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We show how the vibrational modes of a nanowire may be coherently manipulated with a Bose–
Einstein condensate of ultracold atoms. We consider the magneto-mechanical coupling between
paramagnetic atoms and a suspended nanowire carrying a dc current. Atomic spin flips produce a
back-action onto the wire vibrations, which can lead to mechanical mode amplification. In contrast
to systems considered before, the condensate has a finite energy bandwidth in the range of the
chemical potential and we explore the consequences of this on the parametric drive. Applying the
resolvent method, we determine the threshold coupling and we also find a significant frequency shift
of the vibration due to magneto-mechanical dressing.
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There is a tremendous potential in developing new
quantum technologies via hybrid quantum systems in
which laser controlled atomic and electronically con-
trolled solid-state systems are coupled to make use of the
best of the components [1]. The prerequisite for useful
quantum interfaces is the realization of a coupling strong
enough to mediate quantum properties between degrees
of freedom of completely different nature, such as spin,
electronic state, translational motion, and vibration. The
mechanical motion of a massive object above molecular
weights is particularly challenging to manipulate at the
quantum level. The prominent example for interfacing
motion with a well-controlled degree of freedom is op-
tomechanics [2] in which the vibrations of an optical ele-
ment, such as a membrane with a reflection coating, are
coupled strongly to a radiation field mode of an optical
resonator [3]. In another recent experiment, coherent dy-
namics of a mechanical oscillator magnetically coupled to
a single electron spin of a nitrogen-vacancy color center
in diamond has been observed [4].

Bose–Einstein condensates (BEC) are attractive for
creating hybrid systems since they can be manipulated
and detected at the fundamental quantum noise level in
all of their degrees of freedom. The collective BEC state
greatly enhances the sensitivity of the internal hyperfine
dynamics to external magnetic fields [5, 6]. Making use of
this collectivity, recent proposals analyze the “magneto-
mechanical” coupling between a BEC and a magnetized
cantilever [7–9] (for a review see [10]), which could be sen-
sitive enough to probe quantum coherence in the state of
a nano cantilever [11].

A particularly versatile interface could arise from the
controlled coupling of BEC and carbon-based nanostruc-
tures, such as a nanotube or a graphene sheet, since
these, besides having good mechanical properties as oscil-
lators [12], can be contacted and driven electronically. In

recent experiments, static electric interactions between
laser cooled atoms and a carbon nanotube [13] and van
der Waals type interactions between BECs and carbon
nanotubes [14, 15] have been detected. The Casimir–
Polder force exerted by laser-controlled ultracold atoms
on graphene may create ripples in the membrane [16].
The magnetic coupling between atoms and carbon nanos-
tructures with its high degree of controllability opens the
door to many applications. For example, the BEC atomic
spin is suitable for measuring the current noise spectrum
through a nanowire [17].

In this Letter we consider the strong magneto-
mechanical coupling regime in which the BEC is not
merely a probe but has a significant backaction on the
oscillation of a nanowire. Such backaction of a BEC on
the motion of a massive object has been demonstrated by
optomechanical coupling [18, 19]. For the case of mag-
netic coupling, we find a parametric amplification-type
interaction which can result in a fast coherent transfer
of the internal energy stored in the hyperfine structure
of atoms to vibrational energy of a remote object. The
atoms of the BEC are magnetically trapped in the low
field seeking, excited spin state. Therefore, spin flips are
accompanied by releasing energy that can eventually be
absorbed by the oscillations.

The atomic condensate. We consider magnetically
trapped ultracold 87Rb atoms in the hyperfine state
F = 1, mF = −1. Trapping originates in the inhomoge-
neous Zeeman term ĤZ = gFµBF̂B(r), where gF = −1/2
is the Landé factor, µB is the Bohr magneton, and the
atomic spin F̂ is measured in units of ~. The dominant
component of the magnetic field is a homogeneous off-
set field Boffs in the z direction. The eigenstates of the
spin component F̂z are then well separated by the Zee-
man shift. These are the magnetic sublevels labelled by
mF = −1, 0, 1. On top of the offset field, there is a weak
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inhomogeneous term which creates a harmonic trapping
potential around the minimum of the total magnetic field.
In addition, we consider a spin independent static grav-
itational potential Mgy with atomic mass M and gravi-
tation acceleration g.

The trap is confining only for the mF = −1 species
and, to a good approximation, these atoms are subject
to the static potential V̂−1(r) = ~ωL + VT(r), where
ωL = [|gF |µBBoffs +Mg2/(2ω2

r)]/~ is the Larmor fre-
quency at the potential’s minimum (chosen as origin)
and VT(r) = M

2 [ω2
r(x2 + y2) + ω2

zz
2] is the trapping po-

tential with ωr and ωz being the transversal and longitu-
dinal trapping frequencies, respectively. In this trap, we
assume a pure BEC with a Thomas–Fermi wave func-
tion Φbec(r) = ([µ− VT(r)]/gs)

1/2, with chemical po-
tential µ = (15Ngsω

2
rωz/8π)2/5(M/2)3/5, s-wave scat-

tering parameter gs, and number of condensate atoms
N =

∫
Φ2

bec(r) d3r [20]. The condensate has ellipsoidal
shape with a parabolic density distribution. The time
dependent Gross–Pitaevskii equation is satisfied by the
field operator Ψ̂−1(r, t) ≈ Φbec(r)e−i(ωL+µ/~)t.

Atoms in the Zeeman sublevel mF = 0, described
by the second quantized field operator Ψ̂0(r), are not
trapped magnetically but scattered by the BEC, leading
to an effective scattering potential gsΦ

2
bec(r) = µ−VT (r).

Including gravity, these atoms are subject to the effective
potential V0(r) = µ − VT(r) + Mgy (see Fig. 1). In the
course of the dynamics, the BEC of mF = −1 atoms
is considered as a reservoir from which the mF = 0
atoms can be created via electromagnetic transitions,
and we neglect the depletion of the condensate due to
transfer of atoms to other spin states, as well as the
population in the sublevel mF = 1 (i.e., Ψ̂1 ≈ 0).
We can then replace the spin raising operator with
F̂+ =

√
2Φbec(r)Ψ̂†0(r)e−i(ωL+µ/~)t. Furthermore, in ac-

cordance with the Thomas–Fermi approximation, we ne-
glect the kinetic energy also for the spin component
Ψ̂0(r): The uncoupled second quantized atomic Hamil-

tonian then reads Hat =
∫
V0(r)Ψ̂†0(r)Ψ̂0(r) d3r.

Coupling to the vibration of the nanowire. We now
consider a nanowire of length L suspended along the
z-axis at a distance d from the atomic condensate (see
Fig. 1). As it vibrates, d changes by the nanowire’s ef-
fective transverse displacement, which we express with
the oscillator operator â of the fundamental vibration

mode in the y direction, q̂y = (~/2meffωnw)
1/2

(â+ â†).
The magnetic field of the current-carrying nanowire at
point r with respect to the BEC center, Bnw(r), is thus
modulated by the vibration, and even though its magni-
tude is negligible with respect to the offset and trap-
ping fields, the oscillating component may induce hy-
perfine atomic transitions if resonance occurs. Reso-
nance can be achieved by tuning the Larmor frequency
ωL near the mechanical vibration frequency ωnw. Ex-
panding the magnetic field up to first order in q̂y, Ĥac =

BEC
z

x
y

r

d q̂oscillating
nanowire

I(t)I(t)

atomchip

Boffs

BEC mF = ‒ 1μ

ℏωL m
ax m

in

mF = 0

mF = 1

effective potential
trap + gravitation

FIG. 1. (Color online) Bose–Einstein condensate (BEC)
trapped near a current-carrying nanowire. Mechanical vibra-
tions of the nanowire modulate the magnetic field felt by the
BEC thus inducing transitions form the mF = −1 to the
mF = 0 Zeeman sublevel. Inset shows for the three Zeeman
sublevels trapping, gravitational, and scattering potentials.

gFµBF̂∂yBnw(r)q̂y, the ac Zeeman term becomes

Hac =

∫
~η(r)Φbec(r)Ψ̂†0(r)e−i(ωL+µ/~)t(â+ â†) d3r

+ H.c., (1)

with a complex coupling strength incorporating all the
spatial structure of the magnetic field of the nanowire,

η(r) =
gFµB

2
√
~meffωnw

[∂yBnw,x(r)− i∂yBnw,y(r)] . (2)

The magnetic field of a short nanowire (L� d) is like
that of a dipole, Bnw(r) = µ0IL ẑ × (r + d)/4π|r + d|3,
where ẑ is the unit vector in the z direction, d is the
displacement vector from the nanowire to the BEC cen-
ter, and I is the constant current. On the other hand,
the magnetic field of an infinitely long wire (L � d) is
Bnw(r) = µ0I ẑ×(r + d)/2π|r + d|2. In these two limits,
the coupling strength at the BEC center reads

η(0) =
gFµBµ0I

4π
√
~meffωnw

×

{
L/d3 if L� d,

1/d2 if L� d.
(3)

The exact form of Bnw(r) is, for the moment, not essen-
tial.

Let us now consider the orders of magnitudes. The
chemical potential µ of the BEC is typically in the kHz
range. This is well below the usual vibrational frequency
of a nano-structure (a carbon nanotube, for example)
which can be above 100 kHz. This huge frequency differ-
ence is bridged by the Zeeman shift of the magnetic offset
field: the Larmor frequency ωL is set close to the vibra-
tional frequency ωnw to achieve quasi-resonance. Much
smaller is the collective coupling strength

Ω =
√
Nηav =

[∫
|η(r)|2Φ2

bec(r) d3r

]1/2

, (4)
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which is in the sub-kHz range. This separation of time
scales implies energy conservation and justifies the rotat-
ing wave approximation: Since the energy of an atom is
always higher in the BEC than in the non-trapped sub-
levels, the energy released when an mF = 0 atom is cre-
ated (transitioned from the BEC) will cover the energy
needed for creating a vibration quantum. In a rotating
frame, where the vibrational amplitudes oscillate at the
Larmor frequency and the mF = 0 atomic field opera-
tors at µ/~, we can neglect the rapidly rotating terms

Ψ̂†0â and Ψ̂0â
† in Eq. (1) while keeping only the quasi-

resonant ones. In this rotating wave approximation, the
uncoupled and interaction Hamiltonians read

H0 = ~∆â†â−
∫
VT (r)Ψ̂†0(r)Ψ̂0(r) d3r, (5)

Hint =

∫
~η(r)Φbec(r)Ψ̂†0(r)â† d3r + H.c., (6)

with the detuning ∆ = ωnw − ωL.

Parametric amplification. This system shows similar-
ities with non-degenerate parametric amplification [21],
where two oscillator modes a and b are coupled by
Ĥint = ~Ωâ†b̂† + H.c. The amplification has a thresh-
old: the amplifier gain should compensate the losses,
characterized by the half spectral linewidths κ and Γ
of the two oscillators. This condition is Ω2

th = κΓ for
the resonant case ∆ = 0. Here, however, the oscillator
a is coupled to a finite bandwidth continuum of oscilla-
tors Ψ0(r), which is inhomogeneously broad due to the
energy V0(r) of the atom field. The breadth of the contin-
uum may be larger than the collective coupling strength
(4), and cannot be neglected. We adopt the resolvent
method [22, 23] to extract the characteristic normal fre-
quencies. Such a description is adequate in a transient
regime which is limited, for example, by the depletion of
the BEC. In this regime, one can observe exponentially
growing mechanical vibrations above a certain threshold
of the collective coupling Ω, just like in the case of two
coupled oscillators. Moreover, the vibrational frequency
is shifted from its bare value, which is a signature of the
magneto-mechanical coupling even below the amplifica-
tion threshold.

Solution to the equation of motion. In the following,
we focus on the linear response of the nanowire’s vibra-
tion to mechanical perturbations, such as a classical seed
present in the initial thermal state, or external forces
applied on the nanowire (e.g., by shaking the sample
holder or by applying voltage on a gate under the electri-
cally charged nanowire). Mathematically, the response
is given by the Green’s functions of the Heisenberg–
Langevin equation of motion, which happens to be linear
in the mechanical vibration and spinor field operators
â and Ψ̂†0(r). After Fourier–Laplace transform, the for-
ward propagator G+

aa(z) = −i
∫∞

0
〈[â(t), â†(0)]〉eizt dt can

0

0.5

1

1.5

2

-0.5 0 0.5 1 1.5

Gravitation and BEC size neglected
Realistic parameters

FIG. 2. The coupling density function (9) for a BEC in
the harmonic trap. Solid curve shows numerical results for
parameters specified in the text. Dashed curve shows the
analytic solution ρ(ω) = 15Nη2

√
~3ω(µ− ~ω)/(4µ5/2) disre-

garding gravity and assuming that the spatial extension of
the BEC is much smaller than its distance from the nanowire
(r � d).

be obtained [23]

G+
aa(z) =

[
z −∆ + iκ+K(z)

]−1
, (7)

where κ is the spectral line width of the mechanical oscil-
lator. All the detail about the losses of the atomic media
(namely, the spin loss rate γ from the Zeeman sublevel
mF = 0) and its coupling to the mechanical oscillator
is incorporated into the level-shift function, defined for
Im z > −γ as

K(z) =

∫
ρ(ω)

z − ω + iγ
dω, (8)

where the coupling strength, weighted with the density
of states, is expressed by the coupling density function

ρ(ω) =

∫
|η(r)|2Φ2

bec(r)δ
(
ω − [VT (r)−Mgy]/~

)
d3r,

(9)

plotted in Fig. 2 for our harmonic trap geometry.
In this Letter we will restrict the discussion to the poles

of the propagator (7) which are the roots z∗ of the char-
acteristic equation z∗−∆ + iκ+K(z∗) = 0. These roots
correspond to the normal modes and the exponentially
decaying or increasing harmonic solutions for the me-
chanical vibration. Amplification occurs if a pole z∗ with
positive imaginary part exists. Fig. 3 visualizes the imag-
inary part of the roots z∗ as a function of the collective
coupling strength Ω and detuning ∆. Roots with pos-
itive imaginary part (shown in red) exist only when Ω
is above a certain ∆-dependent threshold represented by
the yellow curve. It can be parametrized (γ � µ/~) as

∆ =
µx

~
+

~Ω2

µ
P
∫
ρ(y) dy

x− y
, Ω =

√
κµ

π~ρ(x)
, (10)



4

FIG. 3. (Color online) The amplification (red, positive val-
ues) and decay (blue, negative values) rates as function of the
detuning ∆ and collective coupling strength Ω are directly
given by the imaginary part of the poles of the propagator
(7), respectively. Yellow curves drawn on the surfaces show-
ing the ∆-dependent threshold coupling strength as given in
Eq. (10). For the visualization, the analytic coupling density
(dashed curve) of Fig. 2 with κ = 0.1µ/~ was taken.

where we introduced the dimensionless coupling density
function ρ(x) = (µ/~Ω2)ρ(xµ/~), which is normalized
as
∫
ρ(x) dx = 1 and is specific to the geometry of the

setup. The threshold coupling is then given by the max-
imum of ρ(x): for the analytic model shown in Fig. 2,
~Ω2

th/(κµ) ≈ 0.22, while it is 0.23 for the numerical one.

The real part of the poles reveal a large frequency
shift of the mechanical oscillations with respect to the
nanowire’s bare vibration frequency ∆, as shown in
Fig. 4. This shift can give an easily measurable signa-
ture for the magnetic dressing of the mechanical vibra-
tion by the spinor excitations even below the amplifica-
tion threshold. For example, for the threshold coupling
strength Ωth, the shift can be as large as the half of the
bare line width.

Conclusions. To give a figure of merit, we consider
a BEC of N = 5 × 104 atoms in a magnetic trap
with trapping frequencies ωr = 2π × 1500 Hz and ωz =
2π×300 Hz corresponding to a chemical potential µ/~ =
2π×18.2 kHz and spatial dimensions 2.74µm×2.74µm×
13.7µm. At a distance d = 1.67µm from the BEC
center, a carbon nanotube of length L = 2µm is sus-
pended, carrying a dc current I = 35µA and vibrat-
ing at a frequency ωnw = 2π × 550 kHz with effective
mass meff = 7 × 10−21 kg, quality factor Q = 2.5 × 105,
and decay rate κ = ωnw/Q = 2π × 2.2 Hz [8, 24–
28]. This corresponds to a collective coupling constant
Ω = 710 s−1. The parametric amplification threshold
derived from Eq. (10), Ωth ≈ 605 s−1, is thus within

‒1.0 ‒0.5 0.0 0.5 1.0 1.5 2.0
Detuning [in μ/ℏ units]
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 [
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³⁄₂ Ωth
Ωth

²⁄₃ Ωth

Decay:

³⁄₂ Ωth

Ωth

Amplification:

FIG. 4. (Color online) The shift in the nanowire’s bare vibra-
tion frequency as function of the detuning ∆ is determined
by the real part of the dominant pole of the forward propa-
gator (7). Solid (blue) curves show the shift from poles with
negative imaginary part (decaying normal modes) below, at,
and above the threshold coupling strength, dashed (red) curve
shows the same for poles with positive imaginary part (am-
plification) above the threshold. Parameters are the same as
for Fig. 3.

reach. The increase of amplitude may be directly seen
at cryogenic temperatures T = 15 mK where the ther-
mal phonon number is about 570. We note that a sim-
pler process of parametric amplification of the mechani-
cal vibrations of a suspended carbon nanotube has been
observed recently [29], where a single oscillator was ex-
cited by means of classical driving at double frequency
rather than another quantum system as we considered
here. The strong magnetic coupling opens the route to-
wards interesting possibilities, such as manipulating the
mechanical vibration of the nanoscale oscillator by con-
tinuously driving the hyperfine dynamics of the BEC in
order to re-pump the lost mF = 0 atoms back to the
condensate.
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Sciences (Lendület Program, LP2011-016), the MÖB-
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