
ar
X

iv
:1

10
9.

17
27

v2
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 2
4 

Fe
b 

20
12

epl draft

Calculation of the even-odd energy difference in superfluid Fermi

systems using the pseudopotential theory

A. Csordás1,2 (a) , G. Homa1 (b) and P. Szépfalusy1,3 (c)
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EU
2 HAS-ELTE Statistical and Biological Physics Research Group, Eötvös University, Pázmány P. Sétány 1/A, H-1117
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Abstract – The pseudopotential theory is extended to the Bogoliubov-de Gennes equations to
determine the excess energy when one atom is added to the trapped superfluid Fermi system with
even number of atoms. Particular attention is paid to systems being at the Feshbach resonance
point. The results for relatively small particle numbers are in harmony with the Monte Carlo
calculations, but are also relevant for systems with larger particle numbers. Concerning the addi-
tional one quasiparticle state we define and determine two new universal numbers to characterize
its widths.

The pseudopotential theory has proved to be an im-
portant tool in different areas, as for instance solid state
physics (see, e.g., [1]), quantum chemistry (see, e.g., [2]),
metal clusters (see, e.g., [3]). A general survey of the
method regarding the interest of researchers in a wide
range of applications is given in [4]. For a recent review
about the approximations in electronic structure energy
see ref. [5]. The idea was first formulated by Hellmann
[6] and appeared also in Gombás’ work [7]. The quantum
mechanical foundation was started by Fényes [8] (for the
early history of the pseudopotential theory see [9, 10]).
In the quantum mechanical treatment of many par-

ticle systems it is crucial to reduce the task from an
Ntotal-particle problem to an Neff particle one, where
Neff ≪ Ntotal, when Ntotal ≫ 1. In atoms, molecules
and metals, e.g., Neff is the number of valence electrons.
The pseudopotential method works by taking the advan-
tage of the fact that the large negative potential energy
felt by a valence electron is almost completely cancelled
by its large positive kinetic energy, which is due to the os-
cillations of its wave function inside the core. The method
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deals with pseudo wave functions which are smooth and
easier to handle. One expects that similar situation arises
in any fermion system put in an external potential when
the analog of the valence electron problem in a broad sense
is investigated. Characteristic differences also show up in
case of trapped Fermi gases as a consequence of the short-
range nature of the interaction between the atoms and in
particular when the superfluid state is realized, especially
at the Feshbach resonance.

The main goal of the present paper is to formulate and
use the pseudopotential method for trapped Fermi gases
at zero temperature. For the sake of concreteness the in-
ternal degree of freedom of the atoms will be assumed to
be twofold, one can have in mind for instance the 6Li iso-
topes as elements of a two component Fermi gas. The
BCS side of the BCS-BEC crossover will be considered,
where the interparticle interaction can be characterized
by a negative s-wave scattering length a. We will focus in
particular on the Feshbach resonance point, where univer-
sal properties set in, since |a| → ∞ there, and the range
of the interaction can be neglected (for a review see [11]).

We start by recalling the Bogoliubov-de Gennes (BdG)
equations, which can be considered as the generalization
of the Hartree-Fock equations to include pair correlations
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and conceived as equations of a mean-field theory [12,13].
They are as follows:

[H + Uint]un +∆vn = ǫnun,

∆∗un − [H + Uint] vn = ǫnvn, (1)

or in short
Ω̂φn = ǫnφn (2)

with φn = (un, vn). The operator H can be written as

H = −
h̄2

2m
∇2 + Uext(r)− µ, (3)

where m stands for the mass of the atom, µ for the
chemical potential and Uext for the confining potential,
which will be assumed to be harmonic in the applications.
Uint(r) denotes the diagonal part of the mean-field po-
tential, while ∆(r) is the pair potential of the mean field
theory. In a more general framework both Uint(r) and
∆(r) contain contributions from correlation effects, but in
the local density approximation (LDA), adopted also here,
they are local quantities. We are interested in a system of
particle number N + 1 with N being even. In particular
we want to calculate the change in the ground state energy
when adding one particle to the N -particle system. Since
the theory adopted here is not working with fixed parti-
cle numbers it is more precise to speak about even- and
odd-number parity states [12], but for sake of simplicty
the therminology above is often used.
It is assumed in the following that the N -body prob-

lem is solved. It might mean the solution of the BdG
equations in the BCS mean-field approach, in which case
Uint(r) is generally put zero [11,14] and only ∆(r) should
be solved self-consistently. It is argued that in the mean-
field description this is a consistent choice [15]. At uni-
tarity, however, there exists an extension of the den-
sity functional theory, which determines also Uint(r) self-
consistently [16–18]. In our general considerations there is
no need to specify which case is adopted. We do not use
the results explicitely, suppose only their existence in prin-
ciple and do not restrict ourselves to such particle num-
bers for which calculations have been realized. We avoid
the details of the direct interaction Uint by fixing Uint

and ∆ using the solution of the N -body problem. In a
more precise treatment one ought to solve the (N + 1)-
particle problem self-consistently. (In a normal system, as
the electrongas in an atom for instance, this amounts to
neglecting the core polarization by the valence electron.)
In our model pseudopotential at unitarity universal con-
stants will carry all the informations concerning the N -
atom problem. Therefore, we do not need to specify a
regularisation procedure, as in refs. [14, 18].
It will be important in the following that eqs. (1) pro-

vide positive and negative eigenvalues as well representing
the charge conjugation symmetry [17,19]. More concretely
if φ(+) = (u, v) is an eigenfunction with eigenvalue ǫ > 0
then φ(−) = (−v∗, u∗) is an eigenfunction with eigenvalue

−ǫ. The orthonormalization condition
∫

d3r [u∗

num + v∗nvm] = δn,m (4)

leads to the conclusion that eigenfunctions belonging to
eigenvalues of different sign are orthogonal.
Let us denote by E(N) the ground state energy of the

N particle system, then, see, e.g., ref. [12]

E(N+1) − E(N) = ǫmin + µ, N is even. (5)

For µ the chemical potential of the N -body system should
be taken. The calculation of ǫmin as the smallest positive
eigenvalue of eq. (2) raises severe technical difficulties for
large N , since the corresponding eigenfunction becomes
highly oscillating. To avoid it and to make the determina-
tion of ǫmin manageable even in such a case we generalize
the pseudopotential method to the BdG equations by in-
troducing the modified equation

(

Ω̂ + Ûps

)

φ̃n = ǫnφ̃n, (6)

where φ̃n stands for the pseudo wave function φ̃n(r) =
(ũn(r), ṽn(r)), and Ûps is the nonlocal pseudopotential

Ûps =
∑

t

{

(ǫn − ǫt)

(

ut(r)
vt(r)

)

(u∗

t (r
′), v∗t (r

′))

+ (ǫn + ǫt)

(

−v∗t (r)
u∗
t (r)

)

(−vt(r
′), ut(r

′))

}

.

(7)

Here ǫt is positive by definition. φt(r) = (ut(r), vt(r))’s
are selected of those solutions of eq. (1) that are involved
in building the functions Uint(r) and ∆(r).
Two remarks are in order here. One has to include

states of positive and negative eigenvalues to maintain
the ”charge conjugation” symmetry. The summation may
extend only to a restricted set to avoid divergences, for
instance to states

[〈ut|H + Uint|ut〉+ 〈vt|H + Uint|vt〉] < 0. (8)

This choice will be assumed in the following. One can eas-
ily see that the solution of eq. (6) is not unique, any linear

combination of φ
(+)
t and φ

(−)
t (satisfying the condition (8))

can be added to φ̃n without changing the eigenvalue ǫn.
As a consequence the most general form of Ups can be
written as

Ups =
∑

t

{∣

∣

∣
φ
(+)
t

〉〈

F
(+)
t

∣

∣

∣
+
∣

∣

∣
φ
(−)
t

〉〈

F
(−)
t

∣

∣

∣

}

. (9)

One can easily convince oneself that
〈

F
(±)
t

∣

∣

∣
φ̃n

〉

= (ǫn ± ǫt)
〈

φ
(±)
t

∣

∣

∣
φ̃n

〉

; (10)

F (±) are quite general functions. This expression of the
pseudopotential is the generalization of the Austin, Heine
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Sham proposal [20]. A natural requirement might be that
the pseudo wave function be as smooth as possible (for-
mally, it has been proposed to minimize the kinetic energy
[21,22], see also [2]). An obvious condition is that the pseu-
dopotential should cancel a large part of the external and
the local mean-field potentials (see e.g., [1, 2, 23]).
In this spirit we choose the generalized Austin type [1,

20] form

Ûps =

(

UH
ps U∆

ps

U∆∗
ps −UH∗

ps

)

(11)

with

UH
ps = −

∑

t

′
(

ut(r) [U(r′)− µ]u∗

t (r
′)

+v∗t (r) [U(r′)− µ] vt(r
′)
)

, (12)

U∆
ps = −

∑

t

′
(

vt(r) [U(r′)− µ]u∗

t (r
′)

−u∗

t (r) [U(r′)− µ] vt(r
′)
)

. (13)

The prime on
∑

means that the summation extends to
states specified above and

U = Uext + Uint. (14)

This expression of the pseudopotential corresponds to the
choice

F
(+)
t (r) = − (U(r)− µ)

(

ut(r), vt(r)

)

, (15)

F
(−)
t (r) = − (U(r)− µ)

(

−v∗t (r), u
∗

t (r)

)

. (16)

We consider in the following a trapped gas at the Fes-
hbach resonance, where universal properties character-
ize the system. Let’s define the Thomas-Fermi region
(TFR), where the conditions for the Thomas-Fermi ap-
proach are fulfilled (here and in the following, of course,
the generalized Thomas-Fermi theory including paircor-
relations is meant supposing that the particle number
is large enough [24, 25]). An essential contribution to
∑

t
′ (ut(r)u

∗
t (r

′) + vt(r)v
∗
t (r

′)) arises only in the TFR then
and it can be taken zero outside this region. Furthermore,
it can be replaced to a good approximation, by a Dirac-
delta function δ(r − r

′) within the TFR if the number
of particles is large enough, which in other words means
that the nonlocality of the pseudopotential is disregarded.
Concerning (13) it is decisive that in LDA ut and vt are
plane waves and the condition (8) selects wave numbers
in pairs k,−k, that altogether leads to U∆

ps = 0. The
pseudopotential becomes diagonal in this approximation

Ûps =











(

µ− U(r) 0

0 U(r)− µ

)

δ(r− r
′), r ∈ TFR

0, otherwise.

(17)
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Fig. 1: Energy difference E(N+1)
− E(N)

− µ in units of h̄ω as
a function of N . Both axes are logarithmic, δ = 1.16. Straight
line shows an N1/9 behavior.

This pseudopotential can be regarded as a model one,
since the approximation breaks down near the border of
the TFR. The total hamiltonian of the model reads as

Ω̂ + Ûps =

(

− h̄2
∇

2

2m ∆(r)

∆(r) h̄2
∇

2

2m

)

, r ∈ TFR, (18)

and in the region r 6∈ TFR:

Ω̂ + Ûps =

(

− h̄2
∇

2

2m + Uext − µ 0

0 h̄2
∇

2

2m − Uext + µ

)

.

(19)
Here we used the fact that Uint = 0 and ∆(r) = 0 in LDA
outside the TFR.
At unitarity

∆(r) = δ (µ− Uext(r)) , (20)

where δ is a universal constant (see, e.g., [11]). In our
calculations δ is an input. In contrast, δ is obtained as an
output from the methods used in refs. [14, 18].
We have carried out the calculation for a spherical sym-

metric harmonic oscillator trap potential

Uext(r) =
1

2
mω2r2 ≡ µx2, (21)

where x = r/R with R being the Thomas-Fermi ra-
dius. First we have looked for a spherically symmetric
solution (i.e., l = 0) to get the smallest eigenvalue of
eqs. (6),(18),(19). In principle one can solve the BdG
equations for r ∈ TFR and r 6∈ TFR by supposing that φ̃n

is finite and vanishes as r → ∞, and by carefully match-
ing the wave functions at the border of TFR. But from the
numerical point of view it is more controllable the method
of expansion in a given basis set. In the numerics we ex-
pand both components of φ̃n in the 3D harmonic oscillator
basis φnlm(r). In the isotropic case l andm are good quan-
tum numbers. Thus, the expansion is over the different n
(radial quantum number) values. Matrix elements of the
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kinetic energy and Uext in this basis are known exacly.
Numeric integration is applied for the matrix elements of
∆(r) and Ûps (which are nonzero for r ∈ TFR). After

calculating the matrix elements of Ω̂ + Ûps a simple di-
agonalization yields the eigenvalue ǫn and the expansion
coefficients of un and vn. Special attention is paid to the
size of the truncated basis {φnlm(r)|0 ≤ n ≤ nmax}. (In
the calculation we choose for nmax such a value for which
the classical turning point of φnmaxlm(r) is at least 1.5
times bigger than the Thomas-Fermi radius. This ensures
that we have enough basis functions which ”feel” both
regions r ∈ TFR and r 6∈ TFR.) In figs. 1–3 we had
nmax = 100 and tested that choosing nmax for a slightly
bigger value (cf. nmax=150) the calculated ǫn, un and vn
are practically the same as for nmax = 100.
In fig. 1. the energy difference E(N+1) − E(N) − µ as

given in eq. (5) is plotted. It follows the N1/9 law pre-
dicted by Son [26]. Concerning the accuracy of the prefac-
tor, it is remarkable that even for a relatively small number
of particles as N = 20 our result lies between the Monte
Carlo findings [27,28] and the result of the superfluid den-
sity functional calculation [16]. (Note that at this particle
number one expects that the extra particle is in the s-
state). In fig. 2. the components of the eigenfunction are
drawn. They have nodes, the appearence of which can
be traced back to the fact that the operator (18), (19)
couples the bare (normal) states of positive and negative
eigenvalues.
The Thomas-Fermi approach breaks down in the vicin-

ity of the TF-radius R, which circumstance may ques-
tion the applicability of the pseudopotential (17) there.
One can show, however, that the width of the solution
of eqs. (6), (18), (19) is δr ∝ R(d/R)4/3, where d is
the oscillator length d =

√

h̄/(mω), while the width of
the surface region (where gradient corrections are impor-
tant) scales as ∝ R(d/R)4 [25]. At large particle num-
bers R ≫ d is valid, which ensures that the error is small
when extending the Thomas-Fermi density to the border.
This makes possible to determine two new universal num-
bers. In fig. 3. the functions wu = Au(h̄ω/µ)

+2/3 and
wv = Av(h̄ω/µ)

+2/3 are drawn together with the numer-
ically determined widths of ũ and ṽ, in units of R. The
fitting provides Au = 1.2774 and Av = 1.14616.
For the solution in case of l 6= 0 one needs a refinement

of the model (Then, of course, ǫmin is to be understood
for the given l). First of all we quote that at resonance

U(r)− µ =
1

ξ
(Uext(r)− µ) , (22)

where ξ is a universal constant, whose recent values are
0.372(0.005) [29] and 0.376(5) [30]. The complete cancel-
lation of U(r)−µ by the pseudopotential occurs now only
in a more restricted region, namely in between the zeros
0 < r1 < r2 < R of V (r, ξ) defined as

V (r, ξ) =
1

ξ
(Uext(r)− µ) +

h̄2

2m

l(l + 1)

r2
. (23)
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Fig. 2: The ũ (upper part) and the ṽ (lower part) compo-
nents of the pseudo wave function as a function of the di-
mensionless variable of x = r/R. Parameters: µ = 100 h̄ω,
ǫmin = 4.437 h̄ω, δ = 1.16.

Outside this region, but within the Thomas-Fermi radius
R the total potential is V (r, ξ) in the radial equation while
outside R it is V (r, 1). Semiclassically in the region r1 <
r < r2 the radial kinetic energy is positive. Note that
in the semiclassical treatment the factor l(l + 1) in the
centrifugal energy ought to be replaced by (l+1/2)2. We
keep the quantum-mechanical expresion, however, to be
able to extrapolate the results to small l-values.

The solutions of the radial equations corresponding to
the potential discussed above have interesting features.
The minimal excitation energy scales as ∼ µ−1 ∼ N−1/3

as predicted by Son [26], but the prefactor depends on the
value of ξ and is smaller than the result one gets from the
estimated centrifugal energy at the Thomas-Fermi radius
R. A detailed analysis shows that this effect is mainly
due to the two component nature of the wave function.
Furthermore, for larger l-values the excitation energy is
no more proportional to l(l + 1). At about l ≈ lmax, de-
fined by the condition r1 = r2, the energy curve merges
into the excitation spectrum for l = 0, which might de-
tect a breakdown of the mean-field-type theory at such
excitation energies.

One can show that by replacing the wave function of
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Fig. 3: The width of ũ (+) and ṽ (×) belonging to the pseudo
wave function for ǫmin as a function of µ. The widths are
measured in unit of R and µ in h̄ω. The solid and dashed lines
show the wu and wv curves (see text).

the (N + 1)-th atom by the pseudo wave function the
wave function of the total system does not alter. This
requirement was the starting point in [31] working within
the Hartree-Fock theory (see also ref. [2] for the general-
ization to the (N+2)-particle problem). The ground state
of the N -particle system can be written as

|Ψ0〉 =
∏

t

α
(+)
t |0〉 =

∏

t

α
(−)
t

+
|0〉, (24)

where α(−)+ and α(+)+ are the quasiparticle creation op-
erators in negative and positive energy states, respectively,
with α(±) the corresponding destruction operators. |0〉
stands for the vacuum of the atoms.
The state of the (N +1)-body system can be given as a

one-quasiparticle state

α+
n |Ψ0〉. (25)

The corresponding state written in terms of the pseudo
wave function reads as

(

α+
n +

∑

t

c
(+)
t α

(+)
t +

∑

t

c
(−)
t

∗

α
(−)
t

+

)

|Ψ0〉, (26)

which is equivalent to (25) as can be seen from the expres-
sion of |Ψ0〉. Note that normalization constants have not
been included in the discussion above. The coefficients in
(26) are

c
(±)
t = (ǫn ± ǫt) 〈φ

(±)
t |φ̃n〉. (27)

In conclusion we have calculated the energy of an extra
particle in trapped Fermi gases at unitarity by generaliz-
ing the pseudopotential theory to the BdG-type equation.
The background N -particle problem has been treated
within the Thomas-Fermi theory. This approximation
could be improved by including the Weizsäcker-type cor-
rection as determined in case of the unitary system [25].

Along with such an extension it would be appropriate to
take into account also the nonlocality of the pseudopoten-
tial, a feature lost when obtaining (11). All these are left
for future work.
Some final remarks are in order. In our treatment all

about the neighbouring even-number state are compressed
into two universal numbers δ and ξ. The recent value of
ξ is somewhat smaller than previously used in different
matching processes, which might influences the other pa-
rameter values. This makes our choice to take the bare
atomic mass in our calculation reasonable. Concerning δ
we have taken its mean-field value by the same reason and
by the expectation that it alters only slightly when using
different models.
Applications of more elaborated forms of the pseudopo-

tential to other systems along with details of the present
work will be published elsewhere.
The present work has been partially supported by the
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