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ABSTRACT
In this paper the potential energy curves of CT states and their interaction with
local ones have been investigated. Besides the global view of these curves, special
attention has been paid to the region of the crossing and the infinite separation
limit. It was found that triple excitations are needed to accurately describe potential
energy surfaces of CT states. Among the cheaper variants, both STEOM-CCSD
and CCSD(T)(a)* methods are promising in this respect. The somewhat larger
error of CCSD for CT states can be explained by its size extensivity error and the
overestimation of the asymptotic excitation energy. Second order approximations
are not advantageous for the error cancellation, in fact CC2 is much worse for CT
states than any other method investigated here. The results also show that the
location of the (avoided) crossings of local and CT states depend very much on the
accurate description of the CT states. Failure to describe this topology might affect
dynamics, and a warning, in particular in case of CC2, should be issued if CT states
play a role in the physics of the problem.
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1. Introduction

In a recent study we have established a benchmark set for testing the performance of
various excited state methods on the vertical excitation energies of Charge Transfer
(CT) type electronic states[1]. This test set contains bimolecular complexes with low
lying CT states and the benchmark excitation energies have been obtained by high level
Coupled Cluster (CC) methods EOM-CCSDT and EOM-CCSDT-3. The paper also
discusses the performance of other CC methods, including CC2-LR, EOM-CCSD(2),
EOM-CCSD, STEOM-CCSD, as well as EOM-CCSD(T)(a)* and CC3-LR.

During the course of this work[1], the classification of states as of either CT or
local nature, turned out to be problematic in many cases. In these situations a strong
interaction and a nearby crossing of CT and local states were identified as the cause of
this difficulty. This issue hampered the comparison of different methods if the geometry
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Figure 1. Equilibrium structures of the ammonia–fluorine and the ammonia–oxygen-difluoride complexes

taken from Ref. [1]

used was in between the “crossing-ponts” for the respective methods. Therefore, in
Ref. [1] an additional study was warranted to obtain information on how the different
methods describe the surfaces near these crossings, and how different are the surfaces
of CT states overall.

Most previous works investigating the performance of quantum chemical methods on
CT states focused primarily on the long-range behavior of the potential energy curves.
The most often used systems were the tetrafluoroethylene–ethylene (C2F4–C2H4) and
ammonia–fluorine (NH3–F2) complexes [2–6], but the Be–C2 complex was also investi-
gated [5, 7]. Concerning TDDFT results, it was found [2, 3] that the various functionals
can provide very different potential curves. For CC methods, the importance of triple
excitations have been outlined by Nooijen and Bartlett [7] and later by Dutta et al. [5].

In this paper we present benchmark results on the potential energy curves of CT
and local states of bimolecular complexes, with the focus on the crossing region, i.e.
where the CT and local states become nearly degenerate, but we also investigate the
long range region since the asymptotic behavior is also an important indicator on
the quality of CT potential curves. As the highest level method, and therefore as
benchmark, the EOM-CCSDT method will be used, and the performance of various
CC ansätze investigated in our previous paper [1] is discussed in detail.

2. Computational details

We have chosen two systems from Ref. [1] for the present study. One is the ammonia–
fluorine complex which has been often used in CT benchmarks [4, 5]. The second
system is the ammonia–oxygen-difluoride complex where we first encountered the as-
signment problem associated with the “crossing” of local and CT states. Both examples
are small enough to perform even CCSDT level calculations. The structures for the
points of the curves were defined by the separation of the centers of mass of the indi-
vidual subsystems, aligned according to the reference geometries presented in Ref. [1]
and its supporting information. The equilibrium structures are also shown on Figure 1.

For the calculation of excited state potential energy curves of these bimolecular
complexes, including those of the CT states, several variants of Coupled-Cluster meth-
ods were used. As the standard approximation, the inclusion of the CCSD (Coupled-
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Cluster Singles and Doubles)[8] model is vital, the corresponding methods for excited
states being EOM-CCSD [9–11] (Equation of Motion Coupled-Cluster with Singles
and Doubles) and CCSD-LR [12, 13] (CCSD Linear Response) (no distinction between
EOM and LR will be made here since these two give the same excitation energy, so for
our purpose they are equivalent). From the many methods that are approximations
of CCSD, we will test the popular CC2 [14] approach, as well as EOM-CCSD(2)[15]
(second order approximation to Equation-of-Motion Coupled Cluster Singles and Dou-
bles, also known as EOM-MBPT(2)[16]). The STEOM-CCSD (Similarity Transformed
Equation-of-Motion Singles and Doubles) [7, 17, 18] of Nooijen and coworkers includes
also only single and double excitations explicitly but represents an improvement over
CCSD due to the implicit inclusion of connected triple excitations. For more details
see e.g. Refs. [7, 19]. In our previous study [1] we have found that it indeed behaves
similarly to triples methods in many respects.

From the high accuracy methods that explicitly account for connected triple exci-
tations (the so-called triples methods), the EOM-CCSDT [20] (EOM Coupled-Cluster
with Singles, Doubles and Triples) calculations can be considered as benchmark here.
Three approximate triples methods have also been included in the present study: the it-
erative EOM-CCSDT-3 [21], and CC3 [22] methods, as well as the recent, non-iterative
EOM-CCSD(T)(a)* technique of Matthews and Stanton[23].

Calculations of IP and EA have been perfomed using the continuum orbital tech-
nique described in Ref. [24].

Except for STEOM-CCSD, all calculations have been performed using the CFOUR
[25, 26] program package. STEOM-CCSD calculations were done with the Orca 4.2 [27]
program. The process of selecting the active space for both the occupied and virtual
spaces in the STEOM-CCSD calculation has already been made automatic using a
process based on configuration interaction singles (CIS) state-averaged densities.[28]
In the present study, the default value (0.01) is used for both the occupied (OTHRESH)
and virtual (VTHRESH) active space selection thresholds. The active space was kept the
same along the potential energy curve, using the largest space the above procedure
suggested.

The cc-pVDZ basis set of Dunning and co-workers[29] was used in all calculations. In
Ref. [1] it was shown that from the benchmarking point of view, cc-pVDZ gives results
very similar to cc-pVTZ. On the other hand, the absence of diffuse basis functions that
are normally required to accurately describe non-covalent complexes is motivated by
the experience that the appearance of Rydberg states in the presence of small-exponent
functions highly complicates the interpretation of the results. These states tend to
interact with the valence and CT type ones, often resulting in states of intricately
mixed character in which the description of the Rydberg component varies greatly
among the methods. The main objective of this study being the comparison of how
different methods provide the CT surfaces, instead of achieving the best absolute
accuracy, a basis set lacking diffuse functions is a more favorable choice.

The characterization of the different electronic states along the potential energy
curve is possible using the numerical descriptors of Plasser and co-workers[30, 31].
These quantities, obtained from the population analysis of the one-particle density ma-
trix, are available in CFOUR for CCSD and CC2 methods. While the Charge Transfer
(CT) character (ωCT ) measures the CT nature of the state ranging from zero to one,
the average position (ωPOS), defined as the mean of the hole (ωPOSi ) and the particle
(ωPOSf ) positions, provides the average exciton position. For a system consisting of
two fragments this ranges from 1 to 2, with ωPOS ≈ 1.5 results being typical for CT, as
well as completely delocalized (one-to-one mixed) Frenkel and charge resonance states.
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Similarly, ωPR is the arithmetic mean of ωPRi and ωPRf , the participation ratios of the
fragments in the hole and particle orbitals, respectively. Thus, ωPR ≈ 1 holds for both
clear CT and local excitations, while in a two-component system, ωPR ≈ 2 is seen for
completely delocalized Frenkel-type excitations and charge resonance states[30].

The descriptors were calculated with the TheoDORE program and libwfa library
of Plasser et al. [32–35] at the CC2 and CCSD levels, with the help of our in-house
CFOUR[25] / libwfa interface.

3. Results and discussion

3.1. Ammonia–fluorine system

On Figure 2 the potential energy curves of the ammonia–fluorine complex calculated
at different levels of theory are shown. Five electronic states are considered here: the
11E (black curve) and 21E (red curve) are essentially local excitations on fluorine, the
21A1 and 31A1 (blue and magenta curves) correspond to a local excitation on ammonia,
and the CT state, while the 31E (green curve) states is another local excitation on
ammonia.

The figure also shows the − e2

R (with e being the unit charge) function, the theoretical
potential curve of two interacting charges with the same asymptotic value as that of
the CT curve obtained with the respective method (see below).

The first observation is that the curve of the CT state shows a very pronounced
distance dependence, driven by the 1/R decay of the interaction of two ions. For this
reason, the curve of the CT state crosses with several other curves, but for symmetry
reasons, interaction with only the blue curve is observable. This interaction and the
resulting avoided crossing will be discussed in detail below, representing the core of
this communication. The slight energy decrease for the green curve at short distances,
most probably due to another avoided crossing possibly with another CT state, will
not be investigated in this study.

The curves for the triples methods are fairly similar, they hardly can be distin-
guished one from the other. The CCSD and CCSD(2) figures are also quite similar
and their differences to the triples curves consist only in the smaller gap between the
21E and 21A1 curves and a slightly higher asymptotic limit of the CT energy curve.
The former difference can be explained by the relatively large double excitation con-
tribution in the 21E state, which is not well described by the singles-doubles methods.
(Note that for this reason this state was not included in our test set in Ref. [1].) The
discrepancy of the asymptotic limit will be discussed in detail below.

Among the investigated methods, only the CC2 curves show a striking qualitative
difference to the other figures. The overestimation of the red 21E curve is not a surprise
considering the high double excitation contribution. On the other hand, the CT curve
is considerably too low, its limiting value is below that of the 31E state. This under-
estimation has a considerable influence on the crossing of the 21A1 and 31A1 states
which happens at a much longer intermolecular distance. It is also CC2 where the
most significant deviation of the CT curve and the simplified charge attraction curve
can be observed: a damped interaction between the two fragments is seen already at
large distances. This observation will be discussed together with other discrepancies
later.

On Figure 3 the crossing region of the potential energy curves of the 21A1 and 31A1

states are shown. At first look, the CCSDT, CCSDT-3 and CC3 curves are very similar,
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Figure 2. Potential energy curves of the lowest five excited (11E, black; 21E, red; 21A1, blue; 31A1, magenta;

31E, green) states of the ammonia-fluorine complex. Dashed lines: charge attraction curve of the ionic states
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Figure 3. The crossing region of the energy curves for the 21A1 (blue) and 31A1 (magenta) states of the

ammonia-fluorine complex. Dashed lines: charge attraction curve of the ionic states
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and also CCSD resembles these curves with a slightly larger gap at the location of the
crossing. On the other hand, CCSD(T)(a)* shows a smaller gap at this point, a typical
behavior for a perturbative method. Still, CCSD(T)(a)* correctly predicts the distance
where the two curves have the smallest separation. This is a clear improvement over
CCSD where this closest point is at a shorter distance.

The curves obtained with the CC2 method are, on the other hand, very different
from the others: the avoided crossing shows up at a considerably larger distance, and
the gap is very small showing a much smaller interaction between the two curves. The
figure shows clearly that the CT curve substantially deviates also from the charge
attraction curves, a pronounced difference to all other methods investigated here.

On Figure 4 the ωCT , ωPOS , and ωPR characters are shown as calculated at the
CCSD and CC2 levels. The CCSD figures nicely show the properties of a typical
crossing: the CT character is “exchanged” between the 31A1 and 21A1 states at about
7.75 bohr; the participation ratio (ωPR) curves show a maximum of 1.5 at the same
distance, indicating that both states are extended to both molecules. A similar con-
clusion can be drawn from the ωPOS curves, as well. It is interesting to note that at
shorter distances some mixing of the local and CT state persists: this can be explained
by the fact that in the repulsive region the two states are again close in energy. On
the other hand, as expected, by separating the two molecules, the interaction of the
local and CT states decreases rapidly.

In case of CC2, the character curves are much sharper showing that the swap of
characters happens much faster compared to CCSD. This is a typical behavior in the
case of a very small interaction between the two states. It is tempting to say that
the smaller interaction is due to the larger distance: over 10 bohrs the two fragments
interact only slightly. Indeed, the curve of the local state is practically constant here,
and it is the decrease of the CT curve that causes the crossing (see Figure 3). However,
as discussed above, and seen on the figure, as well, the CT curve shows an early
deviation from the theoretical charge attraction curve. This means that CC2 at this
distance predicts much less charge separation than higher level methods do. While
this happens to correct the too low asymptotic limit to a certain extent, is clearly an
indication of an improper description of this phenomenon in the CC2 model.

The above discussion underlines the importance of the accurate description of the
asymptotic region of potential energy curves for the CT states. In principle, the CT
curves should converge to the sum of the corresponding ionization potential (IP) and
electron affinity (EA) values, a trivial requirement for size extensivity. Therefore, in
Table 1 we summarize the relevant data.

The asymptotic values of excitation energies (Eexc
∞ ) were obtained by each methods

at 10000 bohrs, where the interaction energy of the two charges is already negligible
(below 0.003 eV). The benchmark CCSDT result is 10.88 eV. Approximate triples
methods underestimate this value by 0.06, 0.13 and 0.14 eV in the cases of CCSDT-3,
CC3 and CCSD(T)(a)*, respectively. Note that these results are larger in magnitude
than the error of the CT excitation energies (-0.03, -0.12, and -0.01 eV, respectively) at
the equilibrium distance[1]. Doubles methods, unsurprisingly, show a larger variance
of this value: while STEOM-CCSD also underestimates the CCSDT asymptotic limit
(by 0.17 eV), CCSD overestimates it by about the same amount. The underestimation
by CCSD(2) comes as a surprise, since this method usually gives results much closer to
CCSD. The worst result is produced again by CC2 which underestimates the limit by
more than 1.2 eV. For comparison, at the equilibrium geometry the difference between
the CCSDT and CC2 excitation energies is about the half of this value (-0.68 eV), yet
still by far the largest among the methods considered here. This finding is an indica-

7



6 7 8 9 1 0 1 1 1 2 1 3
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

6 7 8 9 1 0 1 1 1 2 1 3
1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

1 . 3 5

1 . 4 0

1 . 4 5

1 . 5 0

6 7 8 9 1 0 1 1 1 2 1 3
1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

1 . 3 5

1 . 4 0

1 . 4 5

1 . 5 0

6 7 8 9 1 0 1 1 1 2 1 3
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

6 7 8 9 1 0 1 1 1 2 1 3
1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

1 . 3 5

1 . 4 0

1 . 4 5

1 . 5 0

6 7 8 9 1 0 1 1 1 2 1 3
1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

1 . 3 5

1 . 4 0

1 . 4 5

1 . 5 0

ω
CT

d i s t a n c e  /  a .  u .

C C S D

ω
PO

S

d i s t a n c e  /  a .  u .

C C S D

ω
PR

d i s t a n c e  /  a .  u .

C C S D

ω
CT

d i s t a n c e  /  a .  u .

C C 2 ω
PO

S

d i s t a n c e  /  a .  u .

C C 2 ω
PR

d i s t a n c e  /  a .  u .

C C 2

ωP RωP O SωC T

Figure 4. Change of the characters (see the text for definition) at the crossing region for the 21A1 (blue)
and 31A1 (magenta) states of the ammonia-fluorine complex.

8



tion that CC2 does better with describing the bonding situation than the complete
separation of charges. The improvement for smaller distances is equivalent with the
CC2 curve deviating from the theoretical e2/R function; an observation clearly seen
and discussed above.

For the sum of the IP of ammonia and the EA of fluorine similar errors with respect
to CCSDT can be observed as for the asymptotic CT excitation energy, except for
CCSD where the errors have opposite signs: the IP+EA value is underestimated by
-0.16 eV. The errors of the individual IP and EA values are less than 0.1 eV, the
well-known inaccuracy of CCSD. Note that, by definition, the STEOM-CCSD IP and
EA values are the same as the CCSD ones, [7] therefore their sum has the same
error. The essential difference is, however, that in case of STEOM-CCSD this value
matches the asymptotic excitation energy, while for CCSD it does not (see below).
We note in passing that in case of CC2 the sum of the IP and EA values is even
more underestimated than Eexc

∞ . This large discrepancy is due to the underestimation
of both the IP and the EA by CC2, the latter value is even negative. This suggests
that the problem of CC2 is related to its considerable underestimation of the energy
of ionic species.

The triples methods provide very accurate IPs, while a somewhat larger error (up
to 0.13 eV underestimation) can be seen for the electron affinity. The deviation of the
IP+EA sum and Eexc

∞ remains small, but we note that the values reported in Table 1
are real, i. e. the numerical inaccuracy is one order of magnitude smaller. Thus, even
CCSDT shows some size extensivity error, but no more than just 0.01 eV. The zero
value seen for CCSD(T)(a)* is most probably the result of error cancellation. On the
other hand, as discussed in detail by Bartlett and Nooijen [7], STEOM-CCSD is size
extensive, the present calculations confirm this numerically for a high precision. In
the case of CC3 the error is still very small but significantly larger in magnitude than
for other triples methods; this finding correlates with the inaccuracy found for the
CT excitations, in fact it is an underestimation in both cases. CCSD, CCSD(2) and
CC2 all give positive errors, i.e. the limiting value is larger than the sum of the IP
and the EA by 0.31 eV for CCSD as well as CCSD(2), and 0.18 eV for CC2. In this
respect, CC2 seems to perform better, however, the very low values for both quantities
certainly have a significant role in the underestimation of the CT excitation energies.
The size extensivity error of CCSD is quite large (0.31 eV) compared to e. g. the
substantially smaller finding of Nooijen and Bartlett [7] for the Be-C2 system (0.06
eV).

Table 1. Comparison of the limiting values of the CT potential energy curves calculated at different
levels of theory for ammonia–fluorine. All values in eV units. The values referring to infinity have

been calculated at 10000 bohrs, where the interaction energy of the two charges is below 0.003 eV.

Method IP EA
IP+EA Eexc,a

∞ Errorb
∆ to CCSDT ∆ to CCSDT

(NH3) (F2) (IP+EA) (Eexc
∞ )

CCSD 10.32 0.39 10.71 11.02 0.31 -0.16 0.14
CCSD(2) 10.25 0.22 10.47 10.78 0.31 -0.40 -0.10
CC2 9.72 -0.22 9.50 9.68 0.18 -1.37 -1.20
STEOM-CCSD 10.32 0.39 10.71 10.71 0.00 -0.16 -0.17
CCSD(T)(a)* 10.38 0.35 10.73 10.74 0.00 -0.13 -0.14
CC3 10.40 0.39 10.79 10.75 -0.04 -0.08 -0.13
CCSDT-3 10.40 0.41 10.81 10.82 0.01 -0.06 -0.06
CCSDT 10.39 0.48 10.87 10.88 0.01 0.00 0.00

a The asymptotic excitation energy of the CT state.
b The deviation of Eexc

∞ and (IP+EA), i. e. the asymptotic size extensivity error.
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Table 2. Comparison of the limiting values of the CT potential energy curves calculated at different
levels of theory for ammonia–oxygen-difluoride. All values in eV units. The values referring to infinity

have been calculated at 10000 bohrs, where the interaction energy of the two charges is below 0.003

eV.

Method IP EA
IP+EA Eexc,a

∞ Errorb
∆ to CCSDT ∆ to CCSDT

(NH3) (OF2) (IP+EA) (Eexc
∞ )

CCSD 10.46 1.32 11.78 12.14 0.35 -0.16 0.19
CCSD(2) 10.39 1.16 11.55 11.90 0.35 -0.39 -0.05
CC2 9.86 0.47 10.32 10.60 0.28 -1.62 -1.34
STEOM-CCSD 10.46 1.32 11.78 11.78 0.00 -0.16 -0.17
CCSD(T)(a)* 10.53 1.35 11.87 11.86 -0.01 -0.07 -0.09
CC3 10.54 1.40 11.93 11.84 -0.09 -0.01 -0.10
CCSDT-3 10.54 1.42 11.97 11.95 -0.01 0.02 0.00
CCSDT 10.53 1.41 11.94 11.95 0.01 0.00 0.00

a The asymptotic excitation energy of the CT state.
b The deviation of Eexc

∞ and (IP+EA), i. e. the asymptotic size extensivity error.

3.2. Ammonia–oxygen-difluoride

In the study of Ref. [1], it was the ammonia–oxygen-difluoride system where the as-
signment problem due to the crossing of local and CT states turned up at the first
time. Since this crossing region involves three states, we include this example in the
present discussion to gain more insight into the performance of certain methods in
such a complicated situation.

In Table 2 the limiting values for ammonia–oxygen-difluoride are shown. The same
pattern is seen here as in case of the ammonia-fluorine system, the errors and deviations
are even numerically very similar. Thus we see substantial size extensivity errors for
CCSD, CCSD(2), and CC2, while almost negligible ones for the triples methods, except
CC3 where it is now almost -0.1 eV. While CCSD overestimates the limiting value,
CC2 underestimates it by large, in line with the finding on the CT excitation energies
at equilibrium distances [1]. The larger size extensivity error of CC3 is due to the
underestimation of the limiting values, since the IP and EA values are nearly perfect.
Note that in Ref. [1] CC3 showed the largest error for this molecule, a finding which
is partly explained now.

On Figure 5 the potential energy curves in the crossing region, along with the
respective curves of the CCSD and CC2 level CT characters (ωCT ) are presented for
three electronic states, 3 1A′, 4 1A′ and 5 1A′. These states of the complex correspond to
two local (one on the OF2 and one on the NH3 fragment) and one CT type excitation.
As start one should note that the coordinate range here is much smaller than it was
for the ammonia–fluorine system, and in fact the coordinate values themselves are also
much shorter, meaning that these crossings are very close to the equilibrium structure.
This is an explanation of the trouble we were facing while trying to assign the proper
states in Ref. [1].

At large distance it is the red curve which represents the CT state and it decreases
more rapidly as the molecules approach each other, resulting in an avoided crossing
with one of the local states. This avoided crossing of the red and black curves are
well shown on the curves obtained at the CCSDT, CCSDT-3, CCSD(T)(a)* STEOM-
CCSD and CCSD levels. Indeed, the ωCT curve at the CCSD level reflects a swap of

10



characters between the two affected states around this point. Compared to CCSDT,
both CCSDT-3 and STEOM-CCSD predict the location of the crossing accurately,
while CCSD and CCSD(T)(a)* show it at somewhat too small intermolecular separa-
tions, which is not surprising knowing the overestimated asymptotic excitation energy
Eexc

∞ of CCSD. Nevertheless, the smallest gap between the two curves is similar in mag-
nitude at the CCSD and CCSDT levels. The triples corrected CCSD(T)(a)* method
shows again a much smaller gap, similarly to the previous observation for ammonia-
fluorine. However, now the triples contribution is only partially able to correct the
location of the “crossing”, a non-surprising behaviour for a perturbative method.

The purple curve, which corresponds to an excitation on ammonia at large sepa-
rations, approaches the black one (excitation on oxygen-difluoride) with decreasing
separation and an avoided crossing can be observed even before the above discussed
crossing with the CT state happens. This interaction is very weak and appears for
CCSDT, CCSDT-3, CCSD(T)(a)*, STEOM-CCSD, as well as CCSD at about 3.22
bohrs. In the cases of CCSDT, CCSDT-3, and STEOM-CCSD the two avoided cross-
ings are very close, while with CCSDT(T)(a)* and CCSD they are well separated due
to the underestimation of the distance where the CT crossing takes place.

CC2, again, shows a very contrasting picture. On the corresponding panels of Fig-
ure 5 we had to use a larger distance range in order to make the relevant CT crossing
visible, since this one, as in the ammonia-fluorine case, appears at a larger separation.
Therefore, the CC2 picture is qualitatively different from the other cases: besides the
crossing of the red and black curves, the CT state forms an avoided crossing also
with the other local state. Even this second crossing is located at a larger separation
than the single one seen with the other methods. The crossing of the two local states
appears at an even smaller distance. The consequence is very severe: at the reference
geometry (which is the equilibrium distance of the complex at about 3.14 bohrs of
separation) the order of the states is different, the CT state being the lowest energy
state followed by the two local states. In contrast, the other methods predict the CT
state to be middle one. This is clearly a consequence of the general underestimation
of the CT state by CC2, in line with the findings discussed above.

We note in passing that the ωCT curve at the CC2 level indicates an additional
crossing at large distance. The corresponding fourth state is not visible on the figure
and will not be discussed any further.

4. Discussions and Conclusions

The main objective of this study was to extend the benchmark on vertical excitation
energies presented in our previous paper [1] with the investigation of the potential
energy curves of some selected CT states and their interaction with local ones. Besides
the global view of the potential energy curves, we focused on two particular regions:
the region of the crossing and the asymptotic (infinite separation) limit.

In agreement with previous findings on the excitation energies of CT states, CCSD
potential curves resemble those of CCSDT with two key differences: the crossing hap-
pens at a shorter distance and the asymptotic excitation energy is somewhat overesti-
mated. The two discrepancies are of course related, since the higher Eexc

∞ results in a
crossing with the local state at a shorter distance. This also explains why in Ref. [1] a
larger overestimation of excitation energies for CT states than for local (valence) ones
was found. The biggest problem of CCSD is the lack of size extensivity: the asymptotic
excitation energy overestimates the sum of the ionization potential and the electron
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Figure 5. Potential energy surfaces (filled symbols, in eV) and the charge transfer characters (ωCT , empty

symbols) along the intermolecular separation for the 31A′ (purple curves), 41A′ (black curves), and 51A′ (red
curves) states of the ammonia–oxygen-difluoride bimolecular complex. Note that a slightly larger coordinate
interval is used for CC2, see text for explanation.
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affinity by up to 0.35 eV.
As discussed already by Meissner, Nooijen and Bartlett, [7, 36, 37] the inclu-

sion of triple excitation effects is needed to restore the charge transfer separability.
In accordance, we have found here that both the non-iterative triples correction in
CCSD(T)(a)* and the implicit inclusion of triples in STEOM-CCSD [7] restores size
extensivity. This also explains why these methods have been found quite accurate for
CT excitation energies [1]. STEOM-CCSD describes also the crossing excellently. In
general, STEOM-CCSD shows more resemblance to triples methods in the description
of CT states, a conclusion already drawn in our previous paper based on excitation
energies. CCSD(T)(a)* describes the overall shape and the asymptotic behaviour of
the potential curves very well, but, due to the perturbative nature of the energy, the
details around the avoided crossing are not perfect: while the position of the crossing is
preditced accurately for of ammonia-fluorine, only a slight improvement with respect
to CCSD was observed in the case of ammonia–oxygen-difluoride. In both cases, the
somewhat smaller splitting at the avoided crossing can be explained by the missing
proper diagonalization.

Both analyses showed that iterative triples methods give similar results which is a
pleasing indication that CCSDT provides converged results. Still we have seen a small
size extensivity error of 0.01 eV with CCSDT and CCSDT-3. The same error for CC3
is -0.09 eV, in accordance with the observation[1] that CC3 slightly underestimates
CT excitation energies.

All the details investigated in this paper show significant problems with CC2. With
respect to CCSDT, the asymptotic excitation energy is too low by up to 1.34 eV. Al-
though this method is not size extensive, this underestimation is clearly related to the
seriously too low IP and the EA values. As a consequence, when the two monomers
approach each other, the CT state interacts very early with the local states, at a much
larger distance than the one observed for other methods. In case of NH3–OF2 this
results in a qualitatively different picture of the three curves: even a second local-CT
crossing shows up. As a consequence, the order of the three states at the equilibrium
structure of the complex will differ from that obtained by any other method. The in-
teraction between the CT and local states can be very small, resulting in an artificially
small gap at the crossing point. It has to be noted, that this small interaction is not
explained by the larger intermolecular separation, as it is shown by the significant
deviation of the NH3–F2 CT potential energy curve from the theoretical attraction
function already at this point.

The hierarchy of CCSD-CCSD(2)-CC2 investigated in Ref. [38] can be used to
discuss the effect of different second-order approximations. In this series, all IP, EA,
and Eexc

∞ values decrease, i.e. neglecting more and more terms in the transformed
Hamiltonian results in smaller and smaller values. Since both IP and EA are already
underestimated at the CCSD level, the additional approximations lead to even larger
errors. On the contrary, the overestimated asymptotic Eexc

∞ excitation energy can be
improved by the second order approximation, as it is shown by the CCSD(2) results.
Further approximation, in particular, the diagonal approximation of the double-double
block by CC2 leads then to very low values. This means that the cancellation of errors
present for the valence states [39] does not work here, most probably due to the very
large effect of these matrix elements on the charge separated system.

In summary, the present investigation shows that triple excitations are needed
to accurately describe potential energy surfaces of CT states. Both STEOM-CCSD
and CCSD(T)(a)* are promising in this respect. While STEOM-CCSD is cheaper
and e.g. with the PNO approximation can be used also for larger molecules [5, 40],
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CCSD(T)(a)* is also accurate for valence excited states [41]. On the other hand, the
perturbative treatment of triple excitations in CCSD(T)(a)* might become significant
at the crossings and influence diabatization. The somewhat larger error of CCSD for
CT states can be explained by its size extensivity error and the overestimation of the
asymptotic Eexc

∞ excitation energy. Second order approximations do not seem to be
advantageous for the error cancellation, in fact CC2 is much worse for CT states than
any other method investigated here. The presented results also show that the topology
of the potential energy curves, the location of the (avoided) crossings of local and CT
states depend very much on this accuracy. In the particular case of CC2 this resulted
in different order of excited states at the equilibrium geometry, but a mismatch in the
order of states can be potentially observed for any method if the geometry of interest
is close to a crossing. We note that this topological difference might affect dynamics
studies, and a warning, in particular in the case of CC2, should be issued if CT states
play a role in the physics of the problem.
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