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Abstract

We define a fixed point topological charge for the two–dimensional
O(3) lattice σ–model which is free of topological defects. We use this
operator in combination with the fixed point action to measure the topo-
logical susceptibility for a wide range of correlation lengths. The results
strongly suggest that it is not a physical quantity in this model. The
procedure, however, can be applied to other asymptotically free theories
as well.
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1 Introduction

Topological effects play an important role in the dynamics of asymptotically
free field theories. In QCD instantons may be responsible for breaking the
axial symmetry resolving the so–called U(1) problem [1]. In a large Nc limit
the topological susceptibility relates the masses of the pseudo–scalars η, η′ and
K [2].

The topological susceptibility χt may be defined as the infinite volume limit
of

χV
t =

〈Q2〉

V
, (1)

where Q is the topological charge and V is the space–time volume. In the
two–dimensional O(3) non–linear σ–model it is a dimension two quantity that
vanishes to all orders in the weak coupling expansion. From the perturbative
renormalization group (RG) it is expected to scale according to the two loop β
function

χt ∝ β2 exp(−4πβ), (β → ∞). (2)

It is a non–trivial task to recover the correct continuum results from lattice
Monte Carlo simulations. A lattice topological charge definition is needed which
returns even for large fluctuations reliable results.

A ‘geometric’ definition proposed by Berg and Lüscher [3] is based on adding
up the area of spherical triangles which are defined by the spin vectors in an
elementary plaquette. As the contributions from all plaquettes are summed up,
the internal space — the sphere described by the spin variables — is covered and
if periodic boundary conditions are used one obtains an integer charge signify-
ing the number of times this sphere is ‘wrapped’. The topological susceptibility
evaluated with this charge definition (and the standard action) completely failed
to scale [3–5]. The reason was ascribed to special configurations called ‘dislo-
cations’ [5], which are dominant in the statistical average. Dislocations are
non–zero charged configurations whose contributions to the topological charge
come entirely from small localized regions where they become ‘singular’. If
the minimal action of dislocations is smaller than the continuum value of a
one–instanton configuration (i.e. 4π) then dislocations will dominate the path
integral and spoil the scaling behaviour, eq. (2) [4, 5].

Another definition goes back to DiVecchia et al. [6] — for a recent discussion
including the fixed point (FP) action see ref. [7]. It is called field theoretical or
plaquette definition and uses a ‘naive’ discretization of the continuum charge op-
erator. This prescription does not yield integer values and to obtain continuum
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results renormalization factors are needed. For large β these factors can be de-
termined perturbatively, but for intermediate β one has to use non–perturbative
techniques [8–11]. Results obtained with the field theoretical charge indicate for
the susceptibility a behaviour consistent with scaling [9, 11, 12].

A serious problem in these approaches is the role of the lattice artifacts,
sensitive both to the form of the lattice action and the choice of the topological
charge. A recent work [13] suggests to use the FP action of a renormalization
group transformation to study topological effects. In particular, an important
feature is that the FP action has scale invariant instanton solutions (with an
action value exactly 4π), and hence — as will be discussed in this paper — one
can define a topological charge with no lattice defects. In ref. [13] and here the
O(3) σ–model is considered, but the methods apply to other asymptotically free
theories as well. The SU(3) gauge theory has been studied in refs. [14, 15]. A
subsequent paper by one of us [17], will deal with the application of these ideas
to CPN-1 models and in particular to the CP3 model. Some of our results were
already presented in ref. [16].

The paper is organized as follows: First we review some results derived in
ref. [13] and define the FP field operator. This is followed by a closer look at
instantons in the continuum, in a finite periodic volume and finally on a lattice
using the FP action. We then define the FP topological charge and present
some numerical results on classical solutions. In the last section we analyze the
topological susceptibility evaluated in a Monte Carlo simulation. After a brief
description of the methods used, we present the results which are followed by a
conclusion and an outlook.

2 RG results at the classical level

2.1 Review of the RG transformation and its fixed point

Let us briefly summarize some RG results which were developed in a previous
paper [13]. For a detailed discussion we refer the reader to this paper.

We consider the O(3) non–linear σ–model in two–dimensional Euclidean
space defined on a square lattice. The partition function reads as follows

Z =

∫

DS e−βA(S). (3)
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Here DS is the O(3) invariant measure

DS =
∏

n

d3Sn δ(S2
n − 1) (4)

and βA(S) is a regularization of the continuum action

βAcont(S) =
β

2

∫

d2x∂µS(x) ∂µS(x), where S
2(x) = 1. (5)

We perform exact RG transformations by a Kadanoff type of blocking, i.e.
we divide the lattice into 2× 2 blocks labeled by indices nB. To each block we
define a block spin variable RnB which is some mean of the spin variables Sn in
the block. The block spins RnB form a lattice whose spacing is twice as large as
the original one. An effective action is defined by integration over the original
lattice:

e−β′A′(R) =

∫

DS e−β[A(S)+T (R,S)], (6)

where T is the kernel of the RG transformation and its normalization
∫

DR e−βT (R,S) = 1 (7)

ensures the invariance of the partition function under this transformation. In
the classical limit (β → ∞) the path integral is dominated by its saddle point:

A′(R) = min
{S}

{A(S) + T (R,S)} . (8)

The transformation kernel used in ref. [13] has in the limit β → ∞ the simple
form:

T (R,S) = κ
∑

nB

(∣

∣

∣

∣

∣

∑

n∈nB

Sn

∣

∣

∣

∣

∣

−RnB ·
∑

n∈nB

Sn

)

. (9)

Here κ is a free positive parameter of the RG transformation, which is tuned to
make the FP action as compact as possible. As indicated by the free field theory
in one dimension, the choice κ = 2 gives the most short–ranged FP action. A
fixed point of the transformation satisfies the equation

AFP(R) = min
{S}

{AFP(S) + T (R,S)} . (10)

This equation — called FP equation — fixes for arbitrary configurations {R}
the value of the FP action. Starting from a lattice regularization of the con-
tinuum action repeated RG transformations will drive the effective action to its
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{R}

{S }(1)

{S }(2)

{S }(k)

Figure 1: A multigrid is obtained by iterating the FP equation.

fixed point. This takes on the form of a minimization in a multigrid of lattice
configurations:

A(k)(R) = min
{S(1),S(2),...,S(k)}

{

A(0)(S(k)) + T (S(k),S(k−1)) + . . .+ T (R,S(1))
}

.

(11)

On each successive level — see figure 1 — the spin configurations become
smoother, not only because the lattice spacing is halved, but also because the
minimization tends to smooth out the fluctuations around a solution to the
equations of motion. Hence one may choose for the action A(0)(S(k)) on the
finest configuration {S(k)} any lattice discretization of the continuum action.

The FP action AFP is then obtained as the limit of k → ∞ of A(k)(R). For
practical purposes, however, only a few levels are needed and starting from the
standard action on the lowest level the FP value is reached soon.

2.2 Parametrization of the FP action

In principle the above multigrid approach can be used to evaluate the FP ac-
tion for arbitrary configurations to any precision desired. For practical calcu-
lations, however, a parametrization of the FP action is needed. In ref. [13] a
parametrization has been obtained by fitting the known values of the action
for ∼ 500 configurations. That parametrization represented well the FP action
on those configurations. However, to control the topological effects better, we
decided to improve the parametrization further by including some small size
topological solutions in the fitting procedure. We used several two–instanton
solutions of the lattice FP action. While improving the fit for these instanton
solutions, the new parametrization does not affect the quality of the fit for the
previous configurations.
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# type coupling type coupling type coupling

1 r r 0.61884 r r −0.04957 r r −0.00932

4
r

r

��
0.19058

r

r

���
� −0.02212

r

r

���
�
��

−0.00746

7
r r

r

��
0.01881

r r

r

��
−0.00180

r r

r

���
� 0.00658

10
r r

r

0.02155
r r

r

0.00536
r r

r

−0.00081

13
r r

r

��
0.00941

r r

r

��
0.00488

r r

r

���
� −0.00225

16
r r

rr

��❅❅
0.01209

r r

rr

���
�❅❅

0.00534
r r

rr

���
�❅❅
❅❅ 0.00066

19
r r

rr

−0.00258
r r

rr

−0.00173
r r

rr

0.00146

22
r r

rr

−0.01040
r r

rr

−0.00218
r r

rr

0.02720

Table 1: Couplings used for the parametrization of the FP action including
instanton configurations. The graphical notation is explained in the text.

The resulting couplings are given in table 1 — together with a graphical
notation of the corresponding operators. Let us explain here again the meaning
of this notation. The parametrization of the action has the form

AFP(S) =
∑

coupling × products of
1

2
ϑ2
ni,nj

, (12)

where ϑni,nj
is the angle between the two spins Sni

and Snj
. Two dots connected

with a line s srepresent a factor 1
2ϑ

2
ni,nj

in the action and the positions of the
dots represent the lattice sites ni and nj respectively. Double, triple connected
dots stand for the square, cube of the above factors. The operator, finally, is
the product of all the factors 1

2ϑ
2
ni,nj

as indicated by the lines in the figure.
The quadratic and quartic couplings # 1,2,4,5,7,10,16 and 19 are determined
analytically [13], the others were determined with a numerical fitting procedure
with the new instanton configurations added.

2.3 The fixed point field

As we shall see in section 3.2, FP operators are closely related to the FP field.
The FP field is the fine field S

(k) in the multigrid solution of the iterated FP
equation (11) as k goes to infinity. If the functional dependence of the solution
on the first fine level S(1) on R is known, the FP field can be evaluated by
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iteration. Below we construct the operator S(1) = S
(1)(R). (In the limit k → ∞

the solution {S(1)} of the iterated FP equation is identical to the solution {S}
of the FP equation.)

For smooth fields a quadratic approximation of the FP equation can be made
which can be solved analytically. Consider a smooth configuration {R} where
the spins fluctuate around the first axis:

RnB =

(
√

1− ~χ 2
nB

~χnB

)

, (13)

where ~χnB has 2 components, and |~χnB | ≪ 1. For the minimizing fine field we
can make the ansatz

S
(1)
n =

(

√

1− ~π 2
n

~πn

)

. (14)

Inserted in the FP equation, the above expansion leads in leading order to the
free field case. This was solved by Bell and Wilson [18] — for a brief review see
for instance ref. [13] — here we only report the relation between ~πn and ~χnB :

~πn =
∑

nB

α(n, nB)~χnB . (15)

Here α is given by

α(n, nB) =

∫ 2π

0

d2q

(2π)2
e−iq(n−2nB) 1

4

ρ̃FP(2q)

ρ̃FP(q)

2
∏

j=1

1− e−2iqj

1− e−iqj
(16)

where ρ̃FP(q) is the coefficient in the quadratic part of the FP action (given by
the free field case). By iterating eq. (15) one can obtain the FP field operator
in the free field case. The form is very similar to the above result, but with
slightly modified parameters [14].

On smooth configurations {R} eqs. (13–15) give a good approximation.
However we want to evaluate the fine field using a parametrization that per-
forms well not only for smooth configurations {R}, but also for general ones.
Our experience with the parametrization of the FP action suggests the ansatz

Sn = N









∑

nB

α(n, nB)RnB +
∑

nB
m

B
,m′

B

β(n, nB,mB
,m′

B
)
1

2
ϑ2
m

B
,m′

B
RnB









, (17)

where N is a normalizing factor which ensures S
2
n = 1. Like for the action it

proved to be useful to use instead of the scalar product (1−Rm
B
Rm′

B
) between
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the coarse spins at sites mB and m′
B
respectively, the angle 1

2ϑ
2
m

B
,m′

B
. In order

to determine the coefficients β, we numerically minimized the FP equation (10)
using 60 configurations with lattice size 5 as input and stored the resulting fine
lattices. The coefficients were then determined by minimizing the difference
between the minimized fine spins and the parametrization (17).

The numerical values of the coefficients α and β are given in table 2 together
with a symbolic notation of the corresponding operators. We chose a set of
23 operators mainly because of their compactness. # 1–6 are the analytically
determined coefficients α and # 7–23 are the numerically determined coefficients
β. The meaning of the graphical notation of the operators is the following: The
dashed lines represent a 3 × 3 section of the coarse lattice grid. The cross
inbetween indicates the position n of the fine spin Sn in equation (17). The little
square denotes the position nB of the coarse spin RnB . The two connected
dots r r are the positions mB and m′

B of the spins whose angle 1
2ϑ

2
m

B
m′

B
enters

into the parametrization. Graphs obtained by trivial symmetry transformations
are not drawn separately.

3 Instantons

3.1 Instantons on the lattice

In infinite volume continuum field theory topology is a well defined concept.
Field configurations can be classified in topological sectors according to a ‘wind-
ing number’ or topological charge [19]. In a lattice formulation this concept
breaks down. When discretizing a theory, continuity in coordinate and internal
space is lost. On the other hand topology is based on continuous transforma-
tions of mappings which are separable in classes. In a discretized theory every
field configuration can be continuously transformed into any other. If lattice
configurations are sufficiently smooth, an unambiguous topological charge may
be assigned. Conversely, for field configurations containing large fluctuations an
interpolation is not unique and a charge definition becomes ambiguous.

An additional problem arises due to the discretization of the continuum
action. While the continuum action possesses scale invariant instanton solutions,
this is generally not true for discretized actions. In particular, starting with non–
zero charged configurations Lüscher [4] found that one can continuously lower
the standard lattice action to zero by a local minimization in the spin variables.

In reference [13] it was suggested to investigate the above problems with the
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# type coeff # type coeff # type coeff

1 0.59497 2 0.15621 3 0.08300

4 0.00942 5 −0.00171 6 −0.00668

7
qq

−0.01228 8
q

q��
−0.02004 9

q

q

❅❅
−0.03832

10
q

q

−0.05095 11
qq

0.01475 12
q

q

−0.00586

13
q

q��
−0.00303 14

q

q

❅❅
−0.00123 15

q

q

−0.00118

16
qq

−0.01596 17
q q

−0.00090 18
q

q��
0.00140

19
q

q

❅❅
−0.00128 20

q

q

0.00447 21
q q

0.00199

22
q q

0.00304 23
q

q

��
−0.00015

Table 2: Coefficients of the parametrization of the fine field.
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aid of renormalization group methods and it was shown that the FP action has
scale invariant instanton solutions. In this section we continue along these lines
and construct instanton solutions of the FP action. These in turn can be used
to study the performance of a proposed improved topological charge definition.
But first let us review some basic facts about instantons in the continuum [19].

In an infinite volume configurations with a finite action play a special role:
At ‘infinity’ all spin variables point in the same direction and the space RI

2

can be compactified by stereographic projection into a sphere S2. A finite
action configuration is thus a mapping of a ‘coordinate’ sphere onto the internal
sphere S

2
n = 1. Such mappings can be classified by homotopy classes, with an

integer number — the topological charge Q — characterizing the sectors. While
configurations from the same topological sector can be continuously deformed
into each other, this is not true for configurations with a different charge. The
chargeQ is the number of times the internal sphere is wrapped as the coordinate
sphere is traversed. It may be defined as the integral

Q =
1

8π

∫

d2x ǫµν S · (∂µS× ∂νS). (18)

and it is related to the action by the inequality

A ≥ 4π |Q|. (19)

If for a given configuration the equality is satisfied, the configuration minimizes
the action and is therefore a solution of the equations of motion.

Let us now turn to the theory in a finite volume. By demanding periodic
boundary conditions

S(x1 + Lm, x2 + Ln) = S(x1, x2), where m, n ∈ ZZ , (20)

we define the theory on a square torus of size L. In a finite volume every field
configuration has a finite action and due to the periodic boundary conditions
an integer topological charge Q associated with it.

We can now explicitly construct pure instanton or pure anti–instanton con-
figurations with an action A = 4π|Q| [20]. We use the plane coordinates defined
by the stereographic projection to describe the solutions:

Si =
2 ui

1 + |u|2
i = 1, 2,

(21)

S3 =
1− |u|2

1 + |u|2
,

10



where u = u1 + iu2 . The instanton solutions at the boundary of equation (19)
satisfy the Cauchy–Riemann equations for u being an analytic function in z =
x1 + ix2:

(∂1 + i∂2)u = 0. (22)

The solutions are doubly–periodic meromorphic functions called elliptic func-
tions [20]. They can be written as

u = c

k
∏

i=1

σ(z − ai)

σ(z − bi)
, with

k
∑

i=1

ai =

k
∑

i=1

bi. (23)

Here the integer k is the topological charge of the solution and c, a1, . . . , ak
and b1, . . . , bk are complex numbers. σ(z) is the Weierstrass σ–function with
half–periods ω = L/2 and ω′ = iL/2. Using Cauchy’s theorem one can show
that there are no solutions with topological charge equal to one [20]. Hence we
are forced to construct charge two instanton solutions. Specifically, we set k = 2
and c = 1. A reasonable definition for the instanton size is

ρ = 1
2 min{|a1 − b1|, |a1 − b2|}. (24)

Let us now turn to the construction of instanton solutions on the lattice.
As was pointed out in ref. [13] the FP action allows scale invariant instanton
solutions. Since we use this fact to construct instantons on the lattice, it is
appropriate to repeat the statement:

If a given configuration {R} satisfies the equations of motion for the FP
action AFP and it is a minimum, then the solution {S} of the FP equation (10)
satisfies the equations of motion also. Moreover, both configurations yield the
same value for the action.

The proof is quite simple: If {R} is at a local minimum of the FP action
AFP, variations with respect to {R} will vanish:

δAFP(R)

δRnB

= κ

(

−
∑

n∈nB

Sn +RnB

(

RnB ·
∑

n∈nB

Sn

))

= 0. (25)

Here S = S(R) is the solution of the FP equation with {R} as coarse input
configuration. Since {R} is a local minimum eq. (25) implies

RnB =

∑

n∈nB
Sn

|
∑

n∈nB
Sn|

. (26)

Consequently, we have
T (R,S) = 0. (27)
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Since the transformation kernel T (R,S) ≥ 0, the configuration {S} gives its
minimum for fixed {R}. Because the configuration {S} minimizes the right
hand side of the FP equation, it minimizes the FP action AFP(S) separately.
Therefore it is a solution of the equations of motion. Since T (R,S) = 0, both
actions have the same value: AFP(R) = AFP(S). This concludes the proof.

The reverse of the above statement is in general not true for arbitrary config-
urations. Although a fine configuration which is a solution of the FP equations
of motion and which is used to construct a coarse configuration by means of
the above blocking equation (26), locally minimizes the right hand side of the
FP equation, this minimum does not necessarily coincide with the absolute one.
This in fact prevents the existence of arbitrary small instanton solutions.

Using the above ideas it is clear how to construct instanton solutions of
AFP. We naively discretize the continuum instanton solution on a very fine
lattice with spacing a0 = 2−ka. After performing k blocking steps as defined
by equation (26), we obtain a configuration {R} on a lattice with spacing a.
In the limit k → ∞ we recover the continuum solution, which is of course
a local minimum of the continuum action. Since all the successive blocked
configurations minimize the transformation kernels in the iterated FP equation,
the configuration {R} is a good candidate for a lattice solution of the FP action3.
We may solve the FP equation for {R} to check whether it is still a solution. If
{R} is a solution, then the multigrid minimization procedure should lead to the
same configurations on finer lattices as those which were used in constructing
{R} by blocking.

3.2 Definition of the topological charge on the lattice

In the following we define a topological charge operator based on the multigrid
solution of the FP action. We evaluate the FP topological charge by means of
the solutions of the FP equation (10). Under a RG transformation an operator
O(S) transforms into O′(R) on the coarse lattice as

O′(R)e−β′A′(R) =

∫

DS O(S)e−β[A(S)+T (R,S)], (28)

In the limit β → ∞ the path integral on the right hand side is approximated
by its saddle point and we obtain

O′(R) = O(S(R)), (29)

3 It will be a solution, unless the size of the instantons is too small with respect to the

lattice spacing.
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where the spin configuration {S(R)} is the solution of the FP equation (10).
Repeated application of this transformation will single out the operator with
largest eigenvalue. Since the topological charge is expected to be a marginal
operator, we may obtain it as the limit

QFP(R) = lim
k→∞

Q(S(k)(R)). (30)

Here Q is some standard lattice charge definition and {S(k)} is the solution of
the iterated FP equation (11) on the lowest level in a k level multigrid (see
figure 1). In other words, the FP topological charge is a standard topological
charge evaluated on the FP field.

Note that S(k)(R) becomes increasingly smooth as k grows: first, because the
corresponding lattice spacing a0 = 2−ka decreases, secondly, because S

(k)(R)
becomes almost a solution to the equations of motion. Consequently, any sensi-
ble definition of the topological charge can be used on these configurations, the
final result will not depend on this choice. Nevertheless, it is more convenient
to use the geometric definition since it is stable against small variations of the
field and hence k, the number of levels in the multigrid minimization could be
kept small with this definition. For a review of the geometric definition we refer
the reader to ref. [3].

One can easily show that with this definition of the topological charge there
are no dangerous dislocations. More precisely, one has

AFP(R) ≥ 4π |QFP(R)|, (31)

for arbitrary configuration {R}. The corresponding statement is true in the
continuum, hence it is also true for S

(k)(R) for k → ∞. Eq. (31) follows then
by observing that the contribution of the T terms in eq. (10) is non–negative.
We are now ready to discuss the numerical aspects of classical solutions.

3.3 Classical numerical results

Following the above program we naively discretize two–instanton solutions on
the torus of various sizes on very fine lattices. We found that four to five block-
ing steps are sufficient to make any lattice artifacts of the original discretization
negligible. On the finally blocked configurations we can measure several quan-
tities. On the coarse configuration itself we measure the standard action and
the parametrization of the FP action presented in section 2.2. Performing a
minimization on a multigrid with three finer levels we measure the exact FP
action and on the finest level the FP charge. Using the instanton radius given

13



by eq. (24), we get a parameter which characterizes well the breakdown of the
blocking to obtain instanton solutions on coarse lattices: In figure 2 it can be
clearly seen that below an instanton radius of ρ <∼ 0.7a the configurations are no
longer instanton solutions and we shall say that the instanton falls through the
lattice. It is gratifying to see that the FP charge immediately falls off to zero, as
the FP action drops below the continuum value. Furthermore, figure 2 demon-
strates how well the parametrization for the FP action is suited for instanton
configurations. The deviation from the exact value is quite small, in particular
the parametrized FP action is only marginally smaller than the continuum value
in the region above the point where the instanton falls through the lattice. In
contrast, the values of the standard action are quite different from the contin-
uum ones. These numerical findings support the above statement, that there
are no dangerous dislocations present when using the FP action together with
the FP topological charge.

0.4 0.5 0.6 0.7 0.8 0.9
ρ/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 a
ct

io
n/

(4
π)

standard action
parametrized FP action
minimized FP action
FP topological charge

Figure 2: Actions and charge of instantons with radii of the order of one lattice
spacing

In numerical simulations we use a parametrized form of the FP action and
the parametrization in eq. (17) for the FP field instead of the time consum-
ing minimization procedure. One then is interested if the use of these two
parametrizations has an influence on the existence of dislocations. The curves
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referring to the FP action and FP charge in fig. 2 have a non–analytic break
at ρ/a ≃ 0.7. Our parametrization does not fully reproduce this behaviour,
and so one might expect that observable deviations will occur in this instanton
region. We systematically searched for minimal action configurations with a
parametrized action lower than the continuum value in the Qpar.

FP = 2 sector.
We found a minimal action of 1.84 ·4π (compare this with the value 0.93 ·4π we
found using the standard action and geometric charge). This value can be as-
cribed to the not exactly accurate parametrization of the FP field. If we actually
solve the FP equation (10) for this ‘dislocation configuration’ we get the correct
charge Q = 0. Nevertheless, as one has to use parametrizations for Monte Carlo
simulations, such configurations could be dangerous. On the other hand, the
search for dislocations reveals the weakest point of the parametrization which
performs very well in other cases (c.f. figure 2). What actually counts is not how
the parametrization works for some configurations that were specially sought for
their bad performance, but how well it performs for configurations in thermal
equilibrium occurring in a Monte Carlo simulation. The results of a test of
this performance — presented in section 4.1 — shows that indeed there is no
problem.

We also searched for the minimal action configuration in the Q = 1 sector
and did not find a configuration with an action below the continuum action.
This is not astonishing as there are no one–instanton solutions on a torus.

4 Topological Susceptibility

If the topological susceptibility is a well defined physical quantity that is renor-
malization group invariant, then one expects that it scales like a (mass)2 in the
continuum limit. One additionally measures a second quantity, e.g. the corre-
lation length ξ and builds the dimensionless product χt ξ

2 which should go to
a constant in the limit ξ → ∞. Earlier Monte Carlo calculations do not show
convincingly whether this is the case. Furthermore, perturbative considerations
indicate that in the O(3) model there might be a problem with the topological
susceptibility in the continuum limit.

One may calculate the contribution of instantons in the continuum using
a semiclassical expansion. The probability density to find an instanton with
topological charge Q = 1 and size ρ ≪ 1/Λ is [21, 22]:

P1 ∼
dρ

ρ
, (32)

where Λ is the scale parameter of the model. Using the renormalization group
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one can show, that eq. (32) is exact as ρ → 0 [4] assuming the small instantons
form a dilute gas. The infrared divergence at ρ = 0 in eq. (32) indicates, how-
ever, that this assumption is not true: small instantons are not suppressed, but
contribute strongly to the susceptibility. Such a dominance of small instantons
is also indicated by numerical studies, trying to determine the instanton size
distribution with different methods [11, 12].

On the lattice, however, not the whole range of the instanton radius is
probed. The lattice cuts the contribution of small instantons because there
is a smallest possible radius before the instanton falls through the lattice (c.f.
figure 2). Hence the measured topological susceptibility is always finite. It is not
excluded, however, that it raises boundlessly with increasing correlation length
as the perturbative considerations suggest.

4.1 Numerical Results

Using the perfect lattice action and the perfect charge we performed extensive
Monte Carlo simulations at correlation lengths in the range ξ ∈ (2 − 60). In
order to avoid finite size effects we kept the ratio L/ξ ≈ 6 constant. The corre-
lation length was obtained from the long distance fall off of the zero momentum
correlation function.

We determined the topological charge using both the geometric definition
and the definition of the FP charge given in section 3.2. For the measurement
of the FP charge we used the geometric definition of the charge on a finer lattice
of the multigrid with the Monte Carlo generated lattice as coarsest level. To
determine the configuration S(R) on the fine lattice one can either minimize
the FP equation (which is very time consuming) or use the parametrization of
the dependence on R given in section 2.3. We denote the corresponding charges
Qcoarse for the geometric charge, Qpar. 1. level for the charge measured on the first
finer level using the parametrization of the fine field etc.

For two β values we compared the results of using the parametrization on a
finer level and of minimizing on a multigrid. As is shown in table 3, the results
were found to be consistent within the statistical errors. This confirms, that the
parametrization performs well for configurations occurring in a Monte Carlo
simulation (c.f. the discussion at the end of section 3.3). In order to test if the
result of going to a lower level is already stable, we also calculated the charge
for a few β values on the second finer lattice. As also can be seen in table 3,
the values on the first and the second finer level were found to be consistent
within the statistical errors. Thus it is sufficient to calculate the fine field only
on the first finer level. This is not astonishing as the maximal angle between two
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β 〈Q2
coarse〉 〈Q2

par. 1. level〉 〈Q2
par. 2. level〉 〈Q2

min. 1. level〉 〈Q2
min. 2. level〉

0.6 2.56(5) 1.96(4) 1.93(4)
0.7 3.39(4) 2.48(3) 2.45(3) 2.45(3) 2.45(3)
0.85 5.62(11) 4.31(9) 4.30(9)
1.0 6.38(8) 4.86(6) 4.82(6)
1.0 6.33(6) 4.78(5) 4.75(5)

Table 3: Results of test MC Simulations in the O(3) model indicating that it
is sufficient to measure the charge only on the first finer parametrized level.
Minimizing or going to a lower level yields the same result.

β L ξ 〈Q2
coarse〉 χt

coarse · ξ
2 〈Q2

1.level〉 χt
1.level · ξ

2

0.51 10 1.6049(42) 1.87(1) 0.0482(4) 1.329(8) 0.0342(3)
0.6 14 2.1960(46) 2.57(2) 0.0631(6) 1.90(2) 0.0467(4)
0.685 20 3.012(14) 3.57(3) 0.0810(10) 2.65(2) 0.0601(7)
0.7 20 3.186(15) 3.36(3) 0.0852(11) 2.52(2) 0.0640(8)
0.85 40 6.057(17) 5.73(4) 0.1314(12) 4.38(3) 0.1004(9)
1.0 70 12.156(34) 6.36(5) 0.1918(19) 4.80(4) 0.1448(15)
1.1 130 20.397(86) 10.04(12) 0.2472(36) 7.69(9) 0.1893(27)
1.2 180 34.44(30) 8.23(14) 0.3013(73) 6.11(10) 0.2237(53)
1.3 340 58.06(37) 12.01(29) 0.3502(96) 8.94(22) 0.2607(72)

Table 4: Results of MC Simulations with the FP action.

neighbouring spins halves as one goes one step down to a finer level. So even on
the first finer level the maximal possible angle between two neighbouring spins
is 90◦ and there is practically no ambiguity left for the topological charge.

In table 4 we report the results of the simulations for the correlation length
ξ, the geometric charge 〈Q2

coarse〉 and the FP charge 〈Q2
1.level〉 evaluated on the

first parametrized finer level. Using the geometric charge as well as the FP
charge, we build the dimensionless quantity χt · ξ2 of topological susceptibility
and correlation length.

Figure 3 shows the results for the topological susceptibility. Clearly, no
scaling is seen even at correlation lengths as large as 60. Both curves, the one for
the geometric charge and the one for the FP charge, are rising and no flattening
occurs at the largest correlation lengths. There is a significant difference between
the topological susceptibility built with the geometric charge and the one with
the FP charge. The value of the geometric charge lies several standard deviations
above the value of the FP charge. Furthermore, the difference is slowly growing
with increasing correlation length.
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Figure 3: Results of Monte Carlo measurements of the topological susceptibility
at different correlation lengths.

5 Conclusion and Outlook

The definition of the FP topological charge is based on the FP field operator.
The FP field can be evaluated to any precision desired by solving the iterated
FP equation on a k level multigrid. As was demonstrated by fig. 2 and can be
shown analytically for sufficient large multigrids the FP charge together with
the FP action has no lattice defects whatsoever.

For use in MC simulations however a parametrization of the action and
the charge are needed. Instead of parametrizing the charge directly, we have
parametrized the solution of the FP equation which is to be iterated to obtain
the FP field. The accuracy of the parametrizations have been rechecked in MC
simulations.

The partition function of the lattice σ–model is — as indicated by a semi-
classical approximation [21] — dominated by small sized topological excitations.
These unphysical fluctuations are the cause for the divergence which is seen in
fig. 3.
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Although we studied the σ–model in this paper, the methods derived are
quite general and can be applied to other asymptotically free theories such as
CPN-1 models or SU(N) gauge models. For instance, in CPN-1 models a lowest
order semiclassical approximation estimates for instanton contributions [21, 22]

I ∼

∫

dρ ρN−3. (33)

If N ≥ 4, the contribution of short distance topological excitations is small rela-
tive to that of the physical ones and we expect to see a scaling of the topological
susceptibility according to the perturbative RG. In fact in the CP3 model, which
is studied by one of us [17], the topological susceptibility already exhibits the
expected scaling behaviour.
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