1)
j

Λ1(θ, {θi, v, w, u(1)}) = 0. (3.69)
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In the k-th step we split V N−(k−1) = V 1+V N−k. In this step we repeat the procedure

we described in details for k = 1, i.e. find the pseudovacuum, ‘split’ the monodromy matrix

M
Ωk
a , find the modification D

Ωk

a having a simple action on the pseudovacuum, find the

commutation relations A
Ωk(θ)BΩk

a (u), D
Ωk

a (θ)BΩk

b (u) and finally find the action of DΩk(θ)

on the BA states generated by B
Ωk
a (u

(k)
i ). We describe below only the essential points but

do not repeat all the details.

The problem is that the monodromy and transfer matrices depend on whether k ≤ M

or M < k. (Remember that 1 ≤ M ≤ N). To handle this complication we define

ck+1(θ) =
θ

θ − k
c(θ), dk+1(θ) =

θ − k + kc(θ)

θ − k
,

and the new R matrices (obtained from solving the iterations)

Rk+1
a (θ) =





diag(

M-k︷ ︸︸ ︷
ck+1(θ), . . . , ck+1(θ),

N-M︷ ︸︸ ︷
dk+1, . . . , dk+1) k = 1, . . . ,M,

diag(dk+1, . . . , dk+1︸ ︷︷ ︸
N-k

) k = M + 1, . . . , N − 1,
(3.70)

R
k+1
a (θ) =





diag(

M-k︷ ︸︸ ︷
−1, . . . ,−1,

N-M︷ ︸︸ ︷
1, . . . , 1) k = 1, . . . ,M,

diag(1, . . . , 1︸ ︷︷ ︸
N-k

) k = M + 1, . . . , N − 1,
(3.71)

(Note that not only R
2, R

2
are of this form, but also R

1, R
1
).

In the k-th step the monodromy and transfer matrices we start with have the form

M
Ωk
a (θ) =Sa1(θ + u

(k−1)
1 − 2(k − 1)) · · ·Sank−1

(θ + u(k−1)
nk−1

− 2(k − 1))×
S
t1′
a1′(v1 − θ)S

t1′′
a1′′(ŵ1 − θ) · · ·Stm′

am′(vm − θ)S
tm′′

am′′(ŵm − θ)Rk
a(θ)×

Q−1
am′′(wm − θ)Q−1

am′(v̂m − θ) · · ·Q−1
a1′′(w1 − θ)Q−1

a1′(v̂1 − θ)×
Sank−1

(θ − u(k−1)
nk−1

) · · ·Sa1(θ − u
(k−1)
1 ), (3.72)

DΩk(θ) =tra

[
R

k
a(θ̂)M

Ωk
a (θ)

]
, (3.73)

DΩk(θ)
∣∣ΨΩk

〉
=Λk(θ)

∣∣ΨΩk
〉
, (3.74)

satisfying the commutation relation

Sab(θ − θ′)MΩk
a (θ)Sab(θ + θ′ − 2(k − 1))MΩk

b (θ′) =

= M
Ωk

b (θ′)Sab(θ + θ′ − 2(k − 1))MΩk
a (θ)Sab(θ − θ′). (3.75)

Here, in (3.74),
∣∣ΨΩk

〉
is an appropriate vector in Ωk:

Ωk = Ω
(0)
k−1 ⊗ (V N−k+1

1 ⊗ · · · ⊗ V N−k+1
nk−1

),

where

Ω
(0)
k−1 = (V N−k+1

1′ ⊗ · · · ⊗ V N−k+1
m′ )⊗ (V N−k+1

m′′ ⊗ . . . . . . V N−k+1
1′′ )⊗ (V1 ⊗ · · · ⊗ Vnk−2

),
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which is constructed as a BA state. We write M
Ωk
a in the auxiliary space in the form of

(3.46) with Ω2 → Ωk where B
Ωk
a and C

Ωk
a are N − k component row and column vectors

respectively. The appropriate operators ‘splitting’ MΩk
a can be written

T
Ωk
a (θ) =Sa1(θ + u

(k−1)
1 − 2(k − 1)) · · · Sank−1

(θ + u(k−1)
nk−1

− 2(k − 1))×
S
t1
a1′(v1 − θ)St1

a1′′(ŵ1 − θ) . . .Stm
am′(vm − θ)Stm

am′′(ŵm − θ) (3.76)

T̂
Ωk
a (θ) =Q−1

am′′(wm − θ)Q−1
am′(v̂m − θ) . . .Q−1

a1′′(w1 − θ)Q−1
a1′(v̂1 − θ)×

Sank−1
(θ − u(k−1)

nk−1
) · · ·Sa1(θ − u

(k−1)
1 ), (3.77)

with commutation relations

T
Ωk
a (θ)Sab(θ + θ′ − 2(k − 1))T̂Ωk

b (θ′) = T̂
Ωk

b (θ′)Sab(θ + θ′ − 2(k − 1))TΩk
a (θ). (3.78)

In terms of these operators the splitting can be described as

M
Ωk
a = T

Ωk
a Rk

aT̂
Ωk
a , (3.79)

A
Ωk = αΩkckα̂

Ωk + βΩk
a Rk

aγ̂
Ωk
a , (3.80)

D
Ωk
a1a2

= δ
Ωk

a1b
Rk

aδ̂
Ωk

ba2
+ γΩk

a1
ckβ̂

Ωk
a2

. (3.81)

From the commutation relations (3.78) it follows that

γΩk
a (θ)β̂Ωk

b (θ) =
1

θ − k
δΩk
ac (θ)δ̂

Ωk

cb (θ)− 1

θ − k
α̂Ωk(θ)αΩk(θ)+

+
θ

θ − k
Sdb
ac(2θ − 2(k − 1))β̂Ωk

c (θ)γΩk

d (θ). (3.82)

Using this in (3.81) one finds

D
Ωk
a (θ) = δΩk

a (θ)

[
Rk

a(θ) +
ck(θ)

θ − k

]
δ̂Ωk
a (θ)− ck(θ)

θ − k
α̂Ωk(θ)αΩk(θ) + . . . (3.83)

In this case one can remove the terms corresponding to A
Ωk by introducing D

Ωk

a

D
Ωk

a (θ) = D
Ωk
a (θ) +

A
Ωk(θ)

θ − k
, (3.84)

and finally DΩk can be written as

DΩk(θ) =




− θ+N−2M

θ−k
A
Ωk(θ) + tra

[
R

k+1
a (θ̂)D

Ωk

a (θ)
]

k = 1, . . . ,M

θ−N
θ−k

A
Ωk(θ) + tra

[
R

k+1
a (θ̂)D

Ωk

a (θ)
]

k = M + 1, . . . , N − 1
(3.85)

To compute the action of DΩk on the BA states
∣∣ΨΩk

〉
generated by a chain of BΩk

a -s (appro-

priately generalizing (3.48)), we need the commutators A
Ωk(θ)BΩk

a (u) and D
Ωk

a (θ)BΩk

b (u),

which can be obtained from (3.75) (taking into account also the transition from D
Ωk
a to

D
Ωk

a ):

A
Ωk(θ)BΩk

a (u) =
θ − u+ 2

θ − u
· θ + u− 2(k − 1)

θ + u− 2k
B
Ωk
a (u)AΩk(θ) + . . . (3.86)

D
Ωk

a (θ)BΩk

b (u) =B
Ωk

b (u)Sab(θ + u− 2k)D
Ωk

a (θ)Sab(θ − u) + . . . . (3.87)
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Repeating the steps we made for k = 1 we find using these commutators that

A
Ωk(θ)

∣∣ΨΩk
〉
=ck(θ)

nk−1∏

i=1

θ − u
(k−1)
i − 2

θ − u
(k−1)
i

· θ + u
(k−1)
i − 2k

θ + u
(k−1)
i − 2(k − 1)

×

nk∏

i=1

θ − u
(k)
i + 2

θ − u
(k)
i

· θ + u
(k)
i − 2(k − 1)

θ + u
(k)
i − 2k

∣∣ΨΩk
〉
+ . . . , (3.88)

traR
k+1
a (θ̂)D

Ωk

a (θ)
∣∣ΨΩk

〉
=

nk∏

r=1

B
Ωk

ir
(u(k)r )

[
DΩk+1(θ)

∣∣ΨΩk+1
〉]

{i}
+ . . . , (3.89)

where DΩk+1 (and the monodromy matrix belonging to it) are given by (3.72). Note that

(3.63) is the form of (3.88) if one identifies

θi ≡ u
(0)
i and n0 = n. (3.90)

According to the end of App. C the condition for the vanishing of the unwanted terms

(denoted by the dots in (3.88) (3.89)) is

Res
θ=u

(k)
j

Λk(θ, {θi, v, w, u(k)}) = 0. (3.91)

Finally, summing up all the terms (and using the notation in (3.90)), one finds the

eigenvalue Λ1 in the form

Λ1 =
N−1∑

k=0

Fk, (3.92)

where

Fk =
θ +N − 2M

θ − k − 1
· θ

θ − k
· θ +N − 2M

θ −N + 2M

nk∏

i=1

θ − u
(k)
i − 2

θ − u
(k)
i

· θ + u
(k)
i − 2k − 2

θ + u
(k)
i − 2k

×

nk+1∏

i=1

θ − u
(k+1)
i + 2

θ − u
(k+1)
i

· θ + u
(k+1)
i − 2k

θ + u
(k+1)
i − 2k − 2

k = 0, . . . ,M − 1, (3.93)

Fk =
θ −N

θ − k − 1
· θ

θ − k
· θ −N

θ −N + 2M

nk∏

i=1

θ − u
(k)
i − 2

θ − u
(k)
i

· θ + u
(k)
i − 2k − 2

θ + u
(k)
i − 2k

×

nk+1∏

i=1

θ − u
(k+1)
i + 2

θ − u
(k+1)
i

· θ + u
(k+1)
i − 2k

θ + u
(k+1)
i − 2k − 2

k = M, . . . ,N − 2, (3.94)

FN−1 =
θ

θ −N + 1
· θ −N

θ −N + 2M

nN−1∏

i=1

θ − u
(N−1)
i − 2

θ − u
(N−1)
i

· θ − û
(N−1)
i − 2

θ − û
(N−1)
i

×

m∏

i=1

θ − vi + 2

θ − vi
· θ − v̂i

θ − v̂i − 2
· θ − wi

θ − wi − 2
· θ − ŵi + 2

θ − ŵi
. (3.95)
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The cancellation of the unwanted terms in the various steps is guaranteed by

Fk−1

Fk
|
θ=u

(k)
i

= −1

The nesting procedure discussed here can be used also to determine the Λ̃1(θ, {θi, v, w})
eigenvalue of D̃Ω1(θ; {θi, v, w}) (3.38). We claim, that the result can indeed be summarized

by equation (3.45).

4 The Bethe Ansatz equations

The eigenvalue of the reduced transfer matrix D(θ) is obtained from (3.42), (3.92) and

(3.45). Starting from here one can construct the Bethe Ansatz equations in the same way

as in the periodic case [12], i.e. one has to let wi → vi in a certain specific way. In this limit

the cancellation of certain poles at θ = wi +2 is achieved only if each vi coincides with one

u
(N−1)
i . To describe the outcome it is useful to introduce a new notation, where the set of

u
(N−1)
i is divided into two sets

u
(N−1)
i =

2µ
(+)
i

i
+N − 1, i = 1, . . . , n+ = m, (4.1)

u
(N−1)
i+m =

2µ
(−)
i

i
+N − 1, i = 1, . . . , n− = nN−1 −m, (4.2)

θi ≡ u
(0)
i =

2ϑi

i
≡ 2µ

(0)
i

i
, i = 1, . . . , n0 = n, (4.3)

u
(k)
i =

2µ
(k)
i

i
+ k, i = 1, . . . , nk, k = 1, . . . , N − 2. (4.4)

(Here we also made some shifts in the magnon rapidities making possible to cast the result-

ing BAE into a more familiar form). Returning also to the rapidity variable ϑ, (θ = 2ϑ
i

),

used in section 2, the eigenvalue of the reduced transfer matrix can be written as

λ(ϑ, {µ(k)
i }) = ϑ− i

2(N − 2)

ϑ− i
2(N − 1)

· ϑ− i(N − 1)

ϑ− i
2(N + 2M − 2)

N−1∑

k=0

Gk(ϑ)

+
ϑ− i

2N

ϑ− i
2(N − 1)

· ϑ

ϑ− i
2(N − 2M)

N−1∑

k=0

G̃k(ϑ). (4.5)

To express Gk(ϑ) in a compact form we define

Zk(ϑ) =

nk∏

i=1

ϑ− µ
(k)
i + i

2

ϑ− µ
(k)
i − i

2

· ϑ+ µ
(k)
i + i

2

ϑ+ µ
(k)
i − i

2

, k = 0, . . . , N − 2,+,−,
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since using them one can write

Gk(ϑ) =
ϑ(ϑ+ i

2(N − 2M))2

(ϑ− i
2k)(ϑ − i

2(k + 1))(ϑ − i
2 (N − 2M))

Z−1
k (ϑ− i

2
(k + 1))Zk+1(ϑ − i

2
k),

(4.6)

k = 0, . . . ,M − 1

Gk(ϑ) =
ϑ(ϑ− i

2N)2

(ϑ− i
2k)(ϑ − i

2(k + 1))(ϑ − i
2 (N − 2M))

Z−1
k (ϑ− i

2
(k + 1))Zk+1(ϑ − i

2
k),

(4.7)

k = M, . . . ,N − 3

GN−2(ϑ) =
ϑ(ϑ− i

2N)2

(ϑ− i
2(N − 1))(ϑ − i

2(N − 2))(ϑ − i
2 (N − 2M))

Z−1
N−2(ϑ− i

2
(N − 1))×

Z−(ϑ− i

2
(N − 2))Z+(ϑ − i

2
(N − 2)), (4.8)

GN−1(ϑ) =
ϑ(ϑ− i

2N)

(ϑ− i
2(N − 1))(ϑ − i

2 (N − 2M))
Z−1
− (ϑ− i

2
N)Z+(ϑ− i

2
(N − 2)),

(4.9)

and

G̃k(ϑ) = Gk(ϑ̂), ϑ̂ = i(N − 1)− ϑ.

(More precisely the GN−2(ϑ) have this form for M = 1, . . . , N − 2 only. For M = N − 1

the coefficient of the product of Zk-s changes to
ϑ(ϑ− i

2
(N−2))

(ϑ− i
2
(N−1))(ϑ+ i

2
(N−2))

in (4.8)). Setting

Zk(ϑ) ≡ 1 for k = 1, . . . , N − 2,+,− corresponds to the absence of magnonic excitations,

thus substituting these - togehter with µ
(0)
i ≡ ϑi - into eq.(4.5-4.9) gives the eigenvalue of

D(ϑ) on the pseudovacuum.

4.1 The magnonic Bethe Ansatz equations

The magnonic Bethe Ansatz equations are obtained from requiring the absence of poles in

λ at ϑ = µ
(k)
i + i

2k, k = 1, . . . , N − 2 and at ϑ = µ
(±)
i + i

2(N − 1). These equations have

the form

nk∏

i=1

µ
(k)
j − µ

(k)
i + i

µ
(k)
j − µ

(k)
i − i

·
µ
(k)
j + µ

(k)
i + i

µ
(k)
j + µ

(k)
i − i

×

∏

l∈Lk

nl∏

i=1

µ
(k)
j − µ

(l)
i − i

2

µ
(k)
j − µ

(l)
i + i

2

·
µ
(k)
j + µ

(l)
i − i

2

µ
(k)
j + µ

(l)
i + i

2

= −
µ
(k)
j + i

2

µ
(k)
j − i

2

, k 6= M (4.10)
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and

nM∏

i=1

µ
(M)
j − µ

(M)
i + i

µ
(M)
j − µ

(M)
i − i

·
µ
(M)
j + µ

(M)
i + i

µ
(M)
j + µ

(M)
i − i

×

∏

l∈LM

nl∏

i=1

µ
(M)
j − µ

(l)
i − i

2

µ
(M)
j − µ

(l)
i + i

2

·
µ
(M)
j + µ

(l)
i − i

2

µ
(M)
j + µ

(l)
i + i

2

=

−
µ
(M)
j + i

2

µ
(M)
j − i

2

[µ(M)
j − i

2 (N −M)

µ
(M)
j + i

2 (N −M)

]2
, k = M (4.11)

where Lt = {t− 1, t+ 1}, {N − 3,−,+}, {N − 2} for 1 ≤ t ≤ N − 3, t = N − 2 and t = ±
respectively.

These equations determine µ
(k)
i k = 1, . . . , N − 2,± in terms of µ

(0)
i ≡ ϑi. Note that

substituting µ
(k)
j → −µ

(k)
j (but keeping µ

(k)
i i 6= j and µ

(l)
i l 6= k the same) in eq.(4.10-4.11)

changes both sides of the equations to their inverses, thus the µ
(k)
j roots are doubled, to

every µ
(k)
j solving (4.10-4.11) there is another one −µ

(k)
j .

Comparing these equations to the periodic ones [12] [24] shows that they are similar

to those with some differences. The differences include the µ
(k)
i → −µ

(k)
i doubling of all

factors on the l.h.s. and the appearance of the non trivial factor on the r.h.s. One can

understand the appearance of −µ
(k)
j + i

2

µ
(k)
j − i

2

on the r.h.s of (4.10-4.11) by realizing that this is

nothing but the i = j term of the first product on the l.h.s. Thus canceling them one

gets 1 (respectively
[
µ
(M)
j − i

2
(N−M)

µ
(M)
j + i

2
(N−M)

]2
) on the r.h.s. of (4.10) (resp. (4.11)), and

nk∏
i 6=j

on the

l.h.s. This ‘reduced’ or ‘simplified’ form of the BAE may be interpreted as the Bethe-Yang

equations for the magnons k = 1, . . . , N − 2,+,−

r
(+)
k (µ

(k)
j )r

(−)
k (µ

(k)
j )

nk∏

i 6=j

Skk(µ
(k)
j − µ

(k)
i )Skk(µ

(k)
j + µ

(k)
i )×

∏

l 6=k

nl∏

i=1

Skl(µ
(k)
j − µ

(l)
i )Skl(µ

(k)
j + µ

(l)
i ) = 1, (4.12)

where Skl(µ) describes the (diagonal) scattering of the k-th and l-th magnon on each other,

while r
(+)
k r

(−)
k describe the (diagonal) reflections of the k-th magnon on the two ends of the

strip6. The Skl(µ) is best described by assigning the magnons to the simple roots of DN :

k = 1, . . . , N − 2 → αk, k = + → αN−1, k = − → αN with the following non vanishing

scalar products

(αk · αk) = 2 ∀k, (αk · αk+1) = −1, k = 1, . . . N − 2, (αN−2 · αN ) = −1,

while µ
(0)
i ≡ ϑi to the root α0 satisfying (α0 · αk) = −δ1k:

Skl(µ) =
µ+ i

2(αk · αl)

µ− i
2(αk · αl)

. (4.13)

6The absence of any e2ipL type term in these equations can be understood by realizing that although

the magnons have rapidity they carry no momentum.
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This magnon-magnon S matrix is of course the same as the one extracted from the magnonic

BAE in the periodic case [24]. The novelty is that one can extract also the magnonic

reflections from the simplified form of (4.10) and (4.11) (assuming they are equal on the

two ends of the strip)

r
(+)
k (µ

(k)
j ) = r

(−)
k (µ

(k)
j ) = 1, k 6= M r

(+)
M (µ

(M)
j ) = r

(−)
M (µ

(M)
j ) = −

µ
(M)
j − i

2(N −M)

µ
(M)
j + i

2(N −M)
.

The N = 2 case is somewhat exceptional: in this case µ
((N−2))
i = µ

(0)
i ≡ ϑi and there

are only two functions GN−2(ϑ) ≡ G0(ϑ) and GN−1(ϑ) ≡ G1(ϑ) contributing to λ in (4.5).

The BAE follow from the absence of poles in λ at ϑ = µ
(±)
i + i

2 , and are of the form

(4.10-4.11):

n±∏

i 6=j

µ
(±)
j − µ

(±)
i + i

µ
(±)
j − µ

(±)
i − i

·
µ
(±)
j + µ

(±)
i + i

µ
(±)
j + µ

(±)
i − i

×

n0∏

i=1

µ
(±)
j − µ

(0)
i − i

2

µ
(±)
j − µ

(0)
i + i

2

·
µ
(±)
j + µ

(0)
i − i

2

µ
(±)
j + µ

(0)
i + i

2

=





1 for M = 2
(
µ
(±)
j − i

2

µ
(±)
j + i

2

)2
for M = 1

(4.14)

where M = 2 corresponds to the pure Neumann, while M = 1 to the 2 Dirichlet and 2

Neumann boundary conditions.

It is well known, that the periodic O(4) sigma model is equivalent to the SU(2) prin-

cipal model since its S matrix factorizes into the product of SU(2) S matrices. The pure

Neumann and 2 Dirichlet 2 Neumann boundary reflection matrices also factorize into the

product of some (constant) SU(2) reflection matrices [25]. Using this fact, the finite vol-

ume problem of the O(4) sigma model with these boundaries can be solved in the “SU(2)

language” without any sort of nesting. This was done in [25] and the resulting BAE are

precisely the ones in (4.14) upon identifying the magnons with k = ± and the left/right

SU(2) magnons in the SU(2) description. (This coincidence extends also to the eigenvalue

of the transfer matrix.) We think this gives a strong support to our general results.

4.2 The boundary Bethe Yang equations for the massive particles

Finally we turn to the discussion of the boundary Bethe Yang equations (2.20) for the

massive particles. For this one needs the Λ(ϑ, {ϑj}) eigenvalue of the double row transfer

matrix T (ϑ); to obtain this one has to multiply λ(ϑ, {µ(k)
i }) in (4.5) by the product of scalar

factors R2(ϑ)R2(ϑ̂)
∏

σ2(ϑ − ϑi)σ2(ϑ + ϑi). It is important to notice that (2.20) contains

Λ(ϑi, {ϑj}) and in the G0(ϑ) function, appearing in λ, there is a pole at ϑ = ϑi(≡ µ
(0)
i ).

To cancel this pole we write σ2(ϑ± ϑi) =
ϑ±ϑi

i−(ϑ±ϑi)
S0(ϑ± ϑi)

7 with

S0(ϑ) =
Γ
(
1
2 + 1

2N−2 + ϕ
)
Γ
(
1 + ϕ

)
Γ
(
1
2 − ϕ

)
Γ
(

1
2N−2 − ϕ

)

Γ
(
1
2 + 1

2N−2 − ϕ
)
Γ
(
1− ϕ

)
Γ
(
1
2 + ϕ

)
Γ
(

1
2N−2 + ϕ

) , ϕ =
iϑ

2N − 2
.

7Note that this implies that only the term containing G0(ϑ) contributes.
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Furthermore we express R2(ϑ̂) in terms of R2(ϑ) since according the boundary crossing

equation (2.7) they are related as

R2(ϑ) = − ϑ− i(N − 1)

ϑ− i
2 (N − 1)

· ϑ− i
2 (N − 2)

ϑ− i
2

S0(2ϑ)R2(ϑ̂)
ϑ− i

2(N − 2M)

ϑ − i
2(N + 2M − 2)

.

This way we find from (2.20) the Bethe Yang equations for the particle rapidities in the

form

e2ip(ϑj )LR2
2(ϑj)

(ϑj +
i
2(N − 2M)

i
2(N − 2M)− ϑj

)2 n∏

i 6=j

S0(ϑj − ϑi)S0(ϑj + ϑi)Z1(ϑj) = 1, j = 1, . . . , n,

(4.15)

for M = 1, . . . , N and N ≥ 3; for N = 2 the only change is that Z1(ϑj) is replaced by

Z+(ϑj)Z−(ϑj). The factor in front of the product term in (4.15) is nothing but c2(ϑj), thus

the (R2(ϑj)c(ϑj))
2 term plays the role of an ‘effective’ reflection factor for all the particles.

This effective reflection factor reproduces the pure Neumann coefficient, K(ϑj), (2.14), for

M = N , since R2(ϑ)c(ϑ)|M=N = K(ϑ).

Eq.(4.15) differs from the analogous periodic equation [24] in addition to the appearance

of this effective reflection factor also by the ϑi → −ϑi µ
(1)
i → −µ

(1)
i doubling of the terms

in the various products. As a result substituting ϑj → −ϑj on the l.h.s. of (4.15) changes

every term to its inverse; since the 1 on the r.h.s. is invariant, we conclude that if ϑj solves

(4.15) then −ϑj is also a solution, i.e. ϑj are also doubled.

5 The case with different boundaries

The procedure to obtain the eigenvalue of the DTM and the accompanying Bethe Ansatz

equations can be used also when the the reflection matrices at the ends of the interval are

different. In this chapter we summarize how the previous results change in this case.

We assume that on the left (+) and right (−) ends of the interval the reflection matrices

are different, but both of them are of the diagonal type (3.2)

R
(±)
A (θ) = R±

2 (θ)(R
(±)
a ,R

(±)
ā ) = R±

2 (θ)R
(±)
A (5.1)

where

R(±)
a = diag(c±, . . . , c±︸ ︷︷ ︸

M
±

, 1, . . . , 1︸ ︷︷ ︸
N−M±

), c± =
N − 2M± + θ

N − 2M± − θ
,

with M± being the two integers characterizing the left and right boundaries and

R±
2 (θ) = R2(θ)|K=2M±,

with R2(θ) in (2.13).

The reduced monodromy and transfer matrices are introduced now by

T (θ) = R−
2 (θ)R

+
2 (θ̂)

n∏

i=1

σ2(θ − θi)σ2(θ + θi)D(θ), (5.2)
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ωA(θ, {θi}) = R−
2 (θ)

n∏

i=1

σ2(θ − θi)σ2(θ + θi)MA(θ, {θi}), (5.3)

where

D(θ; {θi}) = trA
[
R

(+)
A (θ̂)MA(θ; {θi})

]
,

MA(θ; {θi}) = TA(θ; {θi})R(−)
A (θ)T̂A(θ; {θi}),

with the same T and T̂ as in (3.7). The equation for the eigenvalues of D(θ) following from

the crossing symmetry of the bulk S matrix has the form now

λ(θ, {θi},M+,M−) = λ(θ̂, {θi},M−,M+)

instead of (3.9).

The M± integers appear in the eigenvalue of D in a non trivial way. The gross structure

of λ remains the same as in (4.5)

λ(ϑ, {µ(k)
i }) = ϑ− i

2 (N − 2)

ϑ− i
2 (N − 1)

· ϑ− i(N − 1)

ϑ− i
2(N + 2M+ − 2)

N−1∑

k=0

Gk(ϑ)

+
ϑ− i

2N

ϑ− i
2(N − 1)

· ϑ

ϑ− i
2(N − 2M−)

N−1∑

k=0

G̃k(ϑ), (5.4)

but the “fine structure” of the various Gk(ϑ) functions also changes. This means that

although they retain the same product of Zk(ϑ) factors as previously the coefficients are

different now, instead of (4.6-4.7) one finds

Gk(ϑ) = g+k (ϑ)g
−
k (ϑ)Z

−1
k (ϑ− i

2
(k + 1))Zk+1(ϑ− i

2
k) (5.5)

where

g−k (ϑ) =− ϑ(ϑ+ i
2(N − 2M−))

(ϑ− i
2k)(ϑ − i

2(N − 2M−))
, k < M− (5.6)

g−k (ϑ) =
ϑ(ϑ− i

2N)

(ϑ− i
2k)(ϑ − i

2(N − 2M−))
, k ≥ M− (5.7)

and

g+k (ϑ) = −(ϑ+ i
2(N − 2M+))

(ϑ − i
2(k + 1))

, k < M+ g+k (ϑ) =
(ϑ− i

2N)

(ϑ− i
2(k + 1))

, k ≥ M+. (5.8)

(GN−2(ϑ) and GN−1(ϑ) follow the same pattern with g±N−2(ϑ) and g±N−1(ϑ)). The relation

between Gk(ϑ) and G̃k(ϑ) is also slightly more complicated

G̃k(ϑ) = Gk(ϑ̂)|M−↔M+.

Compared to λ the magnonic BAE and the boundary Bethe Yang equations undergo

much smaller changes as a result of the different boundaries. The simplest way to describe
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the new magnonic BAE is in terms of the effective magnonic Bethe Yang equations (4.12):

the magnon-magnon S matrix is of course the same as in (4.13) and only the magnon

reflections r
(±)
k change. Indeed in the two boundary case the nontrivial ones are

r
(−)
M−(µ

(M−)
j ) = −

µ
(M−)
j − i

2(N −M−)

µ
(M−)
j + i

2(N −M−)
, r

(+)
M+(µ

(M+)
j ) = −

µ
(M+)
j − i

2 (N −M+)

µ
(M+)
j + i

2 (N −M+)
,

all the other r
(±)
k are just 1. In a similar way the only change in the boundary Bethe Yang

equations (4.15) is that in the two boundary case one must make the

(R2(ϑj)c(ϑj))
2 → R+

2 (ϑj)c
+(ϑj)R

−
2 (ϑj)c

−(ϑj)

substitution.

6 Conclusions

In this paper we considered the O(2N) sigma model with integrable diagonal boundaries

and as a main result derived the boundary Bethe Yang equation for the particle rapidities

(4.15) together with the boundary versions of the Bethe Ansatz equations (4.10-4.11). We

achieved this by diagonalizing the double row transfer matrix using the generalization of

the method of [12]. During this investigation we paid a particular attention to the relation

between the wanted and unwanted terms and argued that the vanishing of the residue of the

eigenvalue at the magnon rapidities is not only a necessary but also a sufficient condition.

In this investigation we restricted our attention to the case when the particle reflections

at the ends of the interval were identical and diagonal. Working in an appropriate complex

basis this required that K, the number of fields satisfying Neumann b.c., had to be even,

K = 2M ; and this led to the O(2N) → Q(2M)×O(2(N −M)) symmetry breaking pattern

by the boundary conditions. Please note that in this symmetry breaking the rank of the

symmetry group does not change, while for K odd it would decresase by one. For this

reason we expect that the K = odd case can not be obtained from our results by some

“analytic” continuation.

In this paper we also gave the main results for the case with different (diagonal) reflec-

tion matrices at the two ends of the interval.

Recently considerable progress has been made to construct the eigenvalues and eigen-

vectors of DTMs constructed with non diagonal reflection matrices [26]. The boundary

integrable O(2N) sigma models in some cases have non diagonal reflection matrices [10]. It

would be interesting to use the method of [26] to solve these cases too.

The results presented here may have some interesting applications. Working along the

lines of [27] they may be used to establish a connection to the classical spectral curve of

O(2N) sigma models with integrable boundaries. In a similar way, the results presented

here, may provide the basis to extend the investigation of [24] - devoted to establish the

relation between strings and multiparticle states of quantum sigma models - from closed

strings to open ones.
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Note added Proceeding further with the argument leading to eq.(3.8) by exploiting

also the boundary crossing property of the reflection matrices one can show the exact

invariance D(θ, {θi}) = D(θ̂, {θi}). We thank Rafael Nepomechie for correspondence on

this issue.
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A Notation

We use the following notation:

1. Indexes in capital letters denote C
2N vector spaces.

2. Indexes in lower case letters denote C
N vector spaces.

3. Xa denotes a matrix acting on the vector space indexed by a. Alternatively we can

write its indexes explicitly

Xa2
a1
.

4. Xab denotes a matrix acting on the tensor product of the vector spaces indexed by a

and b. Using explicit indexes we write

Xa2b2
a1b1

.

5. Xa is a matrix acting on the tensor product of the auxiliary vector space indexed by

a and the full quantum space. With explicit indexes

X
a2
a1

= X
a2B

1
2 ...B

n
2

a1B
1
1 ...B

n
1
.

6.

Xta
ab

denotes the transposition in the a space.

7. In sect.3.5 M
Ωk
a is a N − k + 1 dimensional matrix in the auxiliary space while B

Ωk
a

(CΩk
a ) denote a N − k dimensional row (respectively column) vector, and D

Ωk
a is a

N − k dimensional matrix.
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B Derivation of eq.(3.28)

The unwanted term containing Ab in (3.27) can be written as

− 1

θ − u
Res
θ′=u

[{
Sab(u− θ′)Bb(θ)Qab(u+ θ)Aa(θ

′)Q−1
ab (u− θ′)

}tb
Q−1

ab (û− θ)

]tb
=

= −Ba(θ)

[{
Qab(u+ θ)Ab(u)Q

−1
ab (u− θ)Uab(u− θ)

}tb
Q−1

ab (û− θ)

]tb
. (B.1)

Making use of the following identities

Q−1
ab (u− θ)Uab(u− θ) =

2

θ − u
(Pab −Kab),

PabAbKab = A
tb
b Kab, KabAbPab = KabA

tb
b , KabAbKab = KabtrbA

tb
b ,

the r.h.s. of eq.(B.1) can be written in the following form

−Ba(θ)

[{
(Iab −

2

û− θ
Kab)Ab(u)

2

θ − u
(Pab −Kab)

}tb
(Iab −

2

û− θ + 2
Kab)

]tb
=

= −Ba(θ)
2

θ − u

[
Ab(u)(Pab −Kab)−

2

θ − û
(Pab −Kab)(trbAb(u)− A

tb
b (u))

]
. (B.2)

The ‘unwanted’ term containing D in (3.27) is written as

1

θ − û
Res
θ′=u

[
Sab(θ

′ − u)Bb(θ)Da(θ
′)taQ−1

ab (θ
′ − u)

]tb
=

= Ba(θ)
[
D
tb
b (û)Q

−1
ab (û− θ)Uab(û− θ)

]tb
= −Ba(θ)

2

θ − û
(Pab −Kab)Db(u). (B.3)

Finally adding (B.2) and (B.3) we get

−Ba(θ)(Pab −Kab)

[
2

θ − u

{
Ab(u)−

2

u− û
(trbAb(u)− A

tb
b (u))

}
+

2

θ − û
Db(u)

]
=

= −
[{

Ba(θ)Qab(2u)Ab(u)Q
−1
ab (u− θ)Uab(u− θ)

}tb
Q−1

ab (û− u)

]tb
−

−
[
Ba(θ)D

tb
b (u)Q

−1
ab (û− θ)Uab(û− θ)

]tb
, (B.4)

which is equivalent to the unwanted terms in (3.28).

C The relation between the wanted and unwanted terms

In this appendix we study the relation between the wanted and unwanted terms appearing

in the commutator of the transfer matrix D(θ), eq.(3.22), and B
ij(u).

First we rewrite D(θ) ≡ DΩ0(θ)8 in a more symmetric form; to this end we define

D̃
Ω0
a (θ) by the relation

D
Ω0

a (θ) = D̃
Ω0
a (θ) +

2

θ − θ̂

(
D̃
Ω0ta
a (θ)− traD̃

Ω0
a (θ)

)
, (C.1)

8To emphasize that the A, . . . , D operators act on the space Ω0 and to distinguish them from the various

similar operators appearing in the following sections we denote them by an upper index Ω0

– 28 –



since using it DΩ0(θ) can be written as

DΩ0(θ) =
θ −N + 2

θ −N + 1
· θ − 2N + 2

θ −N − 2M + 2

(
tra

[
R

1
a(θ̂)A

Ω0
a (θ)

]
+ tra

[
R

1
a(θ̂)D̃

Ω0
a (θ)

])
, (C.2)

with R
1
a being the constant diagonal matrix introduced in (3.20)

R
1
a =

(
−IM

IN−M

)
.

After some effort one can show, that the commutation relations of sect.3.3. imply

tra

[
R

1
aA

Ω0
a (θ)

]
B
Ω0
b (u) = wantA + uwantA1 + uwantA2, (C.3)

tra

[
R

1
aD̃

Ω0
a (θ)

]
B
Ω0
b (u) = wantD + uwantD1 + uwantD2, (C.4)

where wantA and wantD denote the wanted terms

wantA = B
Ω0
ij (u)tra

[
R

1
aS

ti
ai(u− θ)S

tj
aj(û− θ)AΩ0

a (θ)Q−1
aj (u− θ)Q−1

ai (û− θ)
]
, (C.5)

wantD = B
Ω0
ij (u)tra

[
R

1
aQ

−1ti
ai (θ − u)Q

−1tj
aj (θ − û)D̃Ω0

a (θ)Saj(θ − u)Sai(θ − û)
]
, (C.6)

(note, that using some simple identities between Sab and Qab we recast these in a more

suitable form), while the various unwanted terms have the form

uwantA1 =
2

θ − u

{[(
R

1
bB

Ω0
b (θ)− B

Ω0tb
b (θ)R

1
b

)
A
Ω0tb
b (u)

]tb −

1

N − u− 1

(
R

1
bB

Ω0
b (θ)− B

Ω0tb
b (θ)R

1
b

)(
A
Ω0tb
b (u)− trbA

Ω0tb
b (u)

)}
(C.7)

uwantA2 =
2

θ − û

(
R

1
bB

Ω0
b (θ)− B

Ω0tb
b (θ)R

1
b

)
D
Ω0

b (u), (C.8)

uwantD1 =− 2

θ − u

1

N − 2− θ

[
R

1
b

(
B
Ω0
b (θ) + (N − θ − 1)BΩ0tb

b (θ)
)
−

(
B
Ω0
b (θ)(N − θ − 1) + B

Ω0tb
b (θ)

)
R

1
b

]
D
Ω0

b (u), (C.9)

uwantD2 =− 2

θ − û

1

N − 2− θ

{[(
R

1
b

(
B
Ω0
b (θ) + (N − θ − 1)BΩ0tb

b (θ)
)
−

(
B
Ω0
b (θ)(N − θ − 1) + B

Ω0tb
b (θ)

)
R

1
b

)
A
Ω0tb
b (u)

]tb −
1

N − 1− u

[
R

1
b

(
B
Ω0
b (θ) + (N − θ − 1)BΩ0tb

b (θ)
)
−

(
B
Ω0
b (θ)(N − θ − 1) + B

Ω0tb
b (θ)

)
R

1
b

] (
A
Ω0tb
b (u)− trbA

Ω0tb
b (u)

)}
. (C.10)

Note that on the r.h.s of these equations we kept D
Ω0

b , the reason being that it has nicer

properties than D̃
Ω0
b , e.g. it has a simpler action on the pseudovacuum.
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In these expressions B
Ω0
ij may be viewed as a row vector in both spaces indexed by i

and j. Taking the residues of the wanted terms gives

Res
θ=u

wantA = −B
Ω0
ij (u)R

1
i (Iij −Pij)

[
−A

Ω0ti
i (u)− 1

N − u− 1

(
A
Ω0tj
j (u)− trjA

Ω0
j (u)

)]
,

(C.11)

Res
θ=u

wantD = B
Ω0
ij (u)

1

N − 2− u

[
R

1
i − (N − u− 1)R

1
j

]
(Iij −Pij)D

Ω0

j (u). (C.12)

Using explicit indexes one can write the unwanted terms as

uwantA1 =
1

θ − u
B
Ω0
ij (u)R

1
i (Iij −Pij)

[
−A

Ω0ti
i (u)− 1

N − u− 1

(
A
Ω0tj
j (u)− trjA

Ω0
j (u)

)]
,

(C.13)

uwantA2 =
1

θ − û
B
Ω0
ij (u)R

1
i (Iij −Pij)D

Ω0

j (u), (C.14)

uwantD1 =− 1

θ − u
B
Ω0
ij (u)

1

N − 2− θ

[
R

1
i − (N − θ − 1)R

1
j

]
(Iij −Pij)D

Ω0

j (u), (C.15)

uwantD2 =− 1

θ − û
B
Ω0
ij (u)

1

N − 2− θ

[
R

1
i − (N − θ − 1)R

1
j

]
(Iij −Pij)×

[
−A

Ω0ti
i (u)− 1

N − u− 1

(
A
Ω0tj
j (u)− trjA

Ω0
j (u)

)]
, (C.16)

showing a strikingly similar structure to the residue of the wanted terms. To make this

relation precise we introduce Resθ=u [wanted]ij and [uwanted]ij by the relations

B
Ω0
ij (u)Res

θ=u
[wanted]ij = wantA + wantD, (C.17)

B
Ω0
ij (θ) [uwanted]ij = uwantA1 + uwantA2 + uwantD1 + uwantD2. (C.18)

Then, by direct computations, one can verify that

[unwanted]ij = −
(

1

θ − u
+

1

θ − û

)
R̃ij

[
Res
θ=u

wanted

]

ij

, (C.19)

where

R̃ij =




IM2

rIM(N−M)

rIM(N−M)

I(N−M)2


 , r =

N − u− 2

N − θ − 2
. (C.20)

In subsections 3.4-3.5 the eigenvectors of the wanted terms are constructed. When we let

both sides of (C.19) to act on these eigenvectors we see that demanding the vanishing of the

residue of the eigenvalue is equivalent to the vanishing of the contributions of the unwanted

terms.

In the k-th step of the nesting procedure one can obtain in a similar way the sufficient

condition for the vanishing of the unwanted terms in the commutator of DΩk(θ), (3.85),
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and B
Ωk

i (u). Indeed defining now Resθ=u

[
wantedk

]
i
and

[
uwantedk

]
i
by the relations

B
Ωk

i (u)Res
θ=u

[
wantedk

]
i
= wantAk +wantDk, (C.21)

B
Ωk

i (θ)
[
uwantedk

]
i
= uwantA1k + uwantA2k + uwantD1k + uwantD2k, (C.22)

(where the r.h.s. of these equations denote the wanted/respectively unwanted terms of the

commutator) after a direct computation one finds the following relation

[
unwantedk

]
i
= −

(
1

θ − u
+

1

θ + u− 2k

)
R̃k

i

[
Res
θ=u

wantedk
]

i

, (C.23)

with

R̃k
i =

(
IM−k

rIN−M

)
, k = 1, . . . ,M (C.24)

R̃k
i =

(
IN−k

)
, k = M + 1, . . . , N − 1 (C.25)

(C.26)

and

r =
N − u− 2M

N − θ − 2M
. (C.27)

Letting both sides of eq.(C.23) to act on |ΨΩk〉 one can see that (3.91) is indeed a sufficient

condition.
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