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1 Introduction

Since its invention fifteen years ago [1], the Wess-Zumino-Novikov-Witten (WZNW) model has
been the subject of many studies, and still receives considerable attention due to its central
role in two-dimensional conformal field theory and to the richness of its structure (see e.g. [2]).
One of the fascinating aspects of the model is that in addition to its built-in affine Kac-Moody
symmetry it also exhibits certain quantum group properties. The quantum group properties
were originally discovered [3] in the quantized model, which raised the question to find their
classical analogues. The intense efforts [4, 5, 6, 7] at the beginning of the decade led to the
consensus that the origin of the quantum group symmetries lies in the Poisson-Lie (P-L) –
gauge – symmetries of the so called chiral WZNW phase space that emerges after splitting the
left- and right-moving degrees of freedom.

However, in the definition of the chiral WZNW symplectic structure there appears, unavoid-
ably, a choice to be made [6], [7], and the resulting Poisson brackets (PBs) have been analysed
so far only in a small subset of the possible cases. In this letter we wish to present new results
on the general case (for details, see [8]).

Following [6], [7], the chiral separation of the space of classical solutions, Msol, of the WZNW
model based on a simple Lie group G with Lie algebra G can be described as follows1. Msol

consists of the smooth G-valued functions g(σ, τ) which are 2π-periodic in the space variable
σ and satisfy the field equation ∂R(∂Lg · g−1) = 0. The general solution can be written as
g(σ, τ) = gL(xL)g

−1
R (xR), where (gL, gR) is a pair of G-valued, smooth, quasiperiodic functions

on the real line R with equal monodromies: for C = L,R one has gC(xC + 2π) = gC(xC)M
with some C-independent M ∈ G. This means that Msol is the base of a principal G-bundle,
whose total space is

M̂ = {(gL, gR)|gL,R ∈ C∞(R, G), gL,R(x+ 2π) = gL,R(x)M M ∈ G}. (1.1)

The free right-action of G on M̂ is given by G ∋ p : (gL, gR) 7→ (gLp, gRp), and the bundle
projection, ϑ : M̂ → Msol, operates as ϑ : (gL, gR) 7→ g = gLg

−1
R . Being a space of solutions,

Msol has a natural symplectic structure, Ωκ
sol, whose pull-back to M̂ can be extended to the

chirally separated space given by M̂ext = ML ×MR with

MC = {gC |gC ∈ C∞(R, G), gC(x+ 2π) = gC(x)MC MC ∈ G}. (1.2)

In the extended space it is natural to require the two chiral factors to be completely decoupled.
The most general symplectic structure Ω̂κ

ext on M̂ext with this property which equals ϑ∗(Ωκ
sol)

on M̂ ⊂ M̂ext has the form Ω̂κ
ext(gL, gR) = κLΩ

ρ
chir(gL) + κRΩ

ρ
chir(gR). Here κL = −κR = κ is

a parameter (the affine Kac-Moody ‘level’) and

Ωρ
chir(gC) = Ωchir(gC) + ρ(MC) (1.3)

with

Ωchir(gC) = −
1

2

∫ 2π

0
dxC Tr

(
g−1
C dgC

)
∧

(
g−1
C dgC

)′
−

1

2
Tr

(
(g−1

C dgC)(0) ∧ dMC ·M−1
C

)
(1.4)

1Conventions: We have xL = σ+τ , xR = σ−τ , ∂C = ∂
∂xC

for C = L,R. For a basis Tα of G, Iαβ = Tr (TαT β)

and [Tα, T β] = fαβ
γ T γ. The dual basis is denoted by Tα, Tr(TαT

β) = δβα, and the elements A ∈ G have

components Aα = Tr(ATα). The usual summation convention is in force, indices are raised and lowered by Iαβ

and its inverse. G̃ contains the 2π-periodic functions in C∞(R,G).
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and some 2-form ρ depending only on the monodromy of gC . More precisely, since in the
extended model the chiral factors (MC , κCΩ

ρ
chir) must be symplectic manifolds separately,

d(κCΩ
ρ
chir) = 0, one has the condition [6]

dρ(MC) =
1

6
Tr

(
M−1

C dMC ∧M−1
C dMC ∧M−1

C dMC

)
, (1.5)

which in turn implies that the chiral monodromy matrices MC must be restricted to a domain
Ǧ ⊂ G on which there exists a smooth 2-form ρ satisfying (1.5).

One of the main points of [7] is that one can construct an appropriate 2-form ρ out of any
(suitably normalized) antisymmetric solution r̂ ∈ G ∧ G of the modified classical Yang-Baxter
equation (YBE) in such a way that the corresponding PBs on MC are encoded by the ‘classical
exchange algebra’

{
gC(x) ⊗, gC(y)

}
=

1

κC
(gC(x)⊗ gC(y))

(
r̂ +

1

2
Î sign (y − x)

)
, 0 < x, y < 2π, (1.6)

where Î = IαβTα ⊗Tβ. This exchange algebra admits the P-L action p : gC(x) 7→ gC(x)p of the
group G = {p} endowed with the Sklyanin bracket [9]

κC{p ⊗, p}R̂ = [p⊗ p, R̂] (1.7)

with R̂ = r̂.
By using an arbitrary ρ in (1.3), one expects to obtain a classical exchange algebra governed

by some monodromy dependent ‘exchange r-matrix’ r̂(M). Our first result in fact is that we
shall establish the precise relationship between ρ and r̂(M) in the general case. We will then
point out that r̂(M) and the R̂-matrix of the P-L symmetry group need not always coincide.
That is, right multiplication can be a P-L symmetry for certain non-constant exchange r-
matrices, too, which we shall give explicitly.

To place our second result into context, we recall that an alternative method of the chiral
separation is to construct the general solution of the WZNW field equation out of ‘Bloch-
waves’ that have diagonal monodromy matrix, given by eω with ω ∈ H, where H is a splitting
Cartan subalgebra with basis H i. It was pointed out in [5] that the corresponding monodromy
dependent r-matrix, R̂(ω), then satisfies

[R̂12(ω), R̂23(ω)] +
∑

i

H i
1

∂

∂ωi
R̂23(ω) + cycl. perm. = −

1

4
f̂ , f̂ = fαβγT

α ⊗ T β ⊗ T β. (1.8)

This modified classical dynamical YBE appears in other contexts [10, 11, 12], too, and has been
much studied recently (see [13], [14] and references therein). In [13] a geometric interpretation
of (1.8) has been given in terms of dynamical P-L groupoids, generalizing the relationship [15]
between the (modified) classical YBE and P-L groups. As our second result, we shall show
that an arbitrary exchange r-matrix of the WZNW model is a solution of another dynamical
generalization of the modified classical YBE, given by eq. (2.28) below, which also admits an
interpretation in terms of (new) P-L groupoids.
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2 Poisson brackets on the chiral WZNW phase space

We here investigate the symplectic structure on the chiral WZNW phase space MC introduced
above. The analysis is the same for both chiralities, C = L,R, and we simplify our notation by
putting Mchir for MC and g, M , κ for gC , MC , κC , respectively. Thus Mchir is parametrized
by the G-valued, smooth, quasiperiodic field g(x) satisfying the monodromy condition

g(x+ 2π) = g(x)M M ∈ G. (2.1)

The corresponding chiral current, J(x) = κg′(x)g−1(x) ∈ G, is a smooth, 2π-periodic function
of x. The domain in Mchir that corresponds to M ∈ Ǧ is denoted by M̌chir. Below we show
that κΩρ

chir defined by (1.3) is non-degenerate if Ǧ is appropriately chosen and describe the
main features of the PBs associated with this symplectic form.

To use κΩρ
chir in practice we need to establish some notation for tangent vectors X [g] at

g ∈ Mchir and vector fields X over the chiral phase space. To this end we consider smooth
curves on Mchir described by functions γ(x, t) ∈ G satisfying

γ(x+ 2π, t) = γ(x, t)M(t) M(t) ∈ G; γ(x, 0) = g(x). (2.2)

X [g] is obtained as the velocity to the curve at t = 0, encoded by the G-valued, smooth function

ξ(x) :=
d

dt
g−1(x)γ(x, t)

∣∣∣
t=0

. (2.3)

The monodromy properties of ξ(x) can be derived by taking the derivative of the first equation
in (2.2): ξ′(x + 2π) = M−1ξ′(x)M, and this can be solved in terms of a G-valued, smooth,
2π-periodic function, XJ ∈ G̃, and a constant Lie algebra element, ξ0, as follows:

ξ(x) = ξ0 +
∫ x

0
dy g−1(y)XJ(y)g(y). (2.4)

A vector field X on Mchir is an assignment, g 7→ X [g], of a vector to every point g ∈ Mchir.
Thus it can be specified by the assignments g 7→ ξ0[g] ∈ G and g 7→ XJ [g] ∈ G̃. Using the curve
that defines X [g], X acts on a smooth function, g 7→ F [g], on Mchir as

X(F )[g] =
d

dt
F [gt]

∣∣∣
t=0

gt(x) = γ(x, t) . (2.5)

Note that the evaluation functions F x[g] := g(x) and Fx[g] := J(x) are differentiable with
respect to any vector field, and their derivatives are given by

X(g(x)) = g(x)ξ(x) and X(J(x)) = κXJ(x). (2.6)

This clarifies the meaning of XJ as well. It is also obvious from its definition that the mon-
odromy matrix yields a G-valued differentiable function on Mchir, g 7→M = g−1(x)g(x+ 2π),
whose derivative is characterized by the G-valued function X(M)M−1 =Mξ(x+2π)M−1−ξ(x).
Having defined vector fields, one can also introduce differential forms as usual. We only remark
that by (2.6) evaluation 1-forms like dg(x), dJ(x) or (g−1dg)′(x) are perfectly well-defined: e.g.
dg(x)(X) = X(g(x)) = g(x)ξ(x).
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The inversion of κΩρ
chir consists of the solution of the following problem: For a fixed (scalar)

function F on the phase space M̌chir, find the corresponding vector field, Y F , satisfying

X(F ) = κΩρ
chir(X, Y

F ) (2.7)

for all vector fields X . Notice that Y F does not necessarily exist for a given F . We say that F is
an element of the set of admissible Hamiltonians, denoted as H, if the corresponding hamiltonian
vector field, Y F , exists.

To compute κΩρ
chir(X, Y

F ) we assume that X is parametrized by ξ(x) and further by the
pair (ξ0, XJ(x)), while the analogous parametrization for Y F is given by η(x) and the pair
(η0, YJ(x)). Furthermore we parametrize ρ now as

ρ(M) =
1

2
qαβ(M)Tr(TαM

−1dM) ∧ Tr(TβM
−1dM). (2.8)

The qαβ, qαβ = −qβα, are smooth functions on the domain Ǧ ⊂ G. Studying the right hand
side of (2.7) one can establish [8] the following three necessary and sufficient conditions that F
must obey to guarantee that Y F exists:
• There must exist a smooth G-valued function onR, AF (x), and a constant Lie algebra element,
aF , such that for any vector field X

X(F ) = κ

∫ 2π

0
dxTr

(
XJ(x)A

F (x)
)
+ κTr (ξ0a

F ). (2.9)

This means that F ∈ H must have an exterior derivative parametrized by the assignments
g 7→ AF (x)[g] and g 7→ aF [g]. The restriction of AF (x) to x ∈ [0, 2π] and aF are uniquely
determined by (2.9), and AF (x) is made a unique function on R by the next requirement.
• The expression

1

κ

[
AF (x), J(x)

]
+ AF ′

(x) (2.10)

must define a smooth 2π-periodic function on R.
• AF (x) and aF must be related by

aF = g−1(0)
[
AF (0)−AF (2π)

]
g(0). (2.11)

If these conditions are satisfied, then Y F is uniquely determined, and is in fact given by

g−1(x)Y F (g(x)) = g−1(x)AF (x)g(x)−
1

2
aF + r(M)(aF ) , (2.12)

where
r(M)(aF ) = Tαr

αβ(M)aFβ (2.13)

and the matrix rαβ(M) is defined as the solution of an interesting linear equation. This equation
can be best described in terms of the linear operators q±(M), r±(M) ∈ End(G) which are
associated with the matrices

r
αβ
± (M) = rαβ(M)±

1

2
Iαβ and q

αβ
± (M) = qαβ(M)±

1

2
Iαβ (2.14)
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by the rule
Q(A) = TαQ

αβAβ, Qαβ = r
αβ
± (M), qαβ± (M). (2.15)

In fact [8], using these operators the equation determining rαβ(M) obtains the form:

q+(M) ◦ r−(M) = q−(M) ◦ Ad (M−1) ◦ r+(M). (2.16)

Notice that at the identity e ∈ G the unique solution is rαβ(e) = qαβ(e). It follows by continuity
that there is a neighbourhood of e ∈ G on which a unique solution exists and is a smooth
function ofM . Moreover, it is easy to see that the solution r(M) is antisymmetric, rαβ = −rβα.
By choosing Ǧ ⊂ G appropriately, hence we obtain by (2.16) a one-to-one correspondence
between the smooth 2-form ρ on Ǧ and the smooth map Ǧ ∋M 7→ r(M) ∈ End(G).

Incidentally, it follows from (2.12) that

Y F (J(x)) =
[
AF (x), J(x)

]
+ κAF ′

(x), (2.17)

which explains why (2.10) must define an element of G̃.
Having obtained the conditions of existence and the general expression (2.12) for hamiltonian

vector fields, one can analyse which functions belong to H. First note that the evaluation
functions Fx[g] and F x[g] fail to satisfy the first condition, thus they are not in H. However,
their smeared out versions

Fµ :=
∫ 2π

0
dxTr

(
µ(x)J(x)

)
, Fφ[g] :=

∫ 2π

0
dxTr

(
φ(x)gΛ(x)

)
, (2.18)

(where in defining Fφ we use a representation Λ : G → GL(V ) of G with gΛ = Λ(g) and a
smooth test function φ : R → End(V )) can be shown to belong to H, if µ(x) is a G-valued,
smooth, 2π-periodic test function, and φ satisfies φ(k)(0) = φ(k)(2π) = 0 for every integer k ≥ 0.
The corresponding hamiltonian vector fields obtained from (2.12) satisfy

Y Fµ(g(x)) = µ(x)g(x), Y Fµ(J(x)) = [µ(x), J(x)] + κµ′(x), Y Fµ(M) = 0, (2.19)

and, for x ∈ [0, 2π],

g−1(x)Y Fφ(g(x)) =
1

κ
T α

∫ 2π

x
dyTr

(
TΛ
α φ(y)g

Λ(y)
)
−

1

2
aFφ + r(M)(aFφ). (2.20)

Eq. (2.19) shows that the Fµ generate an infinitesimal action of the loop group on the phase
space with respect to which g(x) is an affine Kac-Moody primary field, and the current J(x)
transforms according to the co-adjoint action of the centrally extended loop group. The matrix
elements MΛ

kl of the monodromy matrix in representation Λ also belong to H. The action of
Y MΛ

kl on gΛij(x) and on MΛ
ij can be written in tensorial form as

Y MΛ

kl(gΛij(x)) =
1

κ
(g(x)⊗M Θ̂(M))Λik,jl , (2.21)

Y MΛ

kl(MΛ
ij ) =

1

κ

(
(M ⊗M)∆̂(M)

)Λ
ik,jl

, (2.22)
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where our tensor product notation is (K ⊗ L)ik,jl = KijLkl, and

Θ̂(M) = r̂+(M)−M−1
2 r̂−(M)M2 , ∆̂(M) = Θ̂(M)−M−1

1 Θ̂(M)M1 (2.23)

with r̂±(M) = r
αβ
± (M)Tα ⊗ Tβ . The matrix rαβ(M) appearing here is the solution of (2.16),

and M1 =M ⊗ 1, M2 = 1⊗M .
We now wish to interpret the above hamiltonian vector fields in terms of PBs. Recall that

the PB of two smooth functions F1 and F2 on a finite dimensional smooth symplectic manifold
is defined by

{F1, F2} = Y F2(F1) = −Y F1(F2) = Ω(Y F2 , Y F1), (2.24)

where Y Fi is the hamiltonian vector field associated with Fi by the symplectic form Ω. One may
formally apply the same formula in the infinite dimensional case to the admissible functions
that possess a hamiltonian vector field. However, it is then a non-trivial problem to fully
specify the set of functions that form a closed Poisson algebra. Setting this question aside, it
is clear from (2.19) and (2.22) that the admissible functions of J and those of M will form two
closed Poisson subalgebras that centralize each other. Furthermore, we may use the perfectly
well-defined expression

{Fχ, Fφ} := Y Fφ(Fχ) (2.25)

for the PB of two admissible Hamiltonians of type F in eq. (2.18) to define the (‘distribution
valued’) PB of the evaluation functions g(x) by the equality:

{Fχ, Fφ} :=
∫ 2π

0

∫ 2π

0
dxdyTr12

(
χ(x)⊗ φ(y){gΛ(x) ⊗, gΛ(y)}

)
, (2.26)

where Tr12 is the (normalized) trace over V ⊗ V and {gΛ(x) ⊗, gΛ(y)}ik,jl = {gΛij(x), g
Λ
kl(y)}.

With these definitions, our explicit formula of the hamiltonian vector field Y Fφ in (2.20) is
equivalent to the following quadratic exchange algebra type PB for the chiral field g(x):

{
gΛ(x) ⊗, gΛ(y)

}
=

1

κ

(
gΛ(x)⊗ gΛ(y)

)(
r̂(M) +

1

2
Î sign (y − x)

)Λ
, 0 < x, y < 2π, (2.27)

where r̂(M) denotes (the appropriate representation of) the element in G ⊗ G corresponding
to the solution of eq. (2.16): r̂(M) = rαβ(M)Tα ⊗ Tβ . Thus eq. (2.16) gives indeed the precise
relation between the 2-form ρ in (1.3), (2.8) and the – in general monodromy dependent –
‘exchange r-matrix’, r̂(M). Proceeding in the same way with the {Fφ,M

Λ
kl} PB as we did with

the {Fχ, Fφ} one, we conclude that the right hand side of (2.21) should be interpreted as the
expression of the {gΛij(x),M

Λ
kl} PB, and similarly for (2.22).

It is clear from the foregoing discussion that the admissible Hamiltonians of type Fµ, Fφ

and MΛ
kl should together generate a closed Poisson algebra. Although at present we cannot

fully characterize the set of elements that belong to this algebra, we wish to point out that the
Jacobi identity for three functions of type Fφ, in any Poisson algebra that contains them, is
equivalent to the following equation for r̂(M):

[r̂12(M), r̂23(M)] + Θαβ(M)T α
1 R

β r̂23(M) + cycl. perm. = −
1

4
f̂ . (2.28)

Here f̂ is the same as in (1.8) and the cyclic permutation is over the three tensorial factors
with r̂23 = rαβ(1⊗ Tα ⊗ Tβ), T

α
1 = T α ⊗ 1⊗ 1 and so on. Furthermore, we use the components

6



of Θ̂ = ΘαβT
α ⊗ T β given by (2.23), and the left-invariant differential operators Rβ that act

on a function ψ of M by

(Rαψ)(M) :=
d

dt
ψ(MetTα)

∣∣∣
t=0
, Rβ = IβαRα. (2.29)

Eq. (2.28) can be viewed as a dynamical generalization of the classical modified YBE, to which
it reduces if the r-matrix is a monodromy independent constant. Of course, (2.28) is satisfied
for any r̂(M) that arises as a solution of (2.16) since the Jacobi identity is guaranteed by
dΩρ

chir = 0.
Next we describe an interesting solution of (2.28) obtained by inverting (2.16) for the r-

matrix using a particular 2-form ρ (2.8) as input. For this, we now note that if the monodromy
matrix M is near to e ∈ G, then the chiral WZNW field can be uniquely parametrized as

g(x) = h(x)exΓ, (2.30)

where h(x) is a G-valued, smooth, 2π-periodic function and Γ varies in a neighbourhood of
zero in G, Ǧ ⊂ G, for which the map Ǧ ∋ Γ 7→ M = e2πΓ ∈ Ǧ is a diffeomorhism. An easy
computation gives the following formula for Ωchir (1.4) in this parametrization of M̌chir:

Ωchir(h,Γ) = Ω0
chir(h,Γ)− ρ0(Γ), (2.31)

where

Ω0
chir(h,Γ) = −

1

2

∫ 2π

0
dxTr

(
h−1dh ∧ (h−1dh)′

)
+ d

∫ 2π

0
dxTr

(
Γh−1dh

)
, (2.32)

ρ0(Γ) = −
1

2

∫ 2π

0
dxTr

(
dΓ ∧ dexΓe−xΓ

)
. (2.33)

Taking into account that M = e2πΓ, it is not difficult to verify that

dΩ0
chir = 0, dρ0(Γ) =

1

6
Tr

(
M−1dM ∧M−1dM ∧M−1dM

)
. (2.34)

Recalling eq. (1.5), we see that the 2-form ρ in (1.3) in this case can be parametrized by an
arbitrary closed 2-form β on Ǧ as

ρ(Γ) = ρ0(Γ) + β(Γ), dβ(Γ) = 0. (2.35)

By (1.3) we thus have Ωρ
chir = Ω0

chir+β, in particular Ωρ0
chir = Ω0

chir. In order to find the exchange
r-matrix, r̂0, corresponding to ρ0, we notice that the integral defining ρ0 can be computed in
closed form and the linear operator, q0, corresponding by (2.15) to its matrix is given by

q0 =
2Y + e−Y − eY

2(eY − 1)(1− e−Y)
with Y := 2π(adΓ). (2.36)

Then from eq. (2.16) we find the linear operator2 version, r0, of the exchange r-matrix as

r0 =
1

2
coth

Y

2
−

1

Y
. (2.37)

2The expressions in eqs. (2.36), (2.37), (2.41) are defined by the power series expansions of the corresponding

complex analytic functions around zero. For instance [16], 2r0 =
∑

∞

k=1
22kB2k

(2k)! (12Y)
2k−1.
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By means of (2.27) this r-matrix defines one of the possible monodromy dependent exchange
algebras for the chiral WZWN field, and it also represents a non-trivial special solution of
(2.28). To uncover a remarkable property of this solution, we note that the function F (h,Γ) =
Γα = Tr (TαΓ) belongs to H, and its hamiltonian vector field in the ρ = ρ0 case gives rise to the
PBs:

{g(x), Γ̄α} = g(x)Tα and {Γ̄α, Γ̄β} = −f γ
αβΓ̄γ for Γ̄α := 2πκΓα . (2.38)

This means that in the case of the symplectic form κΩ0
chir the Γ̄α (essentially the logarithm

of the monodromy matrix) generate a classical G-symmetry on M̌chir. We remark in passing
that a classical G-symmetry is sometimes called ‘Abelian’ to contrast it with a proper (‘non-
Abelian’) P-L symmetry, for which the symmetry group itself is endowed with a non-zero PB
(for P-L symmetry, see e.g. [7], [17] and references therein).

Motivated by the somewhat surprising result obtained above, we now investigate what
conditions the monodromy dependent exchange r-matrix should satisfy in general to guarantee
that the standard (rigid) right action of G on M̌chir is a proper P-L symmetry. For this
purpose we endow the group with the Sklyanin bracket (1.7) (replacing κC now by κ), where
R̂ = RαβTα ⊗ Tβ ∈ G ∧ G is a constant r-matrix subject to the requirement

[R̂12, R̂23] + cycl. perm. = −ν2f̂ ν2 : some real constant. (2.39)

It is easy to check that the rigid right action3 of G on M̌chir, p : g(x) 7→ g(x)p ∀p ∈ G, is a
P-L action if and only if

r̂(p−1Mp)− R̂ = (p⊗ p)−1(r̂(M)− R̂)(p⊗ p). (2.40)

This simply means that the G ∧ G-valued function (r̂(M)− R̂) on Ǧ must be equivariant with
respect to the natural (infinitesimal) actions of G on Ǧ and on G ∧ G.

Therefore the right multiplication is a P-L symmetry iff the exchange r-matrix r̂(M) is such
a solution of (2.28) that the corresponding difference (r̂(M)−R̂) is equivariant. Insisting on the
parametrization M = e2πΓ, the search for these solutions is made feasible by the observation
that any analytic function of Y = 2π(adΓ) is equivariant. In fact, one of our main results,
proved in [8], is that the r-matrix corresponding to the linear operator

r =
1

2
coth

Y

2
− ν coth(νY) +R (2.41)

solves (2.28). Some remarks on this formula are in order. First, note that in the ν = 0 case we
mean the limit of the corresponding complex analytic function, whereby we recover r0 in (2.37)
if in addition we use R = 0 (see also footnote 2). Second, notice that if ν = 1

2
, then r = R,

which is the case of the constant exchange r-matrices [7]. Third, it is worth stressing that for a
compact Lie algebra G constant exchange r-matrices do not exist, because of the negative sign
on the right hand side of (2.28), but our formula (2.41) gives explicit solutions also in this case
using a purely imaginary ν in (2.39). Finally, we remark that in the ν = 1

2
case the construction

of the 2-form ρ that corresponds to the r-matrix in (2.41) is presented in [7], while in general
the existence (and the uniqueness) of a suitable local 2-form is guaranteed by the solvability of
(2.16). Further comments and explicit results are contained in [8].

3Since M 7→ p−1Mp, strictly speaking we here have to assume that Ǧ ⊂ G is invariant under the adjoint
action of G, or else the statements should be reformulated in terms of the corresponding G-action.
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3 Encoding chiral WZNW by Poisson-Lie groupoids

The classical dynamical YBE (1.8) can be regarded as the guarantee of the Jacobi identity
in a P-L groupoid [13]. Below we show that eq. (2.28) admits an analogous interpretation.
For this, we introduce a family of P-L groupoids in such a way that a subfamily of these
is naturally associated with the possible PBs on the chiral WZNW phase space. Remarkably,
these groupoids are finite dimensional Poisson manifolds that encode practically all information
about the infinite dimensional chiral WZNW PBs.

Roughly speaking, a groupoid is a set, say P , endowed with a ‘partial multiplication’ that
behaves similarly to a group multiplication in the cases when it can be performed. To under-
stand the following construction one does not need to know details of the notion of a groupoid
(see e.g. [18]), since we shall only use the most trivial example of such a structure, for which

P = S ×G× S = {(MF , g,M I)}, (3.1)

where G is a group and S is some set. The partial multiplication is defined for those triples
(MF , g,M I) and (M̄F , ḡ, M̄ I) for which M I = M̄F , and the product is

(MF , g,M I)(M̄F , ḡ, M̄ I) := (MF , gḡ, M̄ I) for M I = M̄F . (3.2)

In other words, the graph of the partial multiplication is the subset of

P × P × P = {(MF , g,M I)} × {(M̄F , ḡ, M̄ I)} × {(M̂F , ĝ, M̂ I)} (3.3)

defined by the constraints

M I = M̄F , M̂F =MF , M̂ I = M̄ I , ĝ = gḡ, (3.4)

where the hatted triple encodes the components of the product. A P-L groupoid [19] P is a
groupoid and a Poisson manifold in such a way that the graph of the partial multiplication is
a coisotropic submanifold of P ×P ×P−, where P− denotes the manifold P endowed with the
opposite of the PB on P . In other words, this means that the constraints that define the graph
are first class. This definition reduces to that of a P-L group in the particular case for which
the set S in (3.1) consists of a single point.

In the interpretation of (1.8) given in [13] the groupoid P is of the form above with S taken
to be a domain in the dual of a Cartan subalgebra of a simple Lie group G. By thinking about
a generic monodromy matrix, we now take P to be

P = Ǧ×G× Ǧ, (3.5)

where Ǧ is some open domain in G. On this P , we postulate a PB { , }P defined, by using the
usual tensorial notation, as follows:

κ{g1, g2}P = g1g2r̂(M
I)− r̂(MF )g1g2

κ{g1,M
I
2 }P = g1M

I
2 Θ̂(M I)

κ{g1,M
F
2 }P =MF

2 Θ̂(MF )g1

κ{M I
1 ,M

I
2}P =M I

1M
I
2 ∆̂(M I)

κ{MF
1 ,M

F
2 }P = −MF

1 M
F
2 ∆̂(MF )

κ{M I
1 ,M

F
2 }P = 0. (3.6)
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Here κ is an arbitrary constant included for comparison purposes. The ‘structure functions’ r̂,
Θ̂, ∆̂ are G ⊗ G valued functions on Ǧ; in components

r̂(M) = rαβ(M)Tα ⊗ Tβ, Θ̂(M) = Θαβ(M)Tα ⊗ Tβ, ∆̂(M) = ∆αβ(M)Tα ⊗ Tβ . (3.7)

It is quite easy to verify that a PB given by the ansatz (3.6) always yields a P-L groupoid,
since the constraints in (3.4) will be first class for any choice of the structure functions. Of
course, the structure functions must satisfy a system of equations in order for the above ansatz
to define a PB. The antisymmetry of the PB is ensured by

r̂ = −r̂21 (r̂21 := rαβTβ ⊗ Tα) and ∆̂ = −∆̂21, (3.8)

while the Jacobi identity is, in fact, equivalent to the following system of equations:

[r̂12, r̂13] + ΘαβT
α
1 R

β r̂23 + cycl. perm. = µf̂, µ = constant, (3.9)

[∆̂12, ∆̂13] + ∆αβT
α
1 R

β∆̂23 + cycl. perm. = 0, (3.10)

[r̂12, Θ̂13 + Θ̂23] + [Θ̂13, Θ̂23] + ∆αβT
α
3 R

β r̂12 +Θαβ(T
α
1 R

βΘ̂23 − T α
2 R

βΘ̂13) = 0, (3.11)

[Θ̂12 + Θ̂13, ∆̂23] + [Θ̂12, Θ̂13] + ΘαβT
α
1 R

β∆̂23 +∆αβ(T
α
3 R

βΘ̂12 − T α
2 R

βΘ̂13) = 0. (3.12)

Observe that the left hand side of (3.9) is of the same form as that of (2.28), but in the groupoid
context on the right hand side we have an arbitrary constant µ. The derivation of the above
equations from the various instances of the Jacobi identity is not difficult. What is somewhat
miraculous is that one does not obtain more equations than these. This is actually ensured by
our choice of the relationship between the PBs that involve M I and those that involve MF . As
an illustration, let us explain how (3.9) is derived. By evaluating

{{g1, g2}P , g3}P + cycl. perm. = 0, (3.13)

one obtains that this is equivalent to

g1g2g3
(
[r̂12, r̂13] + ΘαβT

α
1 R

β r̂23 + cycl. perm.
)
(M I) =

=
(
[r̂12, r̂13] + ΘαβT

α
1 R

β r̂23 + cycl. perm.
)
(MF )g1g2g3. (3.14)

This holds if and only if the expression in the parenthesis is a constant, Ad-invariant element
of ∧3(G), and µf̂ is the only such element for a simple Lie algebra G.

We have seen that the chiral WZNW PBs are encoded by equations (2.27), (2.21) and
(2.22), where Θ̂ and ∆̂ are defined by (2.23) in terms of a solution r̂ of (2.28). Now our point
is the following: A P-L groupoid can be naturally associated with any Poisson structure on the
chiral WZNW phase space by taking the triple r̂, Θ̂, ∆̂ that arises in the WZNW model to be
the structure functions of a P-L groupoid according to (3.6).

It can be checked that the Jacobi identities of the P-L groupoid (3.9)–(3.12) are satisfied
for any triple r̂, Θ̂, ∆̂ that arises in the WZNW model. This actually follows without any
computation since, indeed, the Jacobi identities of the chiral WZNW PBs in (2.27), (2.21),
(2.22) lead to the same equations, with µ = −1

4
, and they are satisfied since they follow from

the symplectic form κΩρ
chir.

Among the ‘chiral WZNW P-L groupoids’ described above there are those special cases
for which r̂ satisfies (2.40) with some constant r-matrix R̂ in correspondence with a right P-L
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action of G on the chiral WZNW phase space. Under this circumstance one can verify that the
two maps defined by

P ×G ∋ ((MF , g,M I), p) 7→ (MF , gp, p−1M Ip) ∈ P (3.15)

and respectively by

G× P ∋ (p, (MF , g,M I)) 7→ (pMF p−1, pg,M I) ∈ P (3.16)

are both Poisson maps. Thus they define (see also footnote 3) respectively a right and a left
P-L action of the P-L group G, endowed with the PB (1.7) for κC = κ, on the P-L groupoid P .

In [13] P-L groupoids are associated with arbitrary subalgebras K ⊂ G, although the cor-
responding dynamical r-matrices are described only if K is a Cartan subalgebra. The K = G
special case of their groupoids is in fact equivalent to our P-L groupoid whose structure function
is the r-matrix in (2.37). Their P-L groupoids are different from ours in general.

The reader may find a detailed exposition of the subject of this letter and several related
issues in [8]. Among the questions for future study, it would be interesting to investigate the
quantization of the above introduced P-L groupoids and to find other applications for them in
the field of integrable systems. As for the second question, recall that the classical dynamical
YBE appears not only in the classical chiral WZNW model, but also in the theory of the
Knizhnik-Zamolodchikov-Bernard equation [11], the Calogero-Moser systems [12] etc, and thus
perhaps it might be natural to ask if (2.28) and the associated P-L groupoids can have other
interesting applications.
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