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1 Introduction

Thermodynamic Bethe Ansatz (TBA) is a method to calculate exactly the ground-
state energy of an integrable quantum field theory in finite volume using its infinite
volume scattering data [1]1. The equations can be extended to excited states as well
by analytical continuation [3, 4].

The idea of the TBA is to exploit that the Euclidean partition function is domi-
nated for large imaginary times by the groundstate energy. Calculating the partition
function in the doubly Wick rotated (mirror) theory the imaginary time becomes the
physical size which is taken to be large. Since the large volume spectrum is un-
der control, the partition function can be evaluated in the saddle point approxima-
tion which results in nonlinear integral equation for pseudo energies leading to an
exact description of the ground state energy. Excited states on the complex (vol-
ume/coupling) plane are connected to the groundstate which enables one to derive
nonlinear integral equations for excited states as well.

We start in Section 2 with a toy model containing one single particle with AdS
dispersion relation and with scattering matrix which is not a function of the differ-
ences of the momenta. Although this is a fictitious system it helps to introduce con-
ceptual notions and steps needed to explain the TBA which is, in analogy, used in
Section 3 to present the results for planar AdS/CFT. Finally, we give a guide to the
literature in Section 4 and list some open problems.

2 The concept of TBA: a toy model

The application of the TBA method to solve completely the finite volume spectral
problem is standard by now and follows the following steps. First the scattering
theory has to be solved in infinite volume by determining the scattering matrix from
its generic properties such as symmetry, unitarity, crossing relation. The poles of
the scattering matrix lying in the physical strip are related to bound-states. These
bound-states have to be mapped and their scattering matrices have to be determined
from the constituents’ scattering matrices. Then in the second step these scattering
matrices can be used to describe the spectrum for large volume, which amounts to
restrict the allowed particles’ momenta via phase shifts and periodicity, and use the
dispersion relation to express the energy in terms of the quantized momenta. This
method sums up all power like corrections in the inverse of the volume and provides
an asymptotical spectrum. The very same asymptotic description of the mirror theory
is also needed as it can be used to calculate the exponentially small finite energy
corrections from the partition function. Evaluating the Euclidean partition function
for large imaginary times (large mirror volumes) in the saddle point approximation

1The method has its origin in the work of Yang and Yang applied for spin chains and for the Bose
gas with δ interaction [2].
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provides integral equations describing the ground state energy exactly. Finally, these
equations can be extended for excited states by analytical continuation. Now let us
see how these steps are elaborated in the simplest setting.

Infinite volume characteristics of the model

We consider a toy model with one single particle type only. The dispersion relation
is supposed to be the same as in the AdS/CFT correspondence 2:

E(p) =
√

1+4g2 sin2 p
2

The sine function indicates lattice behavior and restricts the momentum as
p ∈ [−π,π]. The square root, however, has a relativistic origin. The theory is
supposed to be integrable, thus multiparticle scattering matrices factorize into two
particle scatterings. As relativistic invariance is not supposed the two particle S-
matrix can depend separately on the two momenta S(p1, p2) and satisfies unitarity
S(p1, p2)S(p2, p1) = 1 and crossing symmetry, which helps to fix it completely. We
will not need its explicit form, but will suppose that in the p1 = p2 = p particular
case S(p, p) =−1.

Infinite volume characteristics of the mirror model

The Euclidean version of the model is defined by analytically continuing in the time
variable t = iy and considering space x and imaginary time y on an equal footing.
The Euclidean theory so obtained can be considered as an analytical continuation of
another theory, in which x serves as the analytically continued time x = iτ and y is
the space coordinate. The theory defined in terms of y,τ is called the mirror theory
and its dispersion relation can be obtained by the same analytical continuation E = ip̃
and p = iẼ which results in

Ẽ(p̃) = 2arcsinh
(

1
2g

√
p̃2 +1

)
Contrary to the original theory the mirror model is not of the lattice type as its mo-
mentum can take any real value p̃ ∈ R. As the scattering matrix is related via the
reduction formula to the Euclidean correlator the mirror S-matrix is simply the ana-
lytical continuation of the original scattering matrix: S(p̃1, p̃2).

Very large volume solution: asymptotic Bethe Ansatz for the model

Let us put N particles in a large volume L subject to periodic boundary condition.
Integrability ensures that the particle number is conserved and the particles’ momenta

2The string tension is related to the ’t Hooft coupling as 2πg =
√

λ
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are not changed in the consecutive scatterings. The leading effect of the finite volume
is the momentum quantization constraint:

1 = eip jL
N

∏
k:k 6= j

S(p j, pk) (2.1)

which is called the Bethe Yang equation or asymptotic Bethe Ansatz (ABA) and fol-
lows from the periodicity of the multiparticle wave function. Due to the sine function
in the dispersion relation and the periodicity of p consistency of (2.1) requires L to
take integer values only.

Bound-states of the theory are manifested in the ABA as complex string-like so-
lutions. Indeed, if the scattering matrix has a pole for ℑm(p) > 0, then complex p
solutions are also allowed in (2.1). If we take L very large with p1 ≈ p

2 + iq then
the rhs. of (2.1) would go to ∞ which should be compensated by another complex
momentum, p2 ≈ p

2 − iq say, such that S(p1, p2) exhibits a pole. The two particles
with momenta p1 and p2 form a bound-state with momentum p = p1 + p2, energy
E2(p) = E(p1)+E(p2) and scattering matrix S21(p, p j) = S( p

2 + iq, p j)S(
p
2 − iq, p j).

In general complex solutions built up from more particles are also allowed and they
usually form a string-like pattern. Their dispersion relation and scattering matrices
can be calculated by extending the method above, which is called the S-matrix boot-
strap.

Very large volume solution: ABA for the mirror model

In the mirror model the considerations go along the same line as in the original theory.
If we denote the mirror volume by R the ABA reads as

1 = eip̃ jR ∏
k:k 6= j

S(p̃ j, p̃k) (2.2)

Since S(p̃1, p̃2) lives in a different analytical domain than S(p1, p2) its pole struc-
ture can be also different. If it exhibits poles also at the proper location the mirror
theory has also bound-states. Once bound-states exist we can calculate their disper-
sion relation and scattering matrices from the bootstrap method. Suppose that the
bound-states can be labeled with some charge Q, they have energy ẼQ(p̃) and their
scattering matrix is SQ jQk(p̃ j, p̃k). The generic ABA valid for all the excitations (also
for bound-states) will be

1 = eip̃ jR ∏
k:k 6= j

SQ jQk(p̃ j, p̃k) (2.3)

Once these equations are solved the energy of the multiparticle state is

Ẽ =
N

∑
j=1

ẼQ j(p̃ j)

which describes the spectrum asymptotically for large volumes R.
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original model mirror model
(t,x)≡ (y = it,x) (y,x = iτ)≡ (τ,y)

L

t

x

e
−H(L)

R

.

y

τ

R

L

e
−H(R)

∼

(E,P)≡ (Py = iE,Px = P) (Py = P̃,Px = iẼ)≡ (Ẽ, P̃)

Table 1: The relation between the original and the mirror model.

Groundstate TBA equation from the partition function

Let us come back to the original model and see how the exact groundstate energy
can be determined in a finite volume L from the Euclidean partition function. We
exploit the fact that the imaginary time evolution for large times, R, is dominated by
the lowest energy state

lim
R→∞

Z(L,R) = lim
R→∞

Tr(e−RH(L)) = lim
R→∞

e−RE0(L)+ . . .

where the ellipsis represents terms exponentially suppressed in R. The same partition
function can be determined alternatively, using the time evolution of the mirror theory
which is generated by the mirror Hamiltonian H̃:

Z(L,R) = Z̃(R,L) = Tr(e−LH̃(R)) = ∑
n

e−LẼn(R)

The relation between the original model and the mirror model is summarized in
Table 1. In switching to the mirror model we ensure that the volume goes to infinity
(and not the imaginary time) where the spectrum is controlled by the ABA (2.3).

In the large R limit the sum in the partition function is dominated by finite density
particle states. Introducing the density of the particles (and bound-states) in momen-
tum space (ρQ(p̃) = ∆nQ

R∆ p̃ ) the energy can be expressed as

Ẽ[ρ] = R∑
Q

ˆ
d p̃ρQ(p̃) ẼQ(p̃) = R∑

Q

ˆ
duρQ(u) ẼQ(u)
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where for later convenience we reparametrized the momentum as p̃(u), momentum
integrations go from −∞ to ∞. The quantization condition comes from taking the
logarithm of the mirror ABA

p̃ j(u j)+∑
Q′

ˆ
du′(−i logSQ jQ′(u j,u′))ρQ′(u′) = 2π

n j

R
(2.4)

where n j labels the quantized momentum p̃ j whose charge is Q j. For a generic
multiparticle state there are momenta p̃k which satisfy the same equation but which
are not excited, not present in the system. They are called holes and their densities in
the large volume limit is described by ρ̄Q. Clearly the densities of particles and holes
are not independent they are connected by the thermodynamical limit of eq. (2.4) as

∂u p̃−2π(ρQ + ρ̄Q) =−∑
Q′

ˆ
du′KQQ′ (u,u

′)ρQ′(u′) =:−KQQ′ ?ρQ′ (2.5)

where the kernel is defined as

KQQ′ (u,u
′) =−i∂u logSQQ′(u,u′)

The particle density itself does not characterize properly the states we sum over in the
partition function. Indeed in a given interval (u,u+du) the occupied RρQ(u)du parti-
cles can be distributed

(R(ρQ(u)+ρ̄Q(u))du
RρQ(u)du

)
different ways leading to an entropy factor in

the sum. Since in the large particle number limit the factorials can be approximated
with the Stirling formula the partition function will take the form

Z(L,R) = ∑
n

e−LẼn(R) = ∑
Q

ˆ
d[ρQ]e−LẼ[ρQ]+S[ρQ,ρ̄Q]

where the entropy factor is

S[ρQ, ρ̄Q] = R
ˆ

du [(ρQ + ρ̄Q) log(ρQ + ρ̄Q)−ρQ logρQ− ρ̄Q log ρ̄Q]

One can slightly generalize the partition function by adding a chemical potential term
to the energy −LẼQ[ρQ]→ µQ[ρQ]−LẼQ[ρQ] where µQ[ρQ] = RµQ ∑Q

´
duρQ(u).

For fermions we take µQ = iπ , while for bosons µQ = 0. This extended partition
function can be evaluated in the saddle point approximation. Taking into account the
relation between δρQ and δ ρ̄Q originating from the variation of (2.5) we obtain the
minimizing equation in the so called pseudo energy εQ = log ρ̄Q

ρQ
as

εQ(u)−LẼQ(u)+µQ = −∑
Q′

ˆ
du′

2π
KQ′Q(u′,u) log(1+ e−εQ′ (u

′))

=: −(log(1+ e−εQ′ )?KQ′Q)(u)
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Once the pseudo energies are determined the ground state energy in volume L can be
obtained as

E0(L) =−∑
Q

ˆ
du
2π

(∂u p̃) log(1+ e−εQ(u)) (2.6)

The nonlinear integral equation which determines the pseudo energies is called the
thermodynamic Bethe Ansatz (TBA) equation. Although it is not possible to solve
it in general it provides an implicit exact description of the groundstate energy. This
implicit solution is a starting point of a systematic large and small volume expansion
and can be used to derive either functional relations for the pseudo energies or TBA
equations for excited states by analytical continuation.

Excited states by analytical continuation

Here we start with bosonic theories without bound-states and suppose that by ana-
lytically continuing in some parameter (say in the volume) we can reach all excited
states. The way how excited states appear can be understood by analyzing the energy
expression (2.6) integrated by parts

E =

ˆ
du
2π

p̃(u)∂u log(1+ e−ε(u))

Let us suppose that in the analytical continuation singularities of type 1+e−ε(ui) = 0
appear. When we deform the contour their residue contributions give rise to

E = ∑
i

E(ui)−
ˆ

du
2π

∂u p̃(u) log(1+ e−ε(u))

where we took into account the relation between the energy and the mirror momen-
tum E(u j) = ip̃(u j). Taking the same analytical continuation in the equation for the
pseudo energy we obtain

ε(u) = LẼ(u)+∑
i

logS(ui,u)−
ˆ

dw
2π

K(w,u) log(1+ e−ε(w))

Solving these equations iteratively for large L we can recognize that the 1+e−ε(ui) =
0 equations, which determine the positions of the singularities, coincide at leading
order with the ABA equations (2.1). The subleading order calculation provides a
universal formula for the leading finite size correction of multiparticle energy levels
[5]. Alternatively for doing the analytical continuation one can think of the final
result as choosing a different integration contour which surrounds the 1+e−ε(ui) = 0
singularities, and when we take the integration contour back to the real axis we pick
up the above residue contributions.
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Finally we note that if we have more species (labeled by Q) with diagonal scat-
terings (like in the previous subsection) then a singularity in 1+ e−εQi (ui) = 0 results
in the equations

εQ(u) = LẼQ(u)+∑
i

logSQiQ(ui,u)− (log(1+ e−εQ′ )?KQ′Q)(u)

whose solutions εQ(u) and {ui} have to be plugged into the energy formula

E = ∑
i

EQi(ui)−∑
Q

ˆ
du
2π

∂u p̃Q(u) log(1+ e−εQ(u))

One has to be careful with such an analytical continuation in the presence of bound-
states. Bound-states require pole singularities of the scattering matrices which usu-
ally cross the integration contour in the analytical continuation and result in extra
source terms. See the Lee-Yang model in the relativistic case [3, 4] for example.

3 TBA for planar AdS/CFT

In this section we push forward the TBA program for planar AdS/CFT. The main
difference compared to the previous discussion lies in the nondiagonal nature of the
scattering matrix. There is a way, however, how we can profit from the previous
diagonal results: the nondiagonal nature of any theory can be encoded into a diagonal
theory but with auxiliary degrees of freedom. These auxiliary excitations do not
contribute to the energy merely modifies the allowed momenta. Let us now follow
the steps of Section 2.

3.1 Infinite volume characteristics of the model

The symmetry algebra of the theory has a factorized form: su(2|2)⊗ su(2|2). The
fundamental particle called magnon transforms in the bifundamental representation
whose S-matrix has the structure

S11(p1, p2) = S(p1, p2)Ŝ11(p1, p2)⊗ Ŝ11(p1, p2) (3.1)

where the matrix part Ŝ is fixed from its covariance under one copy of su(2|2) up
to a scalar factor, which is determined from unitarity and crossing symmetry. The
scattering matrix has simple poles corresponding to bound-states. There is an infinite
tower of bound-states labeled by a positive integer charge Q. They transform under
the tensor product of the atypical totally symmetric representations of the algebra and
have dispersion relation

EQ(p) =
√

Q2 +4g2 sin2 p
2
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3.2 Infinite volume characteristics of the mirror model

As the mirror model is derived from the same Euclidean theory the fundamental parti-
cles’ scattering matrix is the analytical continuation of the scattering matrix (3.1). We
are in a different analytical domain, however, and here different poles correspond to
bound-states. These bound-states are also labeled by the charge Q but they transform
under the atypical totally antisymmetric representations and have dispersion relation:

ẼQ(p̃) = 2arcsinh
(

1
2g

√
p̃2 +Q2

)

3.3 Very large volume solution: ABA for the model

If we put N particles in a finite volume L the momenta of the particles will be quan-
tized. The multiparticle wave function has to be periodic in each argument, that is
when a particle transported along the cylinder it scatters on all other particles before
arriving back to its initial position. In a diagonal theory this results in (2.1). In a non-
diagonal theory, however, the multiparticle transfer matrix has to be diagonalized.
This can be achieved by introducing new type of (magnonic) particles with vanish-
ing dispersion relations and considering the original problem in terms of them as a
diagonal scattering theory.

Here we focus only on the charge Q= 1 sector of the theory. We have momentum
carrying particles (•1) which scatter on each other as 3

S••11(p1, p2) = S(p1, p2) =
x+1 − x−2
x−1 − x+2

1− 1
x−1 x+2

1− 1
x+1 x−2

σ
−2
12

where x±(p) = (cot p
2±i)

2g

(
1+
√

1+4g2 sin2 p
2

)
and σ represents the dressing phase.

These particles are extended for each su(2|2) factor with two types of auxiliary parti-
cles (y,◦1), whose parameters are labeled by y∈R and w∈R. The auxiliary particles
have trivial dispersion relations (their energy and momentum are zero) and scatter
with the fundamental, momentum carrying ones as

S•y1y(p,y) =
x−− y
x+− y

√
x+

x−
= Sy•

y1(y, p)−1 ; S•◦11(p,w) = 1

Furthermore, they scatter on each other as

S◦◦11(w1,w2) = S−2(w1−w2) ; Sy◦
y1(y,w) = S1(v(y)−w) ; Syy

yy(y1,y2) = 1

3The index 1 in •1 refers to the charge of the particle. This particle is a first member of an infinite
series of bound-states labeled by •Q. Similarly we will meet particles of type ◦N and .M .
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where v(y) = y+ y−1 and we introduced a useful function Sn(v−w) =
v−w+ in

g

v−w− in
g

. Any

scattering matrix can be extended by unitarity to the opposite order of their particle
types/arguments: S(i, j)S( j, i) = 1.

In formulating the ABA equations for the full theory we have to take into account
the two su(2|2) factors and that they commute. The ABA equation for the momentum
carrying particles reads as

1 = eip jL
N•1

∏
k:k 6= j

S••11(p j, pk) ∏
α=1,2

Nyα

∏
l=1

S•y1y(p j,yα
l )

where N•1 is the number of fundamental and Nyα the number of y type particles, while
the α = 1,2 index refers to the two su(2|2) factors. Since the two factors commute the
ABA equations for the auxiliary particles with rapidities y1,2 and w1,2 can be written
as

N•1

∏
k:k 6= j

Sy•
y1(y

α
j , pk)

N◦1,α

∏
l=1

Sy◦
y1(y

α
j ,w

α
l ) = 1 =

Nyα

∏
k:k 6= j

S◦y1y(w
α
j ,y

α
k )

N◦1,α

∏
l:l 6=k

S◦◦11 (w
α
j ,w

α
l )

Not all solutions of the ABA equations correspond to single trace operators as the
level matching/zero momentum condition has to be fulfilled ∑ j p j = 0. The theory
contains also bound-states which can be determined from the singularity structure
of the scattering matrices. Since from the TBA point of view only the bound-state
spectrum of the mirror theory is relevant we will focus only on them.

3.4 Very large volume solution: ABA for the mirror model

In the case of the mirror theory the fundamental scattering matrix is the analytical
continuation of the original one p→ p̃. As a result the ABA will be the analytical
continuation, too

1 = eip̃ jR
N•1

∏
k:k 6= j

S••11(p̃ j, p̃k) ∏
α=1,2

Nyα

∏
l=1

S•y1y(p̃ j,yα
l ) (3.2)

−1 =
N•1

∏
k:k 6= j

Sy•
y1(y

α
j , p̃k)

N◦1,α

∏
l=1

Sy◦
y1(y

α
j ,w

α
l ) (3.3)

1 =

Nα
y

∏
k:k 6= j

S◦y1y(w
α
j ,y

α
k )

Nα
w

∏
l:l 6=k

S◦◦11(w
α
j ,w

α
l ) (3.4)

There are some differences compared to the original ABA. First the domain of p̃ ∈R
is different compared to p ∈ [−π,π] and the total mirror momentum does not need to
vanish. Then, as we are in the mirror theory, the way how x± is expressed in terms
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of p̃ is also different: x± = (p̃−i)
2g

(√
1+ 4g2

1+p̃2 ∓1
)

. Additionally, in the calculations
of the ground state energy the sectors with antiperiodic fermions are relevant and this
is manifested in a minus sign in the middle equation. The possible bound-states and
their ABA equations are the subject of the next section. Let us note that usually in the
literature instead of (3.4) its inverse is considered as this will lead to positive particle
densities in the thermodynamic limit.

3.5 Exact groundstate energy: TBA

In this section we derive TBA integral equations for the groundstate energy in finite
volume R. We treat the theory as if it were diagonal with the scattering matrices
specified above. First we analyze whether this “diagonal” theory has bound-states by
analyzing the thermodynamic behavior of the equations and calculate the scattering
matrices of the bound-states, the so called strings. They are special complex solu-
tions of the ABA equations and they all contribute to the partition function which
determines the ground state energy. Then we use the canonical procedure to derive
coupled integral equations for the pseudo energies in a raw form, finally, using identi-
ties between the scattering matrices originating from the symmetry, we rewrite them
in a simplified form and analyze simple excited states.

3.5.1 String hypothesis for the mirror model

The string hypothesis is similar to closing the S-matrix bootstrap program, that is
to identify all particles (including bound-states) of the theory and to determine their
scattering matrices. Let us premise that we will find bound-states of three infinite
types (•Q,.M,◦N) for Q,M,N ∈N, and also of a finite type yδ particle with δ ∈ {±}.
They can be arranged in the two dimensional lattice shown in Figure 1. Let us see
how they arise from the ABA equations.

In the following we put R and all particle numbers large (keeping their ratio fi-
nite) and analyze the ABA one by one. Let us first note the reality properties of the
equations. Unitarity of the mirror scattering matrix implies that the y roots come in
complex conjugated pairs yi = (y−1

j )∗ or lie on the unit circle y = (y−1)∗, similarly
the roots w come in complex conjugated pairs wi = w∗jor are real.

•Q particles

In looking for momentum bound-states we rewrite the scattering matrix in (3.2) as

S••11 (p̃1, p̃2) =
u1−u2 +

2i
g

u1−u2− 2i
g

Σ
−2
11 ; Σ11 =

1− 1
x+1 x−2

1− 1
x−1 x+2

σ

11



where the rapidity is introduced as u± i
g = x±+ 1

x± . As R is very large complex
values for u1 with positive imaginary part are allowed. In this case the lhs. of (3.2)
for j = 1 diverges so there should be another u say u2 that goes to u1− 2i

g . If u2
still has a positive imaginary part then by the same argument there should be another
u say u3 which goes to u2− 2i

g . Applying this procedure we arrive at a string of Q
roots u+(Q−1) i

g ,u+(Q−3) i
g , . . . ,u−(Q−3) i

g ,u−(Q−1) i
g or shortly uQ+1−2 j =

u+ i(Q+1−2 j) i
g where j = 1, . . . ,Q. (Clearly the Q= 1 string is the original particle

itself.) The scattering of the Q-string with any other particle of type (.), label i and
rapidity q is

S• .Qi(u,q) =
Q

∏
j=1

S• .1i (uQ+1−2 j,q) = S.•iQ(q,u)
−1

Although naively the scattering matrices seem to depend on the parameters x± and
such a way the bound-state scattering matrix depends on its constituents, this is not
the case when we take into account the contributions of the dressing phase as was
shown in [6].

The auxiliary particles exist for both su(2|2) factors. Here we focus only on one
of them and omit to write out its index.

yδ particles

Let us analyze (3.3). If we suppose that the number of momentum carrying particles
N•1 goes to infinity then

N•1

∏
k:k 6= j

Sy•
y1(y j, p̃k)→


0 if |y j|< 1
±1 if |y j|= 1
∞ if |y j|> 1

(3.5)

In the middle case y roots lying on the unit circle are allowed. As the scattering
matrix Sy◦

y1(y,w) has a difference form in the variable v(y) = y+ y−1 we might use
the parameter v instead of y. The inverse of the relation, however, is not unique.
Defining y−(v) = 1

2(v− i
√

4− v2) with the branch cuts running from ±∞ to ±2 we
can describe any y with ℑm(y)< 0 for v∈ [−2,2]. Clearly y+(v) = y−(v)−1 describes
the other ℑm(y)> 0 case and in the scattering matrices Sy•

y1 which depends on y, and
not on v, we have to specify which root is taken. As a consequence we have two
types of y particles yδ with δ = ± and the scattering matrices split as Sy•

y1(y,q)→
Sy•

δ1(yδ (v),q) =: Sy•
δ1(v,q).

.M particles

If |y1| < 1 in (3.5) then the rhs. of (3.3) goes to zero which has to be compensated
by a w1 root which goes to v1− i

g = y1 + y−1
1 −

i
g . But then taking the ABA for w1
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means that the rhs. of (3.4) will diverge which has to be compensated by a root
v2 = w1− i

g . If the corresponding y2 satisfies |y2| > 1 then (3.3) is consistent with
(3.5) and reality requires y1 = (y−1

2 )∗, w1 = w∗1. The three roots y1 ↔ v1 = v+ i
g

and w1 = v and v− i
g = v2 ↔ y2 form an M = 1 string which we denote by .1. In

the case when |y2| < 1 then we have to repeat the same arguments for y2 leading
to w2 and y3 and so on. Finally we arrive at the notion of a .M string. It consists
of 2M y particles with y j = (y−1

− j)
∗ and M ◦ particles with synchronized parameters

wM+1−2 j = v+(M+1−2 j) i
g and y j→ vsign( j)(M+2−2 j) = v+ sign( j)(M+2−2 j) i

g
for j = 1, . . . ,M. The composite scattering matrix of the .M particle with all other
particles is simply the product of the scatterings of its each individual constituents

S..Mi(v,q) =
M+1

∏
j=1

Sy .
−i(vM+2−2 j,q)

M

∏
j

S◦ .1i (wM+1−2 j,q)
M−1

∏
j=1

Sy .
+i(vM−2 j,q) = S..iM(i,v)−1

◦N particles

Suppose we have a large number of y particles and that w1 has a positive imagi-
nary part. Then the first factor of the rhs. of (3.4) will go to zero which has to be
compensated by a root w2 = w1− 2i

g . If ℑm(w2) < 0 then we obtain a ◦2 string.
In the opposite case we repeat to previous argumentation leading to an N string
wN+1−2 j = w+(N + 1− 2 j) i

g . Clearly a single w is just a ◦1 string. The scatter-
ing of the N string with any other particle is

S◦ .Ni(w, i) =
N

∏
j=1

S◦ .wi(wN+1−2 j, i)

Scattering matrices

Summarizing, the mirror AdS theory in the thermodynamic limit could be replaced
by a diagonal theory having constituents of infinite type (•,.,◦) and index Q,M,N
for Q,M,N ∈ N, and also of finite type y particles with δ ∈ {±}. See also Figure 1.

•Q′ .M′ ◦N′ yδ ′

•Q S••QQ′ S•.QM′ 1 S•y
Qδ ′

.M S.•MQ′ S..MM′ 1 S.y
Mδ ′

◦N 1 1 S◦◦NN′ S◦y
Nδ ′

yδ Sy•
δQ′ Sy.

δM′ Sy◦
δN′ 1

Table 2: Scattering matrices of the various particles

For the readers convenience we summarize the scattering matrices in Table 2.
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The scattering matrices are unitary Si jS ji = 1 and their explicit forms are

S••QQ′(u,u
′) = SQQ′(u−u′)ΣQQ′(u,u′)−2

SQQ′(u−u′) = SQ+Q′(u−u′)SQ′−Q(u−u′)
Q−1

∏
j=1

SQ′−Q+2 j(u−u′)2

ΣQQ′(u,u′) =
Q

∏
j=1

Q′

∏
k=1

σ(uQ+1−2 j,uQ′+1−2k)
1− 1

x(uQ−2 j)x(uQ′+2−2k)

1− 1
x(uQ+2−2 j)x(uQ′−2k)

where u j = u+ j i
g and we reparametrized the momentum carrying particles in terms

of the rapidity via the function x(u) = 1
2(u− i

√
4−u2). Recall also that Sn(u−w) =

un−w
u−n−w . The other matrix elements are

S•.QM(u,v) =
x(u−Q)− x(vM)

x(uQ)− x(vM)

x(u−Q)− x(v−M)

x(uQ)− x(v−M)

x(uQ)

x(u−Q)

M−1

∏
j=1

SM−Q−2 j(u,v)

S•y
Qδ

(u,v) =
x(u−Q)− x(v)δ

x(uQ)− x(v)δ

√
x(uQ)

x(u−Q)

S..MM′(u,u) = SMM′(u−u′) = S◦◦MM′(u,u
′)−1

S.y
Mδ

(u,v) = SM(u− v) = S◦y
Mδ

(u,v)

The ABA equations then have a generic form

(−1)F = eip̃.(q j)R ∏
k

S.•jQk
(q j,uQk) ∏

α=1,2
∏

l
S.yjδl

(q j,vα
l )∏

m
S..jMm

(q j,vα
Mm

)∏
n

S.◦jNn
(q j,wNn)

where . can be any type of •,.,◦,y but only the • particles have nonvanishing energy
ẼQ and momentum p̃Q(u) = g(x(u−Q)− x(uQ))+ iQ. The parameter F denotes the
fermion number. We also indicated the contributions of the two su(2|2) factors. The
energy of such a multiparticle state having N•Qk

of Qk particles is

Ẽ(p̃1, . . . , p̃k) = ∑
k

ẼQk(p̃k)

Let us note that the ABA equations for the auxiliary particles can be inverted with-
out changing their physical meaning. Taking the inverse of (3.4) is equivalent to
redefining simultaneously the scattering matrices S◦y1δ

→ (S◦y1δ
)−1 and S◦◦11→ (S◦◦11)

−1.
Actually these are the equations used in the literature as they give positive particle
densities in the thermodynamic limit.

3.5.2 Raw TBA equations

Suppose now that we would like to describe the groundstate energy in the AdS system
in volume L. In doing so we follow the steps presented in Section 2 to evaluate the
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partition function for large mirror sizes. We introduce densities of particles (strings)
ρ•Q(u), ρ.

M(u), ρ◦N(u) for u ∈ R and ρ
y
δ
(u) for u ∈ [−2,2] and the analogous densities

of holes ρ → ρ̄. They are restricted via the logarithm of the ABA which contains the
logarithmic derivatives of the scattering matrices

K . .
j j′(u,u

′) =−i∂u logS . .
j j′(u,u

′)

Clearly K . .
j j′(u,u

′) 6= −K . .
j′ j(u

′,u) as the scattering matrices are not of the difference
type. (Keeping in mind how we obtained the string solutions the densities are natu-
rally ordered ρ•Q� ρy� ρ◦N ,ρ

.
M.) Then we introduce the entropy factors for the den-

sities, iπ chemical potential for fermions and calculate the saddle point of the func-
tional integral. This results in integral equations for the pseudo energies ε•Q,ε

.
M,ε◦N ,ε

y
δ

as follows

ε
•
Q = LẼQ− log(1+ e−ε•Q′ )?K••Q′Q− log(1+ e−ε.M)?K.•

MQ− log(1+ e−ε
y
δ )?Ky•

δQ

where in the contributions of the .M and yδ we have to sum for the contributions of
the two su(2|2) factors (which we omitted to write out). The remaining equations are
valid separately for the two su(2|2) factors separately:

ε
.
M = − log(1+ e−ε•Q)?K•.QM− log(1+ e−ε.M′ )?K..

M′M− log(1+ e−ε
y
δ )?Ky.

δM

ε
◦
N = log(1+ e−ε◦N′ )?K◦◦N′N + log(1+ e−ε

y
δ )?Ky◦

δN

ε
y
δ

= − log(1+ e−ε•Q)?K•y
Qδ
− log(1+ e−ε.M)?K.y

Mδ
− log(1+ e−ε◦N )?K◦y

Nδ
+ iπ

Once these equations are solved the groundstate energy can be obtained as

E0(L) =−
∞

∑
Q=1

ˆ
du
2π

∂u p̃Q log(1+ e−ε•Q)

Finally we note that we replaced the magnonic ABA for the particle type ◦N with
its inverse and made the corresponding change in the scattering matrices to ensure the
positivity of the magnonic densities ρ◦N . It effectively changed the sign of the related
kernels.

3.5.3 Simplified TBA equations and Y-system

In this subsection using identities among the TBA kernels we bring the equations in
to a universal local form. This means that pseudo energies can be drawn in a two
dimensional lattice, such that only neighboring sites couple to each other with the
following universal kernel

s IMN = δMN− (K +1)−1
MN ; s(u) =

g
4cosh gπu

2
(3.6)
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where IMN = δM+1,N +δM−1,N and (K +1)−1
MN ? (KNL +δNL) = δML. To simplify the

notation let us introduce the following Y functions

Y •Q = e−ε•Q ; Y .
M = e−ε.M ; Y ◦N = eε◦N ; Y y

δ
= eδε

y
δ

Clearly we have two copies for Y .,α
M ,Y ◦,αN ,Y y,α

δ
. (To conform with the literature we

inverted the ABA equations for .M and y−). Acting with the operator (3.6) on these
inverted TBA equations and using kernel identities like (K +1)−1

MN ?KN = sδM,1 we
arrive at their simplified, universal form

logY .
M = log(1+Y •M+1)? s− IMM′ log(1+

1
Y .

M′
)? s+δM,1 log

1+Y y
+

1+ 1
Y y
−

?̂s

logY ◦N = INN′ log(1+Y ◦N′)? s+δN,1 log
1+Y y

−
1+ 1

Y y
+

?̂s

where in the convolution ?̂ we integrate over the interval [−2,2] only. The other
equations do not behave so nicely.

logY •Q = −IQQ′ log(1+
1

Y •Q′
)? s+ log(1+Y .,1

Q−1)? s+ log(1+Y .,2
Q−1)? s ; Q > 1

logY •1 = − log(1+
1

Y •2
)? s+(log(1+Y y,1

− )(1+Y y,2
− ))? s− ∆̌? s

where ∆̌ vanishes on the interval [−2,2] whose explicit form can be found in [7]. The
equation for the y particles are simpler in the original form

δ logY y
δ
=− log(1+Y •Q)?K•yQδ

+ log
1+Y .

M

1+ 1
Y ◦M

?KM + iπ

These equations for Y y
δ

are not in a local form. However, acting with the inverse
of s they can be brought into such form. The operator s−1 acts as ( f ? s−1)(u) =
f (u+ i

g− i0)+ f (u− i
g + i0) and involves the analytical continuation of the functions.

It has a large null space, thus when acting on the equation information is lost:

logY y
− ? s−1 = log(1+Y •1 )+ log(1+Y ◦1 )− log(1+

1
Y .

1
)

The advantage of defining s−1 in the above manner is that it uses the analytically
continued values of the Y functions on the rapidity torus only. If we continue them
across the cuts by using ( f ?s−1)(u) = f (u+ i

g− i0)+ f (u− i
g− i0) = f+(u)+ f−(u)

then the term ∆̌ disappears, but the Y functions have to be extended to an infinite
genus Riemann surface. On this surface the Y-system has the universal form

Y+
N,MY−N,M =

(1+YN,M+1)(1+YN,M−1)

(1+Y−1
N−1,M)(1+Y−1

N+1,M)
(3.7)
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Figure 1: Y - system for planar AdS/CFT. Y− is denoted by 	 while Y+ by ⊕.

where the N,M indices live on a two dimensional integral lattice. In our situation
the identification can be drawn on Figure 1, which explicitly reads as Y •Q = YQ,0,
Y .,α

M = YM+1,να
, Y ◦,αN = Y1,να (N+1), Y y,α

− = Y1,να
and Y y,α

+ = Y2,να 2 where ν1 = 1 and
ν2 =−1.

3.5.4 Excited states by analytical continuation

Here we focus on the TBA equations for excited states in the sl2 sector for small
coupling. This sector contains particles of type •1 only and have ABA:

1 = eipkL
∏
j: j 6=k

S••11 (pk, pl)

These equations are asymptotic only and the exact system of TBA equations is re-
quired to describe the energy of the multiparticle state exactly. As the vacuum is
a BPS state it has vanishing energy and its analytical continuation cannot describe
excited states. Alternatively we choose an integration contour, such that when it is
taken back to the real axis the residue of a singularity of the form 1+ e−ε•1 (pk) = 0 is
picked up resulting in additional source terms in the raw equations as:

ε
•
Q→∑

j
logS••1Q(p j,u) ; ε

.
M→∑

j
logS•.1M(p j,u) ; ε

y
δ
→∑

j
logS•y

1δ
(p j,u)

Once the new system of TBA equations are solved the pseudo energies ε•Q have to be
plugged into the energy formula:

E(L) = ∑
k

E1(pk)−
∞

∑
Q=1

ˆ
du
2π

∂u p̃Q log(1+ e−ε•Q)

to obtain the energy of the multiparticle system.
We can rewrite the TBA equations in terms of the Y functions into their simplified

form. They satisfy the same Y -system relations (3.7) but with a different asymptotical
behavior. There is a systematical asymptotical expansion of the Y -system, which
reproduces both the ABA and the leading Lüscher correction of these multiparticle
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states. This is valid for weak coupling g→ 0 (or large sizes) and it is very nontrivial
to follow the analytical behavior of the Y functions as one increases the coupling. The
ABA solution itself suggests, that additional 1+Y = 0 singularities could appear and
then the TBA equations have to be modified by additional source terms. These source
terms ensure the analytical behavior of the energy around these singular points.

4 Guide to the literature

Here we list the representative papers where the various parts of the TBA program
were developed.

The idea that the TBA program can be applied in the planar AdS/CFT setting was
presented in [9]. The infinite volume scattering description of theory can be found in
chapters [10,11]. The ABA equations for the planar AdS/CFT model was conjectured
in [12] (and thoroughly discussed in chapters [13, 14]), while the analogous ABA
for the mirror model was described in [15]. As the color structure (su(2|2)) of the
scattering matrix is the same as that of the Hubbard model, the Hubbard TBA solution
can be adopted [16]. This results in the string hypothesis which was formulated
explicitly in [17]. The standard procedure leads to raw TBA equations, which were
developed in [19, 18, 20]. The simplified form of the TBA equations was presented
in [7] and the Y-system relations, presented previously in [21], were derived in [19,
18, 20]. In doing this the analytical properties of the dressing phase [6, 20, 22] had to
be investigated. In the AdS/CFT context the volume of the integrable system has to
be an integer, which can be seen also on the groundstate TBA [23].

Although we obtained the Y-system from the ground-state TBA equations, in
principle, it follows from the hidden PSU(2,2|4) symmetry of the model. An in-
dependent alternative approach based on this symmetry is the subject of the next
Chapter in this volume [24].

The Y-system plays a crucial role in describing excited states. As it is related
to the symmetry of the model [24–26] it is the same for each state. What makes
the difference is the asymptotical and analytical behavior of the Y-functions. The
analytical properties of the Y-functions was thoroughly analyzed in [19, 28, 23, 8].
Based on the solution of the Y-system of the O(4) model [27] the authors of [21]
identified the large volume solution in terms of the transfer matrices of the ABA [14].
This helps to derive excited states TBA equations for the sl2 sector, which was done
in [20, 28]. The excited state TBA equations provide an exact description of the
given state and they were used in the Konishi case, [29, 30], to analyze numerically
the behavior of the energy for large coupling. The results are summarized in Figure
24, see also [31]. It was further shown in [28] how to modify these excited state TBA
equations if a 1+Y = 0 singularity appears in the analytical continuation in g.

4We thank the authors of [31] for borrowing their figure.
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Figure 2: Numerical solution of the excited TBA equations for the Konishi
state [29, 30].

The weak coupling limit of the Y-system equations can be compared to the ABA
[14] and Lüscher type correction [32]. The leading order behavior is built in the
asymptotic solution [21] of the Y-function, but the next to leading one provides a
stringent test of the excited states TBA equations, which was performed numerically
for the Konishi operator in [33] and analytically at next to leading order in [34]. Later
this analytical calculation was extended to describe the next to leading order Lüscher
correction of generic twist two states [35] in [36].

The strong coupling limit of the Y -system for a finite density of string particles
was analyzed in [37], where a complete agreement with the one loop string energies
including all exponential finite size corrections has been found. The functional Y -
system equations were encoded into simpler Q functions in [38, 25, 31].

Ya,s This review AF BFT GKKV
YQ,0(u) Y •Q(u) YQ(u) YQ(u) Y•Q(u

′)

YM+1,1(u) Y .
M(u) Y−1

M|vw(u) Yv,M(u) Y4M+1(u
′)

Y1,N+1(u) Y ◦N(u) YN|v(u) Yw,N(u) Y◦N+1(u
′)

Y2,2(u) Y y
+(u) −Y+(u), Yy(u) Y⊕(u′)

Y1,1(u) Y y
−(u) −Y−1

− (u), Yy∗(u) Y⊗(u′)

Table 3: Relating the Y-functions to those in the literature, where u′ = gu.

Let us mention, how our TBA equations are related to those in the literature. We
summarized the relation between the various conventions for half of the Y-system
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in Table 2 as the other half is trivially related, see also [8]. Under this replacement
our simplified equations are equivalent to AF [7], while the raw equations to BFT
[18], except for the chemical potentials of [18]. In comparing to GKKV [20] the
indentification is not enough. Comparing our kernel K••QQ′ to the one K•Q•Q′ in [20] we
observe a slight difference. This is irrelevant, however, for excited states satisfying
the level matching/zero momentum condition 5.

The AdS5/CFT4 correspondence has a brother theory, the AdS4/CFT3 duality
[39], where the TBA program has been developed in an analogous way. The ABA
together with the string hypothesis of the mirror theory lead to ground state TBA
equations and Y-system relations in [40, 41] and extend the previously conjectured
Y-system proposal of [21]. This program is further elaborated in [41] by additionally
determining excited states TBA equations and comparing them to the asymptotic
solution of the Y functions [21] and to the quasi classical string spectrum.

Finally, let us list some open problems.
There are two disagreeing string theory calculations ( [42] and [43]) for the

anomalous dimension of the Konishi state. Additionally, the numerical solution of
the TBA equations for large couplings [29, 30] provides a third result, and calls for
improvements both the string theory and the TBA sides. On the string theory side
it could be a pure spinor calculation, while on the TBA side one should analyze the
analytical behavior of the Y-system and check whether, with increasing g, a singu-
larity of type 1+Y = 0 indeed appears, as the asymptotic solution suggests [28]. In
principle the effect of such singularities is to make the coupling dependence of the
energies analytical, but it has to be established concretely.

The anomalous dimensions of twist operators in the planar limit can be described
by integral equations derived directly from the ABA [44]. It would be nice to see,
how the exact excited TBA equations reduce to these equations in the large spin limit.

The analytical comparision of the excited state TBA equations to the next to
leading order Lüscher corrections [34, 36] tested explicitly only the . part of the Y-
system. A next to next to leading order analysis could test the ◦ part as well.

The excited states TBA equations are coupled nonlinear integral equations for
infinite unknowns. An ideal system of equations should contain finite unknowns only,
and could be developed in analogy to [27, 45] by exploiting the result of [38, 25, 31].
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Note added in proof

After this review chapter was finished three string theory calculations based on differ-
ent methods determined the strong coupling expansion of the anomalous dimension
of the Konishi operator [46–48]. All agreed with each other and with the strong cou-
pling expansion of the TBA equation [29, 30]. This gives a strong support not only
for the correctness of the TBA equations but also for the integrability approach to
planar AdS/CFT.
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