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Chiral symmetry breaking in fundamental and sextet fermion representations of SU(3) color

1. Introduction

We report χSB studies of two important gauge theories which attracted a great deal of atten-
tion in the lattice community and off-lattice as well. To establish the chiral properties of a gauge
theory close to the conformal window is notoriously difficult. If the chiral symmetry is broken,
the fundamental parameter F of the chiral Lagrangian has to be small in lattice units a to control
cut-off effects. Since the chiral expansion has terms with powers of N f M2

π/16π2F2, reaching the
chiral regime with large number of fermion flavors is particularly difficult. The range of aMπ val-
ues where leading chiral logs can be identified unambigously will require simulations in very large
volumes which is not in the scope of this study with twelve fermion flavors in the fundamental
representation of the SU(3) color gauge group. The sextet representation with two fermion flavors
is considerably closer to the range of chiral perturbation theory in our simulations. Consistency re-
quirements of chiral logs which fit the sextet results will require to get closer to the loop expansion
of the continuum chiral Lagrangian, or the comprehensive application of staggered SU(2) chiral
perturbation theory on coarser lattices. We will make a case in this report that qualitatively different
expectations inside and outside of the conformal window allow tests of the two mutually exclusive
hypotheses without reaching down to the chiral logs at very small pion masses.

Below the conformal window chiral symmetry is broken at zero fermion mass with a gap in
the composite hadron spectrum except the associated massless Goldstone multiplet. The analytic
form of the chiral Lagrangian as a function of the fermion mass can be used to detect chiral log
corrections, or to differentiate from conformal exponents in the transitional region before the chiral
logs are reached at low enough Goldstone pion masses. Approximations to gauge theories with
χSB, like their effective Nambu-Jona-Lasinio description in the large N limit, are consistent with
this analysis. In sharp contrast, the spectrum inside the conformal window is gapless in all chan-
nels in the chiral limit and the scale dependence of physical quantities is governed by the single
critical exponent γ which controls the fermion mass dependence of composite operators and their
correlators.

The two competing hypotheses are tested for both gauge theories studied here in search for
their chiral properties. There is a fundamental difference between the two hypotheses as implied
by their respective spectra. χSB creates a fundamental scale F in the theory separated from the
composite hadron scale with its residual baryon gap in the chiral limit. The pion mass can be varied
from the χSB scale F to the hadron scale with a transition from the chiral log regime to a regime
without chiral analysis. The conformal phase has no intrinsic scale. With χSB this is expected
to lead to fermion mass dependence of the spectrum in the chiral log regime, or above it, quite
different from the conformal behavior which is very tightly constrained near the chiral limit of the
spectrum with a single critical exponent γ in the absence of any intrinsic scale. In a regime where
lattice cutoff effects are negligible, this difference should be sufficient for tests whether the chiral
loop expansion is reached, or not, on the low F scale.

In Section 2 we present new results for the gauge model with twelve fermions in the fundamen-
tal representation. A new kind of gauge dynamics is expected to appear at intermediate distances
with walking gauge coupling, or a conformal fixed point. This remained controversial with recent
efforts from five lattice groups [1, 2, 3, 4, 5]. We made considerable progress to resolve the con-
troversies including tests of the chiral condensate and the spectrum which favor chiral symmetry
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breaking with unusual chiral dynamics. Applying the χSB hypothesis to the Goldstone pion, Fπ ,
the chiral condensate, and the stable nucleon state collectively leads to a result of χ2/dof = 1.22
representing high level of confidence. With the conformal hypothesis we find χ2/dof = 8.79 rep-
resenting very low level of confidence. Applying global analysis to all states we measured, the
contrasting behavior is somewhat less dramatic but remains significant. New results on the running
coupling from the static force and our simulation of a rapid finite temperature transition in Polyakov
loop distributions, reported elsewhere and expected in association with χSB and its restoration,
provide further support for our findings.

In Section 3 we report new results for the two-index symmetric (sextet) color representation
with two fermion flavors. The model holds promise for the composite Higgs mechanism in its
simplest implementation without unwanted extra Goldstone bosons, or new electroweak multiplets.
If χSB is found, the model is like the textbook introduction to Technicolor from QCD except that
being close to the conformal window it becomes a viable BSM alternative without Electroweak
precision problems. In a similar analysis introduced above, the sextet model was also subjected to
the two mutually exclusive hypotheses. Applying the χSB hypothesis to the Goldstone pion, Fπ ,
and the chiral condensate, a result of χ2/dof = 1.24 was found representing again high level of
confidence. With the conformal hypothesis we find χ2/dof = 6.96 representing very low level of
confidence.

We have used the tree-level Symanzik-improved gauge action for all simulations in this paper.
The conventional β = 6/g2 lattice gauge coupling is defined as the overall factor in front of the
well-known terms of the Symanzik lattice action. Its value is β = 2.2 for all simulations of the N f =

12 model and β = 3.2 in the sextet model. The link variables in the staggered fermion matrix were
exponentially smeared with two stout steps [6] and the precise definition of the action is given in [7].
The RHMC and HMC algorithms were deployed in all runs. Our error analysis of effective mass
plots which combines systematic and statistical effects follows the frequentist histogram approach
of the Budapest-Marseille-Wuppertal collaboration [8] in all simulations. The topological charge
was monitored in the simulations with frequent changes observed over a considerable range.

2. Twelve fermions in the fundamental SU(3) color representation

The chiral Lagrangian for the Goldstone spectrum separated from the massive composite scale
of hadrons exhibits, order by order, the well-known analytic form of powers in the fermion mass
m with non-analytic chiral log corrections generated from pion loops close enough to the chiral
limit. The exact functions Fπ(m) and Mπ(m) will be approximated by an analytic form in powers
of m which is expected to hold over a limited m range when the Goldstone pion is in transition
from the chiral log regime closer to the composite hadron scale. Although this procedure has
some inherent uncertainty before the chiral logs are reached in simulations, its sharp contrast with
the non-analytic fermion mass dependence of the conformal hypothesis, governed by the single
exponent γ , is sufficient to differentiate the two hypotheses.

First, we will illustrate the fitting procedure with results on the Goldstone spectrum, Fπ , and
the chiral condensate. This will be extended to the nucleon and some other composite hadron
channels to probe parity degeneracy in the chiral limit.
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2.1 Goldstone spectrum and Fπ from chiral symmetry breaking
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Figure 1: The Goldstone pion and Fπ from chiral symmetry breaking are shown with the fitting procedure described
in the text. Representative finite volume fits are also shown. The infinite volume limit of Mπ was used in fits to Fπ and
other composite hadron states, like the nucleon.

Figure 1 shows the Goldstone pion and Fπ as a function of the fermion mass m in the range
where we can reach the infinite volume limit with confidence. The power functions of the fitting
procedure in m contain the analytic contributions of the fourth order chiral Lagrangian to Mπ and
Fπ . Although we could fit the pion spectrum with the logarithmic term included, its significance
remains unclear. The rapid variation of Fπ with m clearly shows that we would need a dense set of
data in the m = 0.003−0.01 range to reach chiral logs at this gauge coupling. This requires lattice
volumes well beyond the largest size 483×96 which we could deploy in our simulations.

Efforts were made for extrapolations to the infinite volume limit. Finite volume scaling is very
different under the hypotheses of the two different scenarios. At the lowest three m values, for finite
volume corrections to Mπ and Fπ , and for all other states, we used the form

Mπ(Ls,η) = Mπ

[
1+

1
2N f

M2

16π2F2 · g̃1(λ ,η)

]
,

Fπ(Ls,η) = Fπ

[
1− N f

2
M2

16π2F2 · g̃1(λ ,η)

]
, (2.1)

where g̃1(λ ,η) describes the finite volume corrections with λ = Mπ ·Ls and aspect ratio η = Lt/Ls

from the lightest pion wrapping around the lattice and coupled to the measured state. The form
of g̃1(λ ,η) is a complicated infinite sum which contains Bessel functions and requires numerical
evaluation. Since we are not in the chiral log regime, the pre-factor of the g̃1(λ ,η) function was
replaced by a fitted coefficient. The leading term of the function g̃1(λ ,η) is a special exponential
Bessel function K1(λ ) which dominates in the simulation range. The fitting procedure could be

4



Chiral symmetry breaking in fundamental and sextet fermion representations of SU(3) color

viewed as the approximate leading treatment of the pion which wraps around the finite volume,
whether in chiral perturbation theory, or in Luscher’s non-perturbative finite volume analysis. The
MπLs > 4 lore for volume independence is clearly not applicable in the model. We need MπLs > 8
to reach volume independence. The infinite volume limits of Mπ and Fπ for each m were deter-
mined self-consistently from the fitting procedure using Eqs. (2.1) based on a set of Ls values with
representative fit results shown in Figure 1. In the higher m range finite volume effects were hard
to detect and even for the lowest m values sometimes volume dependence was not detectable for
the largest lattice sizes.

Non-Goldstone pion spectra, quite different from those found in QCD, are shown in Figure 2
using standard notation. They are not used in our global analysis. The three states we designate as
i5Pion, ijPion and scPion do not show any noticeable taste breaking or residual mass in the m→ 0
chiral limit. The scPion is degenerate with the i5Pion and both are somewhat split from the true
Goldstone pion. The ijPion state is further split as expected but the overall taste breaking is very
small across four pion states. This is a fairly strong indication that the coupling constant β = 2.2
where all runs are performed is close to the continuum limit. A very small residual mass at m = 0
is not excluded for some non-Goldstone states depending on the details of the fitting procedure.
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Figure 2: The non-Goldstone pion spectrum is shown. The composite lower right plot redisplays the i5Pion data
together with fits to the Goldstone pion (magenta), i5Pion (solid blue), scPion (black), and ijPion (cyan).

2.2 Chiral condensate

The chiral condensate 〈ψψ〉 summed over all flavors is dominated by the linear term in m from
UV contributions. The quadratic (or linear) fit in Figure 3 gives a small non-vanishing condensate
in the chiral limit which is in the expected ballpark from the GMOR relation 〈ψψ〉= 12F2B with
the measured low F and B of the order one. The deficit between the two sides of the GMOR relation
is sensitive to the fitting procedure and the determination of B. Adding a quadratic term to the fit is
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Figure 3: The chiral condensate and its subtracted derivative version (both have to converge to the same chiral limit)
are shown after the removal of the non-constant part of respective fit functions of the form c0 + c1m+ c2m2. The left
side shows the fit to 〈ψψ〉 condensate data after the removal of the fitted c1m+ c2m2 part with fit error on the chiral
limit value of c0 at m = 0. The right side superimposes on the left side plot the subtracted derivative condensate fit (blue
points) (with fit coefficients displayed) after the removal of the c1m+c2m2 part. The error of c0 at m= 0 for this quantity
is also shown and consistent with the direct determination of the chiral limit from 〈ψψ〉. For any given m always the
largest volume condensate data is used since the finite volume analysis is not complete. The relative sensitivity of the
analysis to the lowest two or three m values can be eliminated by extended systematics .

a small effect and trying to identify chiral logs is beyond the scope of our simulation range. For an
independent determination, we also studied the subtracted chiral condensate operator

(1−m
d

dm
|conn) · 〈ψψ〉 (2.2)

which is determined from zero momentum connected correlators. The removal of the derivative
term significantly reduces the dominant linear part of the 〈ψψ〉 condensate. We find it reassuring
that the two independent determinations give consistent non-vanishing results in the chiral limit as
clearly shown in Figure 3.

It should be noted that the Mπ values in the fitting range of m in our analysis are below the
fitting range of previous N f = 12 work on the chiral condensate work with considerably more
uncertainty from using the higher range [3]. In all fits we were on a fine-grained lattice in the pion
mass range aMπ = 0.16− 0.39 and rho mass range Mρ = 0.2− 0.47. In contrast, the previous
study [3] which reported conformal behavior was in the aMπ = 0.35− 0.67 range and rho mass
range Mρ = 0.39− 0.77. Although our new results should be made even more definitive with
higher accuracy and better control on the systematics, the evidence is quite suggestive for a small
non-vanishing chiral condensate in the chiral limit.

2.3 Composite hadron spectrum in the chiral limit

It is important to investigate the chiral limit of other composite hadron states. They further test
the gaps of physical states as the fermion mass m is varied and the measured hadron masses are
subjected to chiral analysis in the m→ 0 limit. Hadron masses also provide useful information on
parity splits in several channels. One composite state of great interest is the Higgs particle, if there
is a chiral condensate close to the conformal window. We will briefly review new results on the
nucleon state with its parity partner, the isospin partner of the Higgs state, and the ρ−A1 splitting.

The fermion mass dependence of the nucleon and its parity partner is shown in Figure 4 with
finite volume analysis at one selected fermion mass m = 0.015. The same finite volume fit is
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Figure 4: Nucleon and parity partner are fitted to the simplest linear form which is also the leading term of the chiral
Lagrangian. The blue points on the right are the replotted nucleon data from the left to show the degeneracy of the two
states. The lower two plots show finite volume fits.

applied as described earlier for the pion state. The leading chiral linear term in the fermion mass
m extrapolates to non-vanishing chiral limit. The parity partner is practically degenerate but this is
not a surprise. Already with four flavors a near degeneracy was reported before by the Columbia
group.

Figure 5 shows the fermion mass dependence of the Higgs particle without including the dis-
connected part of the relevant correlator. Strictly speaking, therefore, the state is the f0 meson with
non-zero isospin. Disconnected contributions in the correlator might shift the Higgs mass, an im-
portant issue left for future clarifications. Both the linear and the quadratic fits are shown together
with the pseudo-goldstone scPion which is split down from the Higgs (that is, f0) state. The two
states would be degenerate in the chiral limit with unbroken symmetry. The Higgs state (as we
call it) extrapolates to a nonvanishing mass in the chiral limit with MH/F ratio between 10 and 15.
This ratio is approximately 5 in the sextet model. Finally, Figure 6 shows the ρ-meson and its A1

parity partner. Both states extrapolate to non-vanishing mass in the chiral limit. The split remains
significant for all fermion masses and in the chiral limit.

2.4 String tension and running coupling from the static force

There are several ways to define a renormalized gauge coupling, for example, the Schrödinger
Functional scheme or from square Wilson loops. We take the renormalized coupling as defined via
the quark-antiquark potential V (R), extracted from R× T Wilson loops where the time extent T
can be large. From the potential, one defines the force F(R) and coupling αqq(R) as

F(R) =
dV
dR

=CF
αqq(R)

R2 , αqq(R) =
g2

qq(R)
4π

. (2.3)
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Figure 5: The f0 state (we call it Higgs) and its splitting from the scPion state are shown. The linear fit in the
middle plot works well for the Higgs ( f0) state with little change when a quadratic term is included on the left. The
blue scPion data points in the middle plot and the dashed magenta fit show the fit to the scPion state. The Higgs will
became a resonance in the chiral limit, the missing disconnected part also contributing, so that Higgs predictions will be
challenging in future work. For comparison the Higgs state is shown on the right from the sextet analysis with its blue
scPion parity partner split with dashed magenta fit.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

0.1

0.2

0.3

0.4

0.5

 m

 M
rh

o

m fit range:  0.01  0.035

2 sum = 13

Mrho = M0 + c1 m

M0=  0.0849 ± 0.0080

c1=  11.18 ± 0.31

2/dof= 2.16

Rho meson linear fit

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 m

 M
A1

m fit range:  0.01  0.035

2 sum = 4.54

MA1 = M0 + c1 m

M0=  0.1196 ± 0.0071

c1=  13.68 ± 0.46

2/dof= 0.76

Rho meson linear fit and A1 meson

Figure 6: Rho meson and its splitting from the A1 meson are shown. On the right side the magenta points reproduce
the data of the rho meson from the left together with its linear fit. The fit parameters on the right show the linear fit to
the A1 meson.

The coupling is defined at the scale R of the quark-antiquark separation, in the infinite-volume limit
L→ ∞. This is different from the scheme using square Wilson loops, where one has αW (R,L) and
one can choose finite R with L→ ∞, or finite L and fixed R/L ratio. In the former case, these
schemes are related via

αqq(R) = αW (R)[1+0.31551αW (R)+O(αW (R)2)]. (2.4)

The β function in the qq scheme is known to 3-loops. For SU(3) gauge theory with N f = 12
fundamental flavors, the location of the infrared fixed point to 3-loop order is α∗qq = 0.3714... This
is about 50% of the scheme-independent 2-loop value of α∗, indicating that higher order corrections
beyond 3-loop might not be negligible.

A range of lattice spacings, volumes and quark masses are studied in the running coupling
project, we show results for the largest volume 483× 96 at β = 2.2 and quark masses m = 0.01
and 0.015 and for the 403× 80 run at m = 0.02. To improve the measurement of V (R), we use
different levels of APE-smearing to produce a correlation matrix of Wilson loops, the lowest energy
is extracted using the generalized eigenvalue method. We also improve the lattice force, which
is naively discretized as F(R + 1/2) = V (R + 1)−V (R). For the Symanzik gauge action, the
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Figure 7: V (R) data and fit for m = 0.01 is plotted on the left and comparison with perturbation theory is plotted in
the middle. The right side plot shows the string tension measured in nucleon mass units at m = 0.01,0.015,0.02 and
extrapolated to the chiral limit. The finite nucleon mass gap in the chiral limit implies finite string tension at m = 0.

improvement is a relatively small effect, for example the naive value R+ 1/2 = 4.5 is shifted to
4.457866...

In Figure 7 on the left we show the measured V (R) fitted to the form

V (R) =V0 +
α

R
+σR. (2.5)

for m = 0.01. The m = 0.015 and m = 0.02 runs are shown on the right of Figure 7. For all three
masses, the resulting fits are good, with a clear signal of linear dependence and an effective string
tension σ . The string tension decreases with the quark mass, its behavior in conjunction with the
mass spectrum in the chiral limit is under investigation and the first result is shown in the figure.
The finite nucleon mass gap in the chiral limit implies finite string tension at m = 0.

The renormalized coupling αqq(R) is a derivative of the potential V (R) and hence more difficult
to numerically measure via simulations. The most accurate comparison between lattice simulations
and perturbation theory is directly of the potential V (R) itself. This is naturally given by finite
potential differences

V (R)−V (R0) =CF

∫ R

R0

αqq(R′)
R′2

dR′, (2.6)

where R0 is some reference point where αqq(R0) is accurately measured in simulations. From this
starting point, the renormalized coupling runs according to perturbation theory, at some loop order.
The result is shown in the middle of Figure 7, with curves at 1-, 2- and 3-loop order for the potential
difference. Although progress was made in studies of important finite volume effects, more work
is needed to bring the systematics under full control. In the current state of the analysis the string
tension and the fast running coupling are consistent with the χSB hypothesis and do not support
the conformal one.

2.5 Testing the alternate hypothesis of conformal chiral symmetry

The simulation results we presented for twelve fermions in the fundamental repesentation of
the SU(3) color gauge group favor the chiral symmetry breaking hypothesis. The pion state is
consistent with a vanishing mass in the chiral limit and easy to fit with a simple quadratic function
of the fermion mass. The non-Goldstone pion spectrum shows very little taste breaking at β = 2.2
and the small splittings are consistent with expectations for staggered fermions with stout smearing.
The SO(4) degeneracies and splittings appear to follow the pattern of QCD although the fermion
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Figure 8: The N f = 12 chiral and conformal simultaneous fits in four channels are displayed for comparison in two
select cases.

mass dependence is significantly different. The fundamental scale-setting parameter F of chiral
symmetry breaking is finite in the chiral limit. A non-vanishing chiral condensate is found in the
chiral limit which is in the expected ballpark of the GMOR relation as suggested by the small value
of F . The subtracted chiral condensate, after the dominant linear UV-contribution is removed, also
yields a consistent non-vanishing condensate in the chiral limit. The nucleon states, the Higgs
( f0) meson, the ρ meson and A1 meson extrapolate to non-vanishing masses in the chiral limit
and considerable splits of some of the parity partner states persist at very low fermion masses
toward the chiral limit. There seems to be an effective string tension indicating confinement-like
behavior below the string-breaking scale and the running coupling has not shown signs of a fixed
point slowdown. In addition, there seems to be a rapid finite temperature transition whose nature is
unclear but hardly favors a conformal bulk phase. Our results are consistent with results reported in
[4] but disagree with the chiral analysis of [3] and do not support the infrared fixed point reported
in [1].

But is it possible that we mislead ourselves with the χSB interpretation? Can we interpret the
results as conformal chiral symmetry? To decide this question, a fairly stringent test is possible.
With the conformal hypothesis the mass dependence of all physical states is controlled by the
anomalous dimension γ for small fermion masses [11]. Each hadron and Fπ should scale as Mπ ≈
m1/ym and Fπ ≈ m1/ym for small m where ym = 1+ γ . For small enough m the value of γ should
be interpreted as γ∗ at the infrared fixed point. The chiral condensate is expected to have the

behavior 〈ψψ〉 ≈ c ·m+m
3−γ

1+γ when m→ 0. We selected various subsets of states for a combined
fit with universal critical exponent γ . We also fitted all measured states combined. Applying the
conformal hypothesis to the chiral condensate, to F , to the pion state, and to the stable nucleon
state collectively leads to a results with a χ2 sum of χ2 = 229 for 26 degrees of freedom with
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χ2/dof = 8.79. This indicates very low level of confidence in the hypothesis. The χSB hypothesis
gives χ2/dof = 1.22 for the same set of states. This was the result quoted in Section 1. The
chiral and conformal fits for two of the four fitted states with the quoted global results is shown in
Figure 8. Applying the global analysis to all states we measured, the contrasting behavior is less
pronounced but still significant. The results disfavoring the conformal hypothesis are significant.
More work is needed for higher accuracy and full control of the systematics.

3. Two fermions in sextet representation of the SU(3) color gauge group

Our findings in the sextet model are consistent with chiral symmetry breaking. The gauge
coupling β = 3.2 where we report new results is more coarse-grained than the β = 2.2 set in the
N f = 12 model. Simulations at weaker bare coupling are underway. The chiral and conformal
fitting procedures are identical to those we described earlier in the N f = 12 fermion model.

3.1 Sextet Goldstone spectrum and Fπ from chiral symmetry breaking
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Figure 9: Analytic and logarithmic chiral fits for the Goldstone pion and Fπ are shown for N f = 2 sextet simulations
with lattice size 323× 64 at β = 3.2. The dashed lines show the linear part of the fits which estimate the B-parameter
of the chiral Lagrangian. The upper two plots are analytic, the lower two plots include the leading chiral logs. The
important role of the m = 0.003 run is emphasized in the text.

Figure 9 shows the Goldstone pion and Fπ as a function of the fermion mass m from 323×64
lattices at the sextet gauge coupling β = 3.2 with some finite volume control from 243×48 runs.
The upper two plots show analytic fits. At m = 0.004 and higher the finite volume effects are small
or negligible. Including the m = 0.003 point in the analytic fit leads to a substantial increase in χ2.
It remains unclear whether the m = 0.003 run at 323×64 lattice size is compatible with the infinite
volume limit or favors an extrapolation. Including this point in the logarithmic chiral fit leads to an
excellent result. It remains important to resolve the finite volume systematics at this fermion mass.
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Although we could fit Mπ and Fπ with the continuum chiral logarithm included, the separate sets of
F and B from the fits are not quite self-consistent. A combined staggered SU(2) chiral perturbation
theory fit is successful for simultaneous fits of Mπ and Fπ with the same pair of F and B values.
The explicit cutoff dependent corrections to the F and B parameters would require further testing
at weaker gauge coupling.

The sextet non-Goldstone pion spectrum is shown in Figure 10 using the same notation as
earlier in the N f = 12 model. The three states we designate as i5Pion, ijPion, and scPion do show
considerable taste breaking with residual mass in the m→ 0 chiral limit. The scPion remains
degenerate with the i5Pion and they are split from the Goldstone pion. The ijPion state is further
split from the i5Pion as expected. One plot at β = 3.25 also shows that the taste breaking decreases
at weaker gauge coupling. The non-Goldstone spectrum is more QCD-like than in the N f = 12
model.
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Figure 10: Sextet non-Goldstone spectrum is shown for three pion states. The upper left plot at β = 3.2 shows the
i5Pion with linear fit and non-zero intercept in the chiral limit. The magenta points show the Goldstone pion and its fit
with considerable split from the i5Pion. The upper right plot is the same plot at β = 3.25 . The taste breaking is smaller
at weaker gauge coupling. In the bottom left plot the red points with the linear fit shows the scPion. The cyan points
show the i5Pion which remains degenerate with the scPion. The magenta points show the Goldstone pion. At the bottom
right the red points and the linear fit show the ijPion with magenta points showing the i5Pion split downward. The cyan
points with its fit show the Goldstone pion.

3.2 Sextet chiral condensate

The chiral condensate 〈ψψ〉 summed over two flavors is dominated again by the linear term
in m from UV contributions. The quadratic (or linear) fit gives a small non-vanishing condensate
in the chiral limit which is in the expected range from the GMOR relation 〈ψψ〉= 2F2B with the
fitted low F value and B estimated from the pion fit of figure 9. For an independent determination,
we also studied the chiral condensate operator with the subtracted derivative terms as discussed
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earlier in the N f = 12 model. The fit to the condensate is shown in Figure 11 with non-vanishing
chiral limit.
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Figure 11: The sextet chiral condensate is shown on the left plot with fit and data points of the subtracted derivative.
The right side shows the fit to 〈ψψ〉 condensate data after the removal of the fitted c1m+ c2m2 part with fit error on the
chiral limit value of c0 at m = 0.

3.3 Testing the alternate hypothesis of conformal chiral symmetry in the sextet model
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Figure 12: The sextet simultaneous fit in three channels.

All the sextet simulation results we presented favor the chiral symmetry breaking hypothesis.
The pion state is consistent with a vanishing mass in the chiral limit and easy to fit with a simple
quadratic function of the fermion mass. The fundamental controlling parameter F of chiral sym-
metry breaking appears to be significantly non-vanishing in the chiral limit. The non-vanishing
chiral condensate agrees reasonable well with the GMOR relation as calculated from the small fit-
ted value of F and B estimated from the pion fit of Figure 9. The Higgs ( f0) meson, the ρ meson
and A1 meson extrapolate to non-vanishing masses. Applying the conformal hypothesis to Fπ , Mπ

and the 〈ψψ〉 condensate, the combined fit gives χ2/dof = 6.96 in the m = 0.003−0.014 fit range
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representing low level of confidence in the hypothesis. The combined chiral fit gives χ2/dof= 1.24
in the same range if the chiral log fits of Figure 9 are used for Mπ and Fπ . Two comparison fits
of this analysis are shown in Figure 12. We pointed out earlier that finite volume corrections in
the m = 0.003 run cannot be ruled out without further analysis. If we use the m = 0.004− 0.014
range in the conformal fits, we get a reduced χ2/dof = 3.9 value and the chiral fit is χ2/dof = 1.29.
Further work is needed on the m = 0.003 data.

In summary, our analysis of the sextet model favors the χSB hypothesis with considerable
level of confidence and disagrees with earlier report from [12] using Wilson fermions in their sextet
analysis. The results disfavoring the conformal hypothesis are not definitive but quite indicative.
To sharpen the results even more continued work is needed for better control on the systematics at
low fermion masses.
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