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Abstract

Suppose that f belongs to a suitably defined complete metric
space Cα of Hölder α-functions defined on [0, 1]. We are interested in
whether one can find large (in the sense of Hausdorff, or lower/upper
Minkowski dimension) sets A ⊂ [0, 1] such that f |A is monotone, or
convex/concave. Some of our results are about generic functions in
Cα like the following one: we prove that for a generic f ∈ Cα

1 [0, 1],
0 < α < 2 for any A ⊂ [0, 1] such that f |A is convex, or concave we
have dimHA ≤ dimMA ≤ max{0, α − 1}. On the other hand we also
have some results about all functions belonging to a certain space. For
example the previous result is complemented by the following one: for
1 < α ≤ 2 for any f ∈ Cα[0, 1] there is always a set A ⊂ [0, 1] such
that dimHA = α− 1 and f |A is convex, or concave on A.
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1 Introduction

In [10] and [11] J-P. Kahane and Y. Katznelson showed that for every real-
valued f ∈ C[0, 1] there are closed sets A ⊂ [0, 1] such that dimH A ≥ 1/2
and f is of bounded variation on A. (We denote by dimH A, dimM A, and
dimM A the Hausdorff, the upper and lower Minkowski (box) dimension of
the set A, respectively.) This theorem was rediscovered independently in a
more general setting by A. Máthé in [12] when only Lebesgue measurability is
assumed about f . Several further variants of restrictions of bounded variation
were considered in [2], [6] and [10], these include optimality of the bound
dimH A ≥ 1/2, restrictions of generic continuous functions and functions
with values in R

d.
In [10] Hölder restrictions were also considered for example it was proved

that for 0 < α < 1 for a continuous f there exists a closed set A such that
dimH A = 1−α and f ∈ Cα(A). In both cases it was illustrated by examples
that the dimension bounds on A are best possible. In [11] Kahane and
Katznelson showed that for a typical/generic (in the sense of Baire category)
f ∈ C[0, 1] for any 0 < α < 1 if f |A is in Cα(A) then dimMA ≤ 1 − α.
This result for Hausdorff dimension was obtained by M. Elekes in [6]. In [2]
the following generic/typical result was proved (see the definition of Cα

1 [0, 1]
in Section 2). Suppose that 0 < β < 1. For a generic f ∈ Cβ

1 [0, 1] if
f |A ∈ Cα(A) for some β < α ≤ 1 then dimH A ≤ 1− α.

Kahane and Katznelson in [10] also discussed Hölder restrictions of Hölder
functions, for example they showed that there exist functions f ∈ Cβ[0, 1]
such that if f |A ∈ Cα(A) then dimH A ≤ 1−α

1−β
. They also asked whether

this result was best possible. It turned out that this result was not the best
possible and a sharp upper bound was provided by O. Angel, R. Balka, A.
Máthé and Y. Peres in [2].

In [9] P. Humke and M. Laczkovich proved that if ϕ is a porosity pre-
measure then a typical/generic continuous function on [0, 1] intersects every
monotone function in a bilaterally strongly ϕ-porous set. This implies that
if the restriction of a generic continuous function is monotone on a set A
then dimH A = 0. Kahane and Katznelson also considered in [10] monotone
restrictions of continuous functions and showed that there exists f ∈ C[0, 1]
such that if f |A is monotone then dimH A = 0. It is a natural question
whether such a non-empty compact set A exists at all for any f ∈ C[0, 1].
This question was asked and answered a long time ago. F. Filipczak proved
in [8] that for any f ∈ C[0, 1] there exists a perfect, non-empty set A ⊂ [0, 1]
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such that f |A is monotone. This question of Real Analysis has a graph the-
oretical interpretation: Color the complete graph with vertices x, y ∈ [0, 1].

An edge x → y is red if f(y)−f(x)
y−x

> 0, otherwise it is blue. Ramsey’s theorem

implies that there exists an infinite A ⊂ [0, 1] such that all edges between
points of A are of the same color. In the language of Analysis this means
that f |A is monotone.

We remark that S. Todorčević has some abstract results which offer a
criterion for the existence of homogeneously colored perfect sets in colorings
of analytic spaces see [14].

One can ask similar questions about convexity, or n-convexity. Recall
that the first divided difference is f [x1, x2] =

f(x2)−f(x1)
x2−x1

, the second divided

difference is f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1
and if the (n−1)st divided difference

is given then the nth is

f [x1, ..., xn] =
f [x2, ..., xn]− f [x1, ..., xn−1]

xn − x1

.

For f ∈ C[0, 1], color the hypergraph (x1, ..., xn+1) ∈ [0, 1]n+1 by red if
f [x1, ..., xn+1] > 0, by blue otherwise. Again Ramsey Theory implies that
there exists a homogenously colored infinite subgraph, that is, there exists an
infinite A ⊂ [0, 1] such that f |A is n-convex, or n-concave. S. Agronski, A. M.
Bruckner, M. Laczkovich, and D. Preiss asked in [1] the following question:

Suppose f ∈ C[0, 1] and n ∈ N. Does there exist A ⊂ [0, 1], non-empty,
perfect such that f |A is n-convex, or n-concave?

Filipczak’s theorem is the n = 1 case. Concerning the n = 2 case, the
case of ordinary convexity, in [3] Buczolich proved the following:

For every f ∈ C[0, 1] at least one of the following is true:
(i) There exists an interval I ⊂ [0, 1] such that f |I is convex.
(ii) There exists an interval I ⊂ [0, 1] such that f |I is concave.
(iii) There exist A1, A2 ⊂ [0, 1] non-empty perfect such that f |A1 is strictly
convex and f |A2 is strictly concave.

It is interesting that this result does not hold for higher convexity. A.
Olevskĭı in [13] proved that there exists a Lipschitz f : [0, 1] → R such that
f is neither 3-convex, nor 3-concave on any non-empty perfect set.

Given the combinatorial/Ramsey theory background P. Erdős asked from
the author the following question:

Suppose that f : [0, 1] → R is not convex on any r element set 3 < r ≤ ω.
What can be said about f?
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It was answered in [4].
The main goal of the current paper is to obtain results about convex re-

strictions of functions belonging to different Hölder classes. Since the deriva-
tives of convex functions are monotone, these results are going hand in hand
with results about monotone restrictions and in Section 3 we discuss such
results. In Theorem 2 we show that for a generic/typical f ∈ Cα

1 [0, 1], when
0 ≤ α < 1 if A ⊂ [0, 1] and f |A is monotone then dimMA ≤ α. It is rather
easy to see, and it is at least implicitely well-known, what is stated in The-
orem 3: for any 0 < α ≤ 1 if f ∈ Cα[0, 1] then there exists A ⊂ [0, 1] such
that f |A is monotone and dimH A ≥ α. According to a result from [2] (stated
as Theorem 4 in this paper) if 0 < α < 1 and B(t) is a fractional Brownian
motion of Hurst index α then almost surely B|A is not monotone increasing
for any A with dimMA > max{1 − α, α}. A fractional Brownian motion of
Hurst index α almost surely belongs to Cα−[0, 1], but not to Cα[0, 1]. In [2]
for a dense set of α̂s in [1/2, 1] examples of self similar functions f ∈ C α̂[0, 1]
were also provided for which f |A is not monotone for any A with dimM A > α̂.
I learned from R. Balka about an unpublished argument of A. Máthé, which
implies that for any function f : [0, 1] → R one can always find a set A such
that f |A is monotone and dimM A ≥ 1/2.

In Section 4 we turn to convex restrictions. In Theorem 6 we see that for
a typical f ∈ Cα

1 [0, 1], 0 ≤ α < 2 there is always a set A ⊂ [0, 1] such that
f |A is convex and dimMA = 1. in Theorem 7 we ”integrate” the result of
Theorem 3 to show that for 1 < α ≤ 2 for any f ∈ Cα[0, 1] there is always
a set A ⊂ [0, 1] such that dimH A = α − 1 and f |A is convex, or concave on
A. In the Theorem 8 and Lemma 9 we see that the results about generic
functions and monotone restrictions can be “integrated” to obtain results
about generic functions and convex restrictions. In Theorem 10 we prove
that for a generic f ∈ Cα

1 [0, 1], 0 ≤ α < 2 for any A ⊂ [0, 1] such that f |A is
convex, or concave we have dimM A ≤ max{0, α− 1}.

We mention in the end of the paper a result (Theorem 11) according to
which there are functions in f ∈ Cα

1 [0, 1], 1 ≤ α < 2 such that f |A is not
convex, nor concave for any A ⊂ [0, 1] with dimM A > α−1. For 3/2 ≤ α < 2
by integrating Fractional Brownian motions of Hurst index α − 1 one can
obtain functions f ∈ Cα−[0, 1] with the property that f |A is not convex, nor
concave for any A ⊂ [0, 1] with dimMA > α−1. By using from [2] the earlier
mentioned dense set of α̂s in [1/2, 1] taking integrals of the corresponding self-
similar functions one can obtain a dense set in 3/2 ≤ α < 2 and functions
f ∈ Cα[0, 1] with the property that f |A is not convex, nor concave for any

4



A ⊂ [0, 1] with dimM A > α − 1. For 1 ≤ α < 3/2 it cannot obtained by
”integrating” a theorem about monotone restrictions. Theorem 11 is proved
for 1 < α < 2 in [5].

The authors thanks R. Balka and the referee for several suggestions which
improved the paper.

2 Notation and preliminary results

For α ≥ 0 if f : [0, 1] → R is ⌊α⌋-times differentiable (by definition f (0) = f)
we put

Lα(f) = sup
{ |f (⌊α⌋)(x)− f (⌊α⌋)(y)|

|x− y|{α}
: x 6= y, x, y ∈ [0, 1]

}
. (1)

By C0[0, 1], or C[0, 1] we denote the class of continuous functions on [0, 1].
If 0 < α < 1 then f is in Cα[0, 1], if Lα(f) < ∞.
For α = n ∈ {1, 2, ...} the function f is in Cn[0, 1] if f (n) is continuous on

[0, 1].
If 1 < α < 2 then f is in Cα[0, 1] if f is differentiable, and f

′

∈ Cα−1[0, 1],
that is Lα(f) < ∞.

We denote by Cα−[0, 1] the set of those functions which are in Cβ[0, 1]
for all β < α.

The class of Lipschitz functions, the functions for which

L0,1(f) = sup
{ |f(x)− f(y)|

|x− y|
: x 6= y, x, y ∈ [0, 1]

}
< +∞

is denoted by C0,1[0, 1]. While C1,1[0, 1] denotes the class of those f ∈
C1[0, 1], for which f ′ ∈ C0,1[0, 1].

If f ∈ C[0, 1] = C0[0, 1] then ||f ||0 = supx∈[0,1] |f(x)|. For α = n ∈ N

we have ||f ||α = ||f ||n = supj∈{0,...,n} ||f
(j)||0. The open balls in Cα[0, 1] of

radius r, centered at f ∈ Cα[0, 1], are denoted by Bα(f, r).
Some special subspaces. For 0 ≤ α, α 6∈ N f is in Cα

1 [0, 1] if Lα(f) ≤ 1,
that is |f (⌊α⌋)(x) − f (⌊α⌋)(y)| ≤ |x − y|α for all x, y ∈ [0, 1]. It is clear that
Cα

1 [0, 1] is a closed, separable and complete subspace of C⌊α⌋[0, 1] when we
use the subspace metric ||f − g||⌊α⌋ for f, g ∈ Cα

1 [0, 1]. When working in
these spaces we will keep the notation Bα(f, r) for the open balls in these
subspaces.
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Suppose A ⊂ R
n. The system {Uj} is a δ-cover of A if diam(Uj) < δ for

all j, and A ⊂ ∪jUj .
The α-dimensional Hausdorff measure (see its definition for example in

[7]) is denoted by Hα. Recall that the Hausdorff dimension of A ⊂ R
n is

given by
dimH A = inf{α : Hα(A) = 0} =

inf{α : ∃Cα > 0, ∀δ > 0, ∃{Uj} a δ-cover of A s.t.
∑

j

(diam(Uj))
α < Cα}.

Given an integer k ≥ 2 and a set A ⊂ [0, 1] we put

Nk,ℓ(A) = #
{
j ∈ Z : A ∩

[j − 1

kℓ
,
j

kℓ

]
6= ∅

}
.

Most often we use the k = 2, or k = 10 cases, N10,ℓ(A), or N2,ℓ(A).
The upper and lower Minkowski (or box) dimension of A is defined as

dimMA = lim sup
ℓ→∞

logNk,ℓ(A)

ℓ log k
and dimMA = lim inf

ℓ→∞

logNk,ℓ(A)

ℓ log k
. (2)

It is well-known that for any k we obtain the same value and dimH A ≤
dimM A ≤ dimM A.

Recall Proposition 2.2 of [7]:

Proposition 1. Let F ⊂ R
m and f : F → R

m be a mapping such that

|f(x)− f(y)| ≤ c|x− y|α (x, y ∈ F )

for constants c > 0 and α > 0. Then for each s

Hs/αf(F ) ≤ cs/αHs(F ).

3 Results about monotone restrictions

Theorem 2. Suppose 0 ≤ α < 1. There exists a dense Gδ set G ⊂ Cα
1 [0, 1],

(G ⊂ C[0, 1] when α = 0) such that if f ∈ G, A ⊂ [0, 1] and f |A is monotone
then dimH A ≤ dimM A ≤ α.
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Proof. We prove the existence of a dense Gδ set G ⊂ Cα
1 [0, 1], such that if

f ∈ G, A ⊂ [0, 1] and f |A is monotone increasing then dimM A ≤ α. A similar
theorem is valid for monotone decreasing functions and the intersection of
two dense Gδ sets is still dense Gδ and this yields the theorem.

One can easily see that C∞ functions f satisfying Lα(f) < 1 are dense in
Cα

1 [0, 1] when 0 < α < 1.
One can select a set {fn}∞n=1 of C∞ functions which is dense in Cα

1 [0, 1],
(in C[0, 1] when α = 0). We choose

Ξn > n, Ξn ∈ N such that (3)

|f ′
n(x)| < Ξn holds for any x ∈ [0, 1]. (4)

We also suppose that

Lα(fn) < 1 and
1

Ξn
< 1− Lα(fn), (5)

(for α = 0 we do not need this assumption). We put

Mm,n = 2Ξn(Ξn + 10)(m+ n) and M ′
m,n =

⌊
Mm,nα +

logMm,n

log 2

⌋
. (6)

We choose Mα such that if m ≥ Mα then by also recalling (3) we have

M ′
m,n < Mm,n − 10 for any n. (7)

Next we suppose that m ≥ Mα.
Next we define a function ϕm,n periodic by 2−M ′

m,n. It is sufficient to
define this function on [0, 2−M ′

m,n]. Set

ϕm,n(0) = ϕm,n(2
−M ′

m,n) = 0 and (8)

ϕm,n(2
−M ′

m,n − 2−Mm,n) =
−1

Ξn
2−Mm,nα (9)

and we suppose that ϕm,n is linear on the intervals [0, 2−M ′

m,n − 2−Mm,n] and
[2−M ′

m,n − 2−Mm,n , 2−M ′

m,n].
This way for any x ∈ (0, 2−M ′

m,n − 2−Mm,n) + j · 2−M ′

m,n , j ∈ Z

ϕ′
m,n(x) =

−2−Mm,nα

Ξn(2
−M ′

m,n − 2−Mm,n)
<

−2−Mm,nα · 2M
′

m,n

Ξn

< (10)

7



−2−Mm,nα+Mm,nα+
logMm,n

log 2
−1

Ξn
= −(Ξn + 10)(m+ n) < −(Ξn + 10).

Otherwise we always have

|ϕ′
m,n(x)| ≤

1

Ξn
2−Mm,nα · 2Mm,n wherever it exists. (11)

We put fm,n(x) = fn(x) + ϕm,n(x).
Next we show that the functions fm,n are in Cα

1 [0, 1] when 0 < α < 1.
Using (8), (9) and (11) for any x, y ∈ [0, 1]

|ϕm,n(x)− ϕm,n(y)|

|x− y|α
≤ max

0<|x′−y′|≤2−Mm,n

1
Ξn

2−Mm,nα · 2Mm,n |x′ − y′|

|x′ − y′|α
≤ (12)

1

Ξn
2−Mm,nα+Mm,n−(1−α)Mm,n =

1

Ξn
< 1−Lα(fn).

This implies that

|fm,n(x)− fm,n(y)|

|x− y|α
≤

|fn(x)− fn(y)|

|x− y|α
+ (1− Lα(fn)) ≤ 1. (13)

When α = 0 then it is clear that fm,n ∈ C[0, 1].
By (3) and (9)

|fm,n(x)− fn(x)| = |ϕm,n(x)| ≤
1

Ξn

2−Mm,nα <
1

n
, ∀x ∈ [0, 1]. (14)

Hence, the density of fn in Cα
1 [0, 1] (in C[0, 1] when α = 0) implies that of

fm,n. Put

δm,n = 2−Mm,n−1, Gm = ∪∞
n=1Bα(fm,n, δm,n) and G = ∩∞

m=Mα
Gm. (15)

The Gm’s are dense and open in Cα
1 [0, 1], (in C[0, 1] when α = 0) and G

is dense Gδ.
Suppose f ∈ G and A ⊂ [0, 1] is such that f |A is monotone increasing.
Then for each m there exists n(m) such that f ∈ Bα(fm,n(m), δm,n(m)).

Suppose that for a j there exist p1 < p2, p1, p2 ∈ [0, 2−M ′

m,n(m)−2−Mm,n(m) ]+

j · 2−M ′

m,n(m) with

p2 − p1 ≥ 2−Mm,n(m) and f(p2) ≥ f(p1). (16)

8



Then by (15)

fm,n(m)(p2) ≥ fm,n(m)(p1)− 2δm,n(m) = fm,n(m)(p1)− 2−Mm,n(m) . (17)

On the other hand, by (4), (10) and (16)

fm,n(m)(p2) ≤ fm,n(m)(p1)− 10 · 2−Mm,n(m) ,

this contradicts (17). Hence A can intersect at most two intervals of the form

[(j′ − 1) · 2−Mm,n(m) , j′ · 2−Mm,n(m) ] in an interval [0, 2−M ′

m,n(m) − 2−Mm,n(m) ] +

j · 2−M ′

m,n(m) .
Therefore, A ∩ [0, 2−M ′

m,n(m)] + j · 2−M ′

m,n(m) for any j ∈ Z can be covered
by no more than three intervals of the form [(j′−1) ·2−Mm,n(m) , j′ ·2−Mm,n(m)].
Thus, by (6)

N2,Mm,n(m)
(A) ≤ 3 · 2M

′

m,n(m) ≤ 3 · 2Mm,n(m)α+
log(Mm,n(m))

log 2 .

Hence,

lim inf
m→∞

logN2,Mm,n(m)
(A)

Mm,n(m) log 2
≤ α,

and this implies dimM A ≤ α.

Theorem 3. Suppose 0 < α ≤ 1. If f ∈ Cα[0, 1] then there exists A ⊂ [0, 1]
such that f |A is monotone and dimH A ≥ α.

Proof. Suppose 0 < α < 1. If f is constant then we are done. If there exist
a < b such that f(a) < f(b) then we can consider the function g : [a, b] → R

such that
g(x) = max{f(t) : t ∈ [a, x]}.

Then g(x) is monotone increasing and Cα. Let A = {x : g(x) = f(x)}.
The set A is closed and g is constant on the intervals contiguous to A and
g(A) = [f(a), f(b)]. If we had dimH A < α then by Proposition 1 we would
obtain dimH g(A) < 1, a contradiction. If α = 1 then f ′ ∈ C[0, 1] and is
either identically zero or there is an interval where it is of constant sign.

The next theorem is from [2, Corollary 1.4 and Proposition 1.5]

Theorem 4. Let 0 < α < 1 and let {B(t) : t ∈ [0, 1]} be a fractional
Brownian motion of Hurst index α. Then almost surely for any A with
dimM A > max{1 − α, α}, B|A is not monotone increasing. If R = {t ∈
[0, 1] : B(t) = maxs∈[0,t]B(s)} the set of record times of B then almost surely

dimH R = dimM R = α.

9



The functions B(t) in the above theorem belong to Cα−[0, 1] \ Cα[0, 1].
Since max{1 − α, α} ≥ 1/2 one might wonder whether for α < 1/2 one can
obtain better estimates on the upper Minkowski dimesion of sets where Cα

functions are monotone. This is not the case, since an unpublished result of
A. Máthé shows that for any function f : [0, 1] → R one can always find a
set A such that f |A is monotone and dimM A ≥ 1/2.

4 Results about convex restrictions

Lemma 5. Suppose that a < b, ξ′′0 ≥ ξ0 > 0, f0 : [a, b] → R,

f ′′
0 (x) = ξ′′0 ≥ ξ0 > 0 for all x ∈ [a, b] (18)

and f ∈ B0(f0, δ0). Let

Ef denote the convex hull of {(x, y) : x ∈ [a, b], y ≥ f(x)} (19)

and put
g(x) = min{y : (x, y) ∈ Ef} for x ∈ [a, b]. (20)

Set
A = {x ∈ [a, b] : f(x) = g(x)}. (21)

Suppose x1, x2 ∈ A satisfy x1 < x2 and (x1, x2) ∩A = ∅. Then

x2 − x1 < 4

√
δ0
ξ0
. (22)

Proof. Since (x1, x2) ∩ A = ∅ we have

g(x) = g(x1) +
g(x2)− g(x1)

x2 − x1

(x− x1) for any x ∈ (x1, x2). (23)

Denote by Ef0−δ0 the convex hull of {(x, y) : x ∈ [a, b], y ≥ f0(x)− δ0}.
Since f0 − δ0 is convex f0(x) − δ0 = min{y : (x, y) ∈ Ef0−δ0}. It is

also clear that Ef ⊂ Ef0−δ0 and g(x) > f0(x) − δ0 holds on [a, b]. Since
f0(x) + δ0 > f(x) ≥ g(x) we also have g(x) < f0(x) + δ0.

Put x3 =
x1+x2

2
. Using (18)

f ′
0(x3) =

f0(x2)− f0(x1)

x2 − x1
and f0(x1) = f0(x3)+f ′

0(x3)(x1−x3)+
ξ′′0
2
(x1−x3)

2.

10



Substituting the value of f ′
0(x3) in the last equation and rearranging we

obtain

f0(x1)+
f0(x2)− f0(x1)

x2 − x1
(x3−x1)−f0(x3) =

f0(x1) + f0(x2)

2
−f0(x3) = (24)

ξ′′0
2
(x3 − x1)

2.

By (23) we have

g(x3) =
g(x1) + g(x2)

2
. (25)

Using that |f0 − g| < δ0 we deduce from (24) and (23) that

δ0 > |f0(x3)− g(x3)| =
∣∣∣f0(x1) + f0(x2)

2
−

ξ′′0
2
(x3 − x1)

2 −
g(x1) + g(x2)

2

∣∣∣ ≥

ξ′′0
2
(x3 − x1)

2 − δ0.

Hence,

x2 − x1

2
= x3 − x1 <

√
4δ0
ξ′′0

which implies (22).

Theorem 6. Suppose 0 ≤ α < 2. There exists a dense Gδ set G in Cα
1 [0, 1]

such that for any f ∈ G there exists a closed set A ⊂ [0, 1] on which f |A is
convex and dimM A = 1. (When α = 0, or 1 then we can use Cα[0, 1] instead
of Cα

1 [0, 1].)

Proof. The strategy of our proof is the following. We obtain dense open
sets of functions Gm defined in (28). In the definition of these open sets
balls centered at functions fn and of radius δm,n are used. These functions
fn will have piecewise linear, locally non-constant first derivatives and there
will be a point x̃n ∈ (0, 1) such that f ′′

n(x̃n) is positive. This means that on
suitably small subintervals, first on [a1, b1], later on [a4,m, b4,m] Lemma 5 will
be applicable and the choice of δm,n can be made in (30) in a way that by
Lemma 5 if we take f ∈ ∩mBα(fn(m), δm,n(m)) and define auxiliary functions
by taking boundaries of convex hulls, as in (19) an (20) we can obtain sets
A with very small gaps (see (32) and (54)) on which f is convex and this
will yield our estimate about the upper Minkowski dimension. There is an
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additional technical difficulty arising from the fact that we need to make sure
that the small intervals [a4,m, b4,m] are selected in a way that the boundary
of the convex hull defined by the restriction of f onto [a4,m, b4,m] will be on
the boundary of the convex hull defined by the restriction of f onto [a1, b1]
see the remark after (53).

Next we turn to details of the proof. Suppose 0 ≤ α < 2 is fixed. (When
α = 0, or 1 then we use Cα[0, 1] instead of Cα

1 [0, 1] in the next proof and we
do not need to make any assumptions about Lα.)

Given any ε > 0 and f ∈ Cα
1 [0, 1] one can find f ∈ C1,1[0, 1] such that f

′

is piecewise linear, Lα(f) < 1 and f ∈ Bα(f, ε). Select x0 ∈ (0, 1) and δ0 > 0

such that f
′
is linear on [x0 − δ0, x0 + δ0] ⊂ (0, 1) and hence f

′′
(x0) exists.

Denote by ϕc the function which equals c if x 6∈ [x0 − c, x0 + c] and

2|f
′′
(x0)| if x ∈ [x0 − c, x0 + c]. Set Φc(x) =

∫ x

0

∫ t

0
ϕc(u)du dt. Then Φ′

c is
piecewise linear. Moreover,

lim
c→0+

||Φc||0 = lim
c→0+

||Φ′
c||0 = lim

c→0+
Lα(Φc) = 0. (26)

Hence one can choose a sufficiently small c > 0 such that f̃ = f + Φc

has piecewise linear derivative, there is no interval on which f̃ ′ is constant,
f̃ ′′(x0) > 0 and f̃ ∈ Bα(f, ε).

By the above remarks one can select a set {fn : n = 1, ...} which is dense
in Cα

1 [0, 1] and consists of C1[0, 1] functions such that f ′
n is piecewise linear,

there is no interval on which f ′
n is constant and for any n

there exists x̃n ∈ (0, 1) such that f ′′
n(x̃n) > 0. (27)

For a given m ∈ N first we define dense open sets Gm in Cα
1 [0, 1].

Suppose that m is fixed. We want to select δm,n > 0 and define

Gm =
⋃

n

Bα(fn, δm,n) and G =

∞⋂

m=1

Gm. (28)

Then, clearly the sets Gm are dense and open, and G is dense Gδ.
Since f ′

n is piecewise linear and there is no interval on which it is constant
we can select 0 < ξn < 1 < Ξn such that

ξn < |f ′′
n(x)| < Ξn (29)

at any x ∈ [0, 1] where f ′
n is locally linear. We can also suppose that any

maximal interval on which f ′
n is linear is of length at least dn < 1/n.

12



We need to select δm,n > 0 for any m,n ∈ N. First we suppose that

δm,n ≤
ξn · d2n
m · 1002

. (30)

Later we also need to assume (39) and (55).
Assume f ∈ G. Then there exists a sequence n(m) such that f ∈

Bα(fn(m), δm,n(m)). By property (27) there exists an interval [a1, b1] ⊂ [0, 1]
such that b1 − a1 ≥ dn(1) and

ξ′′n(1)
def
=f ′′

n(1)(x) > ξn(1) for any x ∈ (a1, b1). (31)

We define Ef , g and A as in (19), (20) and (21) in Lemma 5 using [a1, b1]
instead of [a, b]. Then g is convex on [a1, b1] and f |A = g|A is also convex.
We need to show that dimM A = 1.

Since the points (a1, f(a1)) and (b1, f(b1)) are extremal points of Ef we
have a1, b1 ∈ A. Next we apply Lemma 5 with a = a1, b = b1, ξ0 = ξn(1),
ξ′′0 = ξ′′n(1), f0 = fn(1), δ0 = δ1,n(1) and f = f .

We infer that if a1 ≤ x1 < x2 ≤ b1 and (x1, x2) ∩A = ∅ then by (22) and
(30)

x2 − x1 < 4

√
δ1,n(1)
ξn(1)

≤ 4
dn(1)
100

≤
b1 − a1
25

. (32)

We denote by Ef,m the convex hull of {(x, y) : x ∈ [a1, b1], y ≥ fn(m)(x)}
and gm(x) = min{y : (x, y) ∈ Ef,m} for x ∈ [a1, b1] and Am = {x ∈ [a1, b1] :
fn(m)(x) = gm(x)}.

Since f ∈ Bα(fn(m), δm,n(m)) we have

Ef,m + (0, δm,n(m)) ⊂ Ef ⊂ Ef,m − (0, δm,n(m)) (33)

and hence

gm(x)− δm,n(m) ≤ g(x) ≤ gm(x) + δm,n(m) for x ∈ [a1, b1]. (34)

Since f ′
n(m) is piecewise linear, one can easily see that gm ∈ C1[a1, b1] and

at points x ∈ Am we have f ′
n(m)(x) = g′m(x) while gm is locally linear at

any x ∈ (a1, b1) \ Am. Indeed, gm is convex and at x ∈ Am the one-
sided derivatives g′m,−(x) and g′m,+(x) should both coincide with f ′

n(m)(x).
Hence at accumulation points of Am the restriction of g′m onto Am is contin-
uous. If (αm, βm) is an interval contiguous to Am then g′m(x) = g′m(αm) =
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f ′
n(m)(αm) = g′m(βm) = f ′

n(m)(βm) should hold for any x ∈ (αm, βm). This

easily implies that gm ∈ C1[a1, b1]. The above argument also shows that if g′m
is non-constant on an interval then Am should have points in this interval.

One can deduce from (29) that

0 ≤ g′m(y)− g′m(x) < Ξn(m) · (y − x) for any x, y ∈ [a1, b1], x < y. (35)

For any m and n we select a sufficiently small ∆m,n > 0 satisfying (41),
(45) and (51), after the ∆m,n’s are fixed we can select δm,n. Suppose x, x ±
∆m,n(m) ∈ [a1, b1]. By (34)

∣∣∣
g(x+∆m,n(m))− g(x)

∆m,n(m)

−
gm(x+∆m,n(m))− gm(x)

∆m,n(m)

∣∣∣ <
2δm,n(m)

∆m,n(m)

. (36)

Since
g(x+∆m,n(m))− g(x)

∆m,n(m)

≥ g′+(x) and

gm(x+∆m,n(m))− gm(x)

∆m,n(m)

≤ g′m(x+∆m,n(m)) < g′m(x) + ∆m,n(m)Ξn(m)

we have by (36)

g′+(x) < g′m(x) + ∆m,n(m)Ξn(m) +
2δm,n(m)

∆m,n(m)

, (37)

and similarly

g′+(x) ≥ g′−(x) > g′m(x)−∆m,n(m)Ξn(m) −
2δm,n(m)

∆m,n(m)

. (38)

If we assume that
δm,n ≤ ∆2

m,n (39)

then (37) and (38) imply that

|g′±(x)− g′m(x)| < 2∆m,n(m)(Ξn(m) + 1) (40)

for any x ∈ [a1 +∆m,n(m), b1 −∆m,n(m)].
Set a2 = a1+

b1−a1
25

and b2 = b1−
b1−a1
25

. By (32), A∩ (a2, b2) 6= ∅. We can
suppose that

∆1,n(1) <
dn(1)
25

≤
b1 − a1
25

(41)

14



we use (40) to obtain that

|g′±(a2)− g′1(a2)| < 2∆1,n(1) · (Ξn(1) + 1) and (42)

|g′±(b2)− g′1(b2)| < 2∆1,n(1) · (Ξn(1) + 1).

Since by (31), f ′′
n(1)(x) = ξ′′n(1) > 0 for x ∈ (a1, b1) the function fn(1) is convex

on (a1, b1), hence fn(1)(x) = g1(x) for all x ∈ [a1, b1] and

g′1(b2) = g′1(a2) + ξ′′n(1)(b2 − a2) ≥ g′1(a2) + ξ′′n(1)
dn(1)
2

. (43)

Therefore, by (42)

g′−(b2)− g′+(a2) > ξ′′n(1)
dn(1)
2

− 4∆1,n(1)(Ξn(1) + 1). (44)

We can suppose that for any m and n

∆m,n <
ξ′′ndn

16(Ξn + 1)
. (45)

Thus (43) and (44) imply that

g′−(b2)− g′+(a2) >
ξ′′n(1)dn(1)

4
. (46)

Suppose

m >
8

ξ′′n(1)dn(1)
. (47)

Then [a2, b2] can be divided into no more than ⌈ 1
dn(m)

⌉ < 2
dn(m)

many intervals

on which f ′
n(m) is linear, hence there is an [a3,m, b3,m] ⊂ [a2, b2] on which f ′

n(m)

is linear and using (46) and (47)

g′−(b3,m)− g′+(a3,m) >
ξ′′n(1)dn(1)

4
·
dn(m)

2
>

dn(m)

m
. (48)

Put

a4,m = min{A ∩ [a3,m, b3,m]} and b4,m = max{A ∩ [a3,m, b3,m]}. (49)
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Since g is linear on [a3,m, a4,m] and on [b4,m, b3,m] when a3,m 6= a4,m, or b3,m 6=
b4,m we have

g′−(a4,m) = g′+(a3,m) and g′+(b4,m) = g′−(b3,m). (50)

We can also suppose that

∆m,n <
dn

8m(Ξn + 1)
. (51)

By (40), (48), (50) and (51)

g′m(b4,m)− g′m(a4,m) >
dn(m)

2m
. (52)

This implies that g′m is non-constant on [a4,m, b4,m]. Hence, as we observed
previously, Am ∩ [a4,m, b4,m] 6= ∅. If we let α4,m = min{[a4,m, b4,m]∩Am} and
β4,m = max{[a4,m, b4,m] ∩Am} then

g′m(a4,m) = g′m(α4,m) = f ′
n(m)(α4,m) < g′m(b4,m) = g′m(β4,m) = f ′

n(m)(β4,m).

Therefore, using piecewise linearity of f ′
n(m) on [a3,m, b3,m] we have

ξ′′n(m)
def
=f ′′

n(m)(x) > 0 for all x ∈ (a3,m, b3,m).

Using (35) we infer

b4,m − a4,m >
dn(m)

2mΞn(m)

. (53)

Observe that from a4,m, b4,m ∈ A it follows that if Ef,m denotes the convex
hull of {(x, y) : x ∈ [a4,m, b4,m], y ≥ f(x)} then with g defined after (31) we
have g(x) = min{y : (x, y) ∈ Ef,m} for x ∈ [a4,m, b4,m]. Now we can apply
Lemma 5 with a = a4,m, b = b4,m, ξ0 = ξn(m), ξ

′′
0 = ξ′′n(m), f0 = fn(m), δ0 =

δm,n(m) and f = f , to infer that if a4,m ≤ x1 < x2 ≤ b4,m and (x1, x2)∩A = ∅
then

x2 − x1 < Θm
def
=4

√
δm,n(m)

ξn(m)
. (54)

Observe that by (30), Θm → 0 as m → ∞. We can suppose that δm,n is
chosen so small that

10
2mΞn
dn <

1

4

√
ξn
δm,n

, that is δm,n <
1

16
10−

4mΞn
dn ξn. (55)
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Select ℓm such that
10−ℓm−1 ≤ Θm ≤ 10−ℓm. (56)

Since Θm → 0 we also have ℓm → ∞ as m → ∞.
By (54), the set A intersects any [(j − 1) · 10−ℓm, j · 10−ℓm] grid interval

which is in [a4,m, b4,m]. The number of these intervals is larger than ((b4,m −
a4,m)/10

−ℓm)− 3.
Hence if ℓm > 2 then by (53), (55) and (56) we obtain that A intersects

in [a4,m, b4,m] at least

(b4,m−a4,m)·10
ℓm−3 ≥

dn(m)

2mΞn(m)

·10ℓm−3 ≥
1

ℓm + 1
10ℓm−3 ≥

1

ℓm + 1
10ℓm−1

many intervals of the form [(j − 1) · 10−ℓm, j · 10−ℓm]. Hence

lim sup
m→∞

logN10,ℓm(A)

ℓm log 10
≥ lim sup

m→∞

log( 1
ℓm+1

10ℓm−1)

ℓm log 10
= 1.

This implies that dimMA = 1.

Theorem 7. Suppose 1 < α ≤ 2. If f ∈ Cα[0, 1] then there is a closed set
A ⊂ [0, 1] such that dimH A = α− 1 and f |A is convex, or concave on A.

Proof. If α = 2 then f ∈ C2[0, 1] and there is an interval A ⊂ [0, 1] such that
f ′′ is not changing its sign.

Next suppose that 1 < α < 2. Denote by Ef the convex hull of the graph
of f , that is, the convex hull of {(x, f(x)) : x ∈ [0, 1]}. Set

ϕ1,f(x) = max{y : (x, y) ∈ Ef} and ϕ2,f(x) = min{y : (x, y) ∈ Ef}.

If ϕ1,f and ϕ2,f both coincide with the line segment connecting (0, f(0)) and
(1, f(1)) then f also coincides with them and hence it is linear and A = [0, 1].

Suppose ϕ2,f is not a line segment connecting (0, f(0)) and (1, f(1)),
(the other case with ϕ1,f is similar). Set A = {x : ϕ2,f(x) = f(x)}. Then
A ∩ (0, 1) 6= ∅. Obviously, ϕ2,f is convex.

One can also easily see that it is Cα. Indeed, since f is differentiable
f ′(x) = ϕ′

2,f(x) holds for x ∈ A. If (c, d) is an interval contiguous to A then
ϕ′
2,f(x) = ϕ′

2,f (c) = ϕ′
2,f(d) = f ′(c) = f ′(d) holds for any x ∈ (c, d).

Suppose y ∈ A.
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If x ∈ A then

|ϕ′
2,f(x)− ϕ′

2,f (y)| = |f ′(x)− f ′(y)| ≤ Lα(f)|x− y|α−1.

If x 6∈ A, but minA < x < maxA then we select c, d ∈ A such that
x ∈ (c, d) and (c, d) ∩A = ∅. Then

|ϕ′
2,f(x)− ϕ′

2,f(y)| = |f ′(c)− f ′(y)| = |f ′(d)− f ′(y)| ≤

Lα(f)min{|c− y|α−1, |d− y|α−1} ≤ Lα(f)|x− y|α−1.

The cases minA > x, or x > maxA are similar and are left to the reader.
Moreover, ϕ2,f is linear on the intervals contiguous to A. Then ϕ′

2,f is a
Cα−1 function which is monotone increasing and is constant on the intervals
contiguous to A and

ϕ′
2,f ([0, 1]) = ϕ′

2,f(A) = [ϕ′
2,f (0), ϕ

′
2,f(1)]

and by Theorem 3 we obtain that dimH A ≥ α− 1.

Theorem 8. Suppose 0 ≤ α < 1 and Gα is a dense Gδ set in Cα
1 [0, 1],

(when α = 0 then in this theorem and in its proof we use C0[0, 1] instead of
Cα

1 [0, 1]). Then there exists a dense Gδ set G1+α in C1+α
1 [0, 1], (in C1[0, 1]

when α = 0) such that for any f ∈ G1+α we have f ′ ∈ Gα.

Proof. Suppose Gα = ∩∞
m=1Gα,m where Gα,m is dense and open in Cα

1 [0, 1].
Set

G1+α,m = {c+

∫ x

0

ϕ(t)dt : c ∈ R, ϕ ∈ Gα,m}.

Then G1+α,m is dense and open in C1+α
1 [0, 1]. Set G1+α = ∩mG1+α,m.

The next lemma is a variant of Proposition 3 of [5].

Lemma 9. If f ∈ C1[0, 1] and f |A is convex (or concave) then there is a set
B such that f ′|B is monotone and

dimH B ≥ dimH A, dimM B ≥ dimMA and dimMB ≥ dimMA. (57)

Proof. By turning to its closure we can assume that A is closed and without
limiting generality we suppose that f |A is convex.

Denote by IA the shortest closed interval containing A. One can extend
the definition of f |A onto IA to obtain a convex function h defined on IA
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which is continuous and affine on intervals contiguous to A and f |A = h|A.
At two-sided accumulation points a of A we have h′(a) = f ′(a) = g(a). At
one-sided accumulation points a of A we have h′

±(a) = f ′(a) = g(a) where
h′
±(a) = h′

+(a), or h′
±(a) = h′

−(a) for right, or left accumulation points of
A, respectively. Since Hausdorff dimension is not changed if we remove a
countable set one could simply denote by B the accumulation points of A
and observe that by convexity of h on IA we have f ′ monotone increasing on
B and dimH B = dimH A.

The Minkowski dimension is more sensitive to alterations on countable
sets. Suppose a is an isolated point of A. If a is not an endpoint of IA then
select c ∈ A and b ∈ A such that b < a < c and (b, c) ∩ A = {a}. By the
Mean Value Theorem there is a− ∈ (b, a) and a+ ∈ (a, c) such that

f ′(a−) =
f(a)− f(b)

a− b
=

h(a)− h(b)

a− b
, and

f ′(a+) =
f(c)− f(a)

c− a
=

h(c)− h(a)

c− a
.

If a is the left-endpoint of IA then we define only a+, if a is the right-endpoint
of IA then we define only a−.

Denote by B the set which contains all accumulation points of A and the
points a+ and a− for isolated points of A. Then the convexity of h on IA

and the above equalities imply that f ′ is monotone increasing on B. The
1/2ℓ grid intervals taken into consideration in N2,ℓ(B) cover all accumulation
points of A and the points a+ and a− corresponding to isolated points of A.
Hence N2,ℓ(A) ≤ 3N2,ℓ(B). This implies that the part of (57) concerning the
Minkowski dimension holds as well. Since B differs from A in a countable set
for this set B the statement about the Hausdorff dimension holds as well.

Theorem 10. Suppose 0 ≤ α < 2. There exists a dense Gδ set G in Cα
1 [0, 1]

(in C[0, 1] when α = 0) such that for any f ∈ G and A ⊂ [0, 1] if f |A is
convex, or concave then

dimH A ≤ dimMA ≤ max{0, α− 1}. (58)

Proof. For 1 ≤ α < 2 apply Theorems 2, 8 and Lemma 9.
Suppose 0 < α < 1. Our argument will be a variant of the proof of

Theorem 2. We prove the existence of a Gδ set G in Cα
1 [0, 1] such that for

any f ∈ G and A ⊂ [0, 1] such that f |A is convex we have dimM A = 0.
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The concave case is similar (or take −1 times G), and the intersection of two
dense Gδ sets is again dense Gδ. This implies the claim of the theorem for
the case 0 < α < 1. The case α = 0, like in the case of Theorem 3 needs a
little adjustment, since we work in C[0, 1] in this case.

We select a set {fn}∞n=1 of C∞ functions which is dense in Cα
1 [0, 1], (in

C[0, 1] when α = 0) and choose Ξn satisfying (3), (4), (5) and

|f ′′
n | < Ξn for any x ∈ [0, 1]. (59)

(Assumption (5) is not needed when α = 0.)
We put

Mm,n = 2Ξn(Ξn + 10)(m+ n) and M ′
m,n =

⌊ log(Mm,n)

log 2

⌋
. (60)

We define again a function ϕm,n periodic by 2−M ′

m,n . We suppose that (8)
holds and this time we have

ϕm,n(2
−M ′

m,n − 2−Mm,n) =
−1

(m+ n)Ξn

. (61)

We suppose again that ϕm,n is linear on [0, 2−M ′

m,n−2−Mm,n ] and on [2−M ′

m,n−
2−Mm,n, 2−M ′

m,n]. Hence for x ∈ (0, 2−M ′

m,n − 2−Mm,n) + j · 2−M ′

m,n, j ∈ Z

ϕ′
m,n(x) =

−1

Ξn(m+ n)(2−M ′

m,n − 2−Mm,n)
<

−2M
′

m,n

Ξn(m+ n)
< −(Ξn + 10). (62)

Set

fm,n(x) = fn(x) +

∫ x

0

ϕm,n(t)dt. (63)

(When α = 0 then it is clear that fm,n ∈ C[0, 1].) Next for 0 < α < 1 we
show that fm,n ∈ Cα

1 [0, 1] ∩ C1[0, 1]. Indeed, also using (5)

|fm,n(x)− fm,n(y)|

|x− y|α
≤

|fn(x)− fn(y)|+ |
∫ y

x
ϕm,n(t)dt|

|x− y|α
≤

|fn(x)− fn(y)|+
1

(m+n)Ξn
|x− y|

|x− y|α
≤

Lα(fn)|x− y|α + (1−Lα(fn))|x− y|

|x− y|α
≤ 1.

From (59) and (62) it follows that

f ′′
m,n(x) < −10 (64)
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for x ∈ (0, 2−M ′

m,n − 2−Mm,n) + j · 2−M ′

m,n, j = 0, ..., 2−M ′

m,n − 1.
Put

δm,n = 2−2Mm,n , Gm =

∞⋃

n=1

Bα(fm,n, δm,n) and G =

∞⋂

m=1

Gm. (65)

Then one can easily see that Gm is dense in Cα
1 [0, 1] (in C[0, 1] when

α = 0) and G is Gδ.
Suppose f ∈ G and A ⊂ [0, 1] is such that f |A is convex. Then for any m

there exists n(m) such that

f ∈ Bα(fm,n(m), δm,n(m)) (66)

Suppose that for a j we have p1 < p2 < p3, p1, p2, p3 ∈ A ∩ (0, 2
−M ′

m,n(m) −

2−Mm,n(m)) + j · 2−M ′

m,n(m) ,

p2 − p1 ≥ 2−Mm,n(m) , and p3 − p2 ≥ 2−Mm,n(m). (67)

Denote by L(x) the tangent line of fm,n(m) at the point (p2, fm,n(m)(p2)). By
(64) and (65) we have

fm,n(m)(p1) < L(p1)− 10 · (p2 − p1)
2 < (68)

L(p1)− 10 · 2−2Mm,n(m) = L(p1)− 10 · δm,n(m).

Similarly,
fm,n(m)(p3) < L(p3)− 10 · δm,n(m). (69)

Denote by L(x) the line parallel to L(x), but passing through (p2, f(p2)).
Since |f(p2)− fm,n(m)(p2)| < δm,n(m) we have |L(x)−L(x)| < δm,n(m) for any
x. Since |fm,n(m)(pi) − f(pi)| < δm,n(m) for i = 1, 3, we infer from (68) and
(69) that

f(p1) < L(p1) and f(p3) < L(p3). (70)

Thus f is concave on {p1, p2, p3}. Hence, for any j one can cover A ∩

([0, 2
−M ′

m,n(m) − 2−Mm,n(m) ] + j · 2−M ′

m,n(m)), by less than 6 intervals of the

form [(j′ − 1) · 2−Mm,n(m) , j′ · 2−Mm,n(m) ]. This implies that A∩ [0, 2−M ′

m,n(m) ] +

j · 2−M ′

m,n(m) can be covered by less than 7 intervals of the form [(j′ − 1) ·
2−Mm,n(m) , j′ · 2−Mm,n(m) ]. Therefore, by (60)

N2,Mm,n(m)
(A) < 7 · 2M

′

m,n(m) ≤ 7 ·Mm,n(m). (71)
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Which implies that

lim inf
m→∞

logN2,Mm,n(m)
(A)

Mm,n(m) log 2
= 0

and hence dimMA = 0.

Theorem 4 and Lemma 9 imply that for 3
2
≤ α < 1 if f(t) =

∫ t

0
B(x)dx,

where B is a fractional Brownian motion of Hurst index α then almost surely
for any A with dimM A > α − 1 the restriction f |A is not convex and f ∈
Cα−[0, 1].

The case 1 < α < 3
2
is more interesting. The following theorem is true:

Theorem 11. Let 1 ≤ α < 2. There exists f ∈ Cα
1 [0, 1] such that for any

A ⊂ [0, 1] with dimM A > α− 1, f |A neither convex, nor concave.

The proof of this theorem is quite technical and for the cases 1 < α < 2
is the subject of another paper [5].
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