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In�uene of the isospin and hyperharge hemial potentials on the loation of the

CEP in the µB − T phase diagram of the SU(3)L × SU(3)R hiral quark model
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We investigate the in�uene of the asymmetri quark matter (ρu 6= ρd 6= ρs) on the mass of the

quasipartiles and the phase diagram of the hiral quark model parametrized at one-loop level of the

renormalized theory, using the optimized perturbation theory for the resummation of the perturba-

tive series. The e�et of various hemial potentials introdued in the grand anonial ensemble is

investigated with the method of relativisti many-body theory. The temperature dependene of the

topologial suseptibility is estimated with the help of the Witten�Veneziano mass formula.

PACS numbers: 11.10.Wx, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

The study of a system of partiles at �nite density and temperature is phenomenologially interesting beause in

heavy ion ollision experiments the initial state is suh that the hemial potentials µB, µI , µY (onjugate to the baryon

harge, third omponent of the isospin and hyperharge, respetively) are non vanishing, although the last two are muh

smaller than the �rst one. Assuming thermal equilibrium, thermal models show that the strangeness hemial potential

in entral Si+Au ollisions at the Brookhaven AGS experiment was 20-25% of the baryoni hemial potential for

whih the best �t gives µB = 540 MeV [1℄. For entral Pb+Pb ollisions at CERN SPS experiments the value of the

strangeness hemial potential was ∼ 25 − 30% and that of the isospin hemial potential ∼ 2 − 5% of the value of

µB estimated to be around 233 − 266 MeV [2, 3℄. The Compressed Baryoni Matter (CBM) experiment at FAIR in

Darmstadt will explore regions of the QCD phase diagram with moderate temperature up to suh high values of the

baryoni density whih are omparable with those in the ore of neutron stars [4℄.

In many-body theory hemial potential is introdued to any onserved harge. In heavy ion ollision experiments

the baryon number, isospin and hyperharge an be onsidered onserved due to the short time elapsed between

the formation of the �reball and its freeze-out, during whih only the strong interations play important role, the

eletroweak interations being negligible. It is expeted that in the very early stage of the �reball's evolution strangeness

is abundantly produed in the deon�ned phase through gluon-gluon fusion [5℄, while in the hadroni phase in the viinity

of the transition multi-mesoni reations will play an important role in the fast redistribution of strange quarks [6℄.

The in�uene of the isospin hemial potential on the hiral phase transition is urrently atively investigated, beause

this e�et an in priniple be tested experimentally. As notied in [7℄, using di�erent isotopes of an element in heavy

ion ollision experiments will vary µI keeping µB onstant. Moreover, the system with real µI represents no extra

di�ulty in lattie �eld theory ompared to the introdution of µB. For two �avors the simulations at µB = 0 and

µI 6= 0 is not even a�eted by the sign problem [8℄. For µI 6= 0 a generi result oming from e�etive models of

the strongly interating matter without the U(1)A anomaly appeared to be the splitting in the µB − T plane of the

�rst order transition line into two transition lines. This e�et was observed in random matrix model [9℄, NJL model

[10℄, strong oupling limit of the staggered lattie QCD [11℄, all with two �avors and in the three �avors ladder QCD

[12℄. This would imply the existene of not only the two phases having 〈ūu〉 6= 0, 〈d̄d〉 6= 0 and 〈ūu〉 = 〈d̄d〉 = 0,
respetively, but also of a phase with 〈ūu〉 = 0 and 〈d̄d〉 6= 0. It was shown in [13, 14℄ that the struture with two

transition lines and ritial end points eases to exist for a su�iently strong U(1)A breaking, above whih the two

strongly oupled ondensates vanish simultaneously. In a hadron resonane gas model it was found that at �xed baryon

hemial potential the pseudoritial temperature of the transition between the hadroni and the quark-gluon plasma

phases is lowered as either the isospin or the strangeness hemial potential is inreased [15℄.

Beause of their phenomenologial impliations, it is natural to study to what extent these results are present in

another low energy e�etive model, the hiral quark model, widely used for studying the hiral behavior of strongly

interating matter. In the past few years we have investigated the thermodynamis of this model for two and three

quark �avors at µB = 0 and µB 6= 0, while leaving µI = µY = 0 [16�19℄. As a ontinuation of these previous studies,

in this paper we onsider the in�uene of the hemial potentials on the hiral phase transition up to suh high values
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of the isospin hemial potential above whih the ondensation of pseudosalar mesons ours. The pion and kaon

ondensation phase, whih is beyond the sope of our present investigation, was studied both with lattie methods and

using e�etive theories [20�26℄.

The paper is organized as follows. In setion II we present the model, its one-loop parametrization and the intro-

dution of the hemial potentials. The variation of the loation of the ritial end point in presene of µI and µY is

studied in setion III. There we investigate also the temperature and density dependene of the one-loop pole masses

of the pseudosalar mesons. We onlude in setion IV.

II. THE SU(3)L × SU(3)R SYMMETRIC CHIRAL QUARK MODEL

The Lagrangian of the model ontaining expliit symmetry breaking terms is

L =
1

2
Tr (∂µM

†∂µM +m2
0M

†M)− f1
(

Tr (M †M)
)2 − f2Tr (M

†M)2 − g
(

det(M) + det(M †)
)

+ ǫ0σ0 + ǫ3σ + ǫ8σ8

+ψ̄ (i /∂ − gFM5)ψ. (1)

The onstituent quarks are ontained in the �eld ψ: ψ̄ = (ū, d̄, s̄). The two 3 × 3 omplex matries are de�ned in

terms of the salar σi and pseudosalar πi �elds as M = 1√
2

∑8
i=0(σi + iπi)λi and M5 = 1

2

∑8
i=0(σi + iγ5πi)λi, with

λi : i = 1 . . . 8 the Gell�Mann matries and λ0 :=
√

2
31. The �elds with well de�ned quantum numbers are obtained

with a blok-diagonal transformation fα = Tαifi, f ∈ {σ, π}, where T = diag(1, τ, 1, τ, τ, 1) and τ = 1√
2

(

1 −i
1 i

)

. As

α goes from 0 to 8, the omponents of the salar and pseudosalar �elds go trough σ0, a
+
0 , a

−
0 , σ3, κ

+, κ−, κ0, κ̄0, σ8
and π0, π

+, π−, π3, K+,K−,K0, K̄0, π8, respetively. The physial �elds π0
(neutral pion), η and η′ mesons in the

pseudosalar setor and a00 (neutral a0), σ and f0 in the salar setor are obtained as linear ombinations of the

orresponding �elds in the two mixing 0,3,8 setors.

In this paper we investigate the pattern of symmetry breaking realized in nature, with the SU(3)A×U(1)A×SU(3)V
symmetry ompletely broken, that is the isospin SU(2)V is also broken. In addition to the spontaneous symmetry

breaking, expliit breaking is also onsidered with the introdution of external �elds for all the diagonal generators of

the salar setor. This results in having three non-vanishing ondensates in the broken symmetry phase: vδ = 〈σδ〉, for
δ = 0, 3, 8. The ondensates determines the tree-level salar and pseudosalar masses:

m2
S,αβ = m2δαβ − 6G̃αβγvγ + 4F̃αβγδvγvδ,

m2
P,αβ = m2δαβ + 6G̃αβγvγ + 4H̃αβ,γδvγvδ.

(2)

The tensors appearing above arise after the evaluation of the trae in (1) and the transformation of the �elds to the

basis with good quantum numbers. The onnetion between these oupling tensors and the original ones appearing in

(1) whih an be found in [27, 28℄ is given by:

G̃αβγ =

8
∑

i,j,k=0

GijkT
−1
iα T

−1
jβ T

−1
kγ , H̃αβ,γδ =

8
∑

i,j,k,l=0

Hij,klT
−1
iα T

−1
jβ T

−1
kγ T

−1
lγ , F̃αβγδ =

8
∑

i,j,k,l=0

FijklT
−1
iα T

−1
jβ T

−1
kγ T

−1
lγ .

(3)

The transformations preserve the symmetry struture of the tensors, that is G̃αβγ and F̃αβγδ are ompletely symmetri

and H̃αβ,γδ is symmetri upon the interhange of two indies whih are on the same side of the omma.

The tree-level mass square matries are not diagonal in the 0, 3, 8 subspae, but sine they are real and symmetri

diagonalization is ahieved with an orthogonal transformation. The tree-level orthogonal matries in the salar and

pseudosalar setors are denoted with OS and OP , respetively. Denoting the eigenvalues of the pseudosalar and the

salar 3 × 3 mass matries in the 0, 3, 8 setor with λP,{min,mid,max} and λS,{min,mid,max} the tree-level masses of the

mesons are as follows

m2
π+ = m2

π− = m2
P,12, m2

a+
0

= m2
a−
0

= m2
S,12,

m2
π0 = λP,min

, m2
a0
0

= λS,mid

,

m2
K+ = m2

K− = m2
P,45, m2

κ+ = m2
κ− = m2

S,45,

m2
K0 = m2

K̄0 = m2
P,67, m2

κ0 = m2
κ̄0 = m2

S,67,

m2
η = λP,mid

, m2
σ = λS,min

,

m2
η′ = λP,max

, m2
f0

= λS,max

.

(4)

Note, that some of the tree-level masses of salars and pseudosalars oinide. As we will see, the introdution of
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α tγσ,α α tγπ,α
a−0 3G̃γ21 − 4H̃γ21δvδ π− 3G̃γ21 − 4F̃γ21δvδ
a+0 3G̃γ12 − 4H̃γ12δvδ π+ 3G̃γ12 − 4F̃γ12δvδ
κ− 3G̃γ54 − 4H̃γ54δvδ K− 3G̃γ54 − 4F̃γ54δvδ
κ+ 3G̃γ45 − 4H̃γ45δvδ K+ 3G̃γ45 − 4F̃γ45δvδ
κ̄0 3G̃γ76 − 4H̃γ76δvδ K̄0 3G̃γ76 − 4F̃γ76δvδ
κ0 3G̃γ67 − 4H̃γ67δvδ K0 3G̃γ67 − 4F̃γ67δvδ

.

TABLE I: The tγf,α oe�ients appearing in the equations of state (6), (7), (8). The summation index δ goes over 0, 3, 8.

isospin and hyperharge hemial potentials distinguish between the partiles and as a result all the one-loop pole

masses will be di�erent for µI , µY 6= 0.
The tree-level fermion masses are:

Mu =
gF√
12

(
√
2v0 +

√
3v3 + v8), Md =

gF√
12

(
√
2v0 −

√
3v3 + v8), Ms =

gF√
12

(
√
2v0 − 2v8). (5)

The evolution of the ondensates with the temperature or/and the hemial potentials is determined by the three

equations of state

0 = 〈 ∂L
∂σ0

〉 = m2v0 −
c

2
√
6
(2v20 − v23 − v28) +

1

3
(3g1 + g2)v

3
0 + (g1 + g2)(v

2
3 + v28)v0 +

g2

3
√
2
(3v23 − v28)v8 − ε0

−
∑

f∈{σ,π}
α=1,2,4...7

t0f,α〈f †
αfα〉 − 3

∑

γ∈{0,3,8}

[

(

OTSS0OS
)

γγ
〈σγσγ〉+

(

OTPP0OP
)

γγ
〈πγπγ〉

]

+
gF√
6
Nc(〈ūu〉+ 〈d̄d〉+ 〈s̄s〉), (6)

0 = 〈 ∂L
∂σ3

〉 =
(

m2 − c√
3
v8 +

c√
6
v0 + (g1 +

g2
2
)(v23 + v28) + (g1 + g2)v

2
0 +

√
2g2v0v8

)

v3 − ǫ3

−
∑

f∈{σ,π}
α=1,2,4...7

t3f,α〈f †
αfα〉 − 3

∑

γ∈{0,3,8}

[

(

OTSS3OS
)

γγ
〈σγσγ〉+

(

OTPP3OP
)

γγ
〈πγπγ〉

]

+
gF
2
Nc(〈ūu〉 − 〈d̄d〉), (7)

0 = 〈 ∂L
∂σ8

〉 = m2v8 +
c√
6
v0v8 +

c

2
√
3
(v28 − v23) + (g1 +

g2
2
)(v28 + v23)v8 +

g2√
2
(v23 − v28)v0 + (g1 + g2)v

2
0v8 − ε8

−
∑

f∈{σ,π}
α=1,2,4...7

t8f,α〈f †
αfα〉 − 3

∑

γ∈{0,3,8}

[

(

OTSS8OS
)

γγ
〈σγσγ〉+

(

OTPP8OP
)

γγ
〈πγπγ〉

]

+
gF

2
√
3
Nc(〈ūu〉+ 〈d̄d〉 − 2〈s̄s〉), (8)

where in the mixing setor σγ stands for σ, a00, f0 and similarly πγ denotes π0, η, η′ as γ = 0, 3, 8, respetively. f †
α

denotes the antipartile of fα, that is e.g. for f = σ and α = 1 one has σ1 = a+0 and σ†
1 = a−0 . In this notation

〈f+
α fα〉 = T βB(mfα), 〈q̄q〉 = −4mqT

β
F (mq), where T

β
B(mfα) and T βF (mq) stands for the bosoni, and the fermioni

tadpole integrals, respetively. These integrals are given in Appendix B of [19℄. The oe�ients tγf,α are listed in

Table I. In the mixing setor, that is for γ = 0, 3, 8, the 3× 3 matries read:

Sγ = G̃0 −
4

3
v0F̃γ0 −

4

3
v3F̃γ3 −

4

3
v8F̃γ8,

Pγ = G̃0 +
4

3
v0H̃γ0 +

4

3
v3H̃γ3 +

4

3
v8H̃γ8,

(9)

with the de�nition: (G̃γ)αβ ≡ G̃γαβ , (F̃γδ)αβ ≡ F̃αβγδ, and (H̃γδ)αβ ≡ H̃αβ,γδ. All the indies run through 0, 3, or 8.

A. One-loop parametrization of the model at zero temperature and density

One has some freedom in hoosing the set of equations whih determines the 13 parameters of the model, namely

m2
0, f1, f2, g, gF , v0, v3, v8, ǫ0, ǫ3, ǫ8 and lf , lb. These latter two parameters are the fermioni and bosoni renormalization

sales. For the parametrization we follow the method desribed in [19℄ where the renormalization of the model was

also disussed. The only di�erene in the present ase is the appearane of v3 and ǫ3. Sine at zero temperature
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−iΣπ+=
∑

f∈(σ,π)
α=0...8

�

fα

π+ π+

+
∑

δ=0,3,8

�

π+

σδ

π+

π+

+

�

π+
κ̄0

K+

π+

+

�

π+
κ+

K̄0

π+

+
∑

δ=0,3,8

�

π+

a
+

0

πδ

π+

+

�

π+
u

d̄

π+

−iΣ
γγ′

0,3,8=
∑

f∈(σ,π)
α=0...8

�

fα

πγ πγ

+
∑

δ=0,3,8

�

πγ

a
−

0

π+

πγ′

+

	

πγ

a
+

0

π−

πγ′

+




πγ
κ−

K+

πγ′

+

�

πγ
κ+

K−

πγ′

+

�

πγ
κ̄0

K0

πγ′

+



πγ
κ0

K̄0

πγ′

+
∑

δ,δ′=0,3,8

Æ

πγ

σδ

πδ′

πγ′

+
∑

q=u,d,s

�

πγ

q

q̄

πγ′

−iΣK+=
∑

f∈(σ,π)
α=0...8

�

fα

K+ K+

+

�

K+
κ0

π+

K+

+
∑

δ=0,3,8

�

K+
σδ

K+

K+

+

�

K+

a
+

0

K0

K+

+
∑

δ=0,3,8

�

K+
κ+

πδ

K+

+

�

K+
u

s̄

K+

FIG. 1: Diagrammati representation of the one-loop pseudosalar self-energies used for the parametrization. The label assoiated

to the line denotes the propagating partile.

and densities the e�et of isospin breaking is small we use the same values for lf and lb as in [19℄ where these were

determined by minimizing the deviation of the predited mass spetrum from the physial one. The external �elds are

determined from the equations of state (6), (7), (8) one the remaining 8 parameters are known.

In order to avoid the appearane of negative propagator mass squares in the one-loop �nite temperature alulations

in the broken symmetry phase we use the Optimized Perturbation Theory (OPT) of Ref. [29℄. This amounts to replae

the mass parameter −m2
0 in the Lagrangian with an e�etive, eventually temperature-dependent, mass parameter m2

:

Lmass =
1

2
m2

TrM †M − 1

2
(m2

0 +m2)TrM †M ≡ 1

2
m2

TrM †M − 1

2
∆m2

TrM †M. (10)

The ounterterm ∆m2
is taken into aount �rst at one-loop level, while m2

will replae m2
0 in all the tree-level masses

and is determined using the riterion of fastest apparent onvergene (FAC). We have hosen to implement this riterion

by requiring that for π+
the one-loop mass alulated at vanishing external momentum stays equal to the tree-level mass

(Mπ+ = mπ+
). We have heked that imposing this equation for the neutral pion rather than the harged one results in

no signi�ant hanges in the parameters. We note here that we were fored to use the de�nition M2
π+ = −iG−1(p = 0)

instead of de�ning the one-loop mass as the pole of the propagator beause in this latter ase the solution to the gap

equation, to be presented below, eases to exist above a ertain temperature, in aordane with previous investigations

using the OPT [18, 29℄.

As desribed in details in [19℄, with the appliation of FAC one an eliminate the e�etive mass parameter m2
in

favor of the tree-level pion mass m2
π+ in all the other tree-level masses of the propagators used to alulate the one-loop

self-energies:

m2 = m2
π+ +

c√
6
v0 −

c√
3
v8 −

√
2

3
g2v0v8 −

(

g1 +
g2
3

)

v20 −
(

g1 +
3g2
2

)

v23 −
(

g1 +
g2
6

)

v28 . (11)

In this way one obtains the following gap equation

m2
π+ = −m2

0−
c√
6
v0 +

c√
3
v8 +

√
2

3
g2v0v8 +

(

g1 +
g2
3

)

v20 +

(

g1 +
3g2
2

)

v23 +
(

g1 +
g2
6

)

v28 +ReΣπ+(p2 = 0,m2
i (m

2
π+)),

(12)

where Σπ+
denotes the self-energy of π+

shown diagrammatially in Fig. 1. Equation (12) is the �rst from a set of four

oupled non-linear equations whih determines m2
0, f1, f2, g, if one knows gF , v0, v3, v8. Two further equations of the

set are given by the one-loop equation for the η and K+
pole masses

M2
η = −m2

0 +
[

ÕTP

(

M2
tree

+ ReΣ0,3,8(p
2 =M2

η )
)

ÕP

]

22
, (13)
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M2
K+ = −m2

0 −
c√
6
v0 +

c

2
v3 −

c

2
√
3
v8 +

g2√
6
v0v3 −

g2

3
√
2
v0v8 +

2g2√
3
v3v8

+
(

g1 +
g2
3

)

v20 +
(

g1 +
g2
2

)

v23 +

(

g1 +
7g2
6

)

v28 + ReΣK+(p2 =M2
K+), (14)

where M2
tree

is the tree-level mass squared matrix of the mixing setor without the mass parameter m2
, the orthogonal

matrix ÕP diagonalizes the expression in the round braket, and Σ0,3,8 is the self-energy matrix of the pseudosalar

mixing setor. This matrix is determined numerially. The last equation in the set is the FAC riterion for the kaon,

whih requires ReΣK+(p2 =M2
K+)−∆m2 = 0.

The parameters gF , v0, v3, v8 are determined as follows. A linear ombination of v0 and v8 is determined by the

tree-level PCAC relation for the pion deay onstant (see Appendix of [28℄)

fπ := d11ava =

√

2

3
v0 +

1√
3
v8. (15)

One an see from (5) that the same linear ombination enters the expression of the average mass of the two light

onstituent quarks, so that the Yukawa oupling is given by gF = (Mu +Md)/fπ. Another linear ombination of v0
and v8 appears in the expression of Ms in (5) whih together with the PCAC relation (15) determines v0 and v8:

v0 =

√

2

3
fπ

(

1 +
Ms

Mu +Md

)

, v8 =
1√
3
fπ

(

1− 2Ms

Mu +Md

)

. (16)

The remaining parameter, v3 is obtained by requiring that the di�erene between the tree-level masses of π+
and π0

equals the physial value (∆mπ):

−
[

OTPM2
tree

OP
]

11
= (∆mπ)

2 . (17)

This equation has two roots for v3, a negative and a positive one. The positive root would give mK0 < mK+
for the

kaon masses. Sine the opposite relation holds in nature, we hoose the negative solution whih is the physially valid

one.

We use the following values for the physial quantities: mπ+ = 139.57MeV,∆mπ = 4.594MeV,MK+ = 493.677MeV,

Mη = 547.8 MeV, fπ = 93 MeV, (Mu + Md)/2 = 313 MeV, Ms = 530 MeV and in addition lb = 520 MeV and

lf = 1210 MeV for the two renormalization sales.

B. Introdution of the hemial potentials

The introdution of the hemial potential for a system with a set of onserved harge operators is reviewed below.

For vanishing external �elds the Lagrangian (1) is invariant under the following global vetor transformations

M → e−iαGGMeiαGG =M − iαG[G,M ] +O(α2
G),

ψ → e−iαGGψ = ψ − iαGψ +O(α2
G),

(18)

where G denotes the representation of the baryon (B), third omponent of the isospin (I) and hyperharge (Y) operators

whih are related to the diagonal generators as B =
√

3
2λ0, I = 1

2λ3 and Y = 1√
3
λ8. The oe�ients in front of the

diagonal matries are hosen suh as to obtain the right quantum numbers when applying the operators on the quark

�elds. The onsequene of this symmetry is the existene of onserved Noether vetor-urrents

JGµ = − δL

δ(∂µM)ij
i[G,M ]ji −

δL

δ(∂µM †)ij
i[G,M †]ji −

δL

δ(∂µψi)
iGijψj . (19)

The onserved harge is de�ned as QG =
∫

d3xJG0 (x). In terms of partile number operators the onserved baryon,

isospin and hyperharges read as

QB =
1

3
(Nu +Nd +Ns −Nū −Nd̄ −Ns̄), (20)

QI =
1

2
(Nu −Nū −Nd +Nd̄ +Nκ+ −Nκ− +Nκ̄0 −Nκ0 +NK+ −NK− +NK̄0 −NK0)

+Na+
0

−Na−
0

+Nπ+ −Nπ− , (21)

QY =
1

3
(Nu −Nū +Nd −Nd̄ − 2Ns + 2Ns̄) +Nκ+ −Nκ− +Nκ0 −Nκ̄0 +NK+ −NK− +NK0 −NK̄0 . (22)
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Note the di�erent sign of NK0 , NK̄0 , Nκ0 , Nκ̄0
in QI relative to QY . This is beause the partiles K0, K̄0, κ0, κ̄0 fall into

di�erent doublets from the point of view of the I3 and Y quantum numbers: K0,K+
and K−, K̄0

form a I3 doublet

while K0,K−
and K+, K̄0

form a Y doublet (likewise for salars).

The statistial density matrix of the system is given by

ρ = exp[−β(H − µGQ
G)], (23)

with G going over B, I, Y in the summation over this index. Using (20), (21), (22) one an rewrite (23) by regrouping

the terms in the exponent aording to di�erent number operators and obtain ρ = exp[−β(H − µiNi)], where i goes
over all the non-singlet partiles to whih the following hemial potentials were introdued in terms of µB , µI , µY :

µu = −µū =
1

3
µB +

1

2
µI +

1

3
µY ,

µd = −µd̄ =
1

3
µB − 1

2
µI +

1

3
µY ,

µs = −µs̄ =
1

3
µB − 2

3
µY ,

µa+
0

= µπ+ = −µa−
0

= −µπ− = µI ,

µκ+ = µK+ = −µκ− = −µK− =
1

2
µI + µY ,

µκ0 = µK0 = −µκ̄0 = −µK̄0 = −1

2
µI + µY .

(24)

The singlet partiles (π0, η, η′, a00, σ, and f0) do not ontribute to the onserved harges and in onsequene no

hemial potential is introdued for them. By looking at (24) one an see that di�erent members of a given multiplet

(e.g. π+
and π−

) aquire a di�erent ombination of the baryon, isospin and hyperharge hemial potentials, whih

means that the hemial potentials remove ompletely the degeneray between the members of the multiplets whih we

observe in the vauum, both at tree and one-loop level. We have to keep trak of the e�et of 21 individually di�erent

partiles, whih makes things more ompliated than in previous studies of this model.

The e�et of the hemial potentials is taken into aount through the propagators whih are introdued using

the de�nition familiar from the theory of many-body systems. The relativisti formalism was developed in [30℄ and

is reviewed in Appendix A, where the alulation of the self-energy using the �nite-density Green's funtion is also

skethed.

In order to see expliitly that the partile and its antipartile re�et di�erently the presene of a �nite density medium

we give here the tree-level propagators of K+
and K−

:

GK+(k) =
i

2Ek

[

1 + nK+(Ek)

k0 − Ek + iǫ
− nK+(Ek)

k0 − Ek − iǫ
− 1 + nK−(Ek)

k0 + Ek − iǫ
+

nK−(Ek)

k0 + Ek + iǫ

]

,

GK−(k) =
i

2Ek

[

1 + nK−(Ek)

k0 − Ek + iǫ
− nK−(Ek)

k0 − Ek − iǫ
− 1 + nK+(Ek)

k0 + Ek − iǫ
+

nK+(Ek)

k0 + Ek + iǫ

]

,

(25)

where nK±(Ep) =
1

eβ(Ep−µK± ) − 1
and Ep =

√

p2 +m2
K± . The interpretation of the terms on the right hand side of

(25) is as follows (from left to right): addition of a partile, removal of a partile, addition of an antipartile, removal

of an antipartile. Note, that in the propagator of the K+
the partile is K+

and the antipartile is K−
, while in the

propagator of the K−
the partile is K−

and the antipartile is K+
.

For all the other salar and pseudosalar �elds the propagators an be written analogously using the hemial

potentials de�ned in (24). For the fermions the propagators are given in Appendix A.

III. THERMODYNAMICS OF THE MODEL AT FINITE DENSITY

A. The in�uene of µI and µY on the CEP

With the parameters �xed in the previous setion, we an solve the model at �nite temperature and density using

the formalism desribed in Setion II B and in Appendix A. One alulates the 1-loop integrals entering the �nite

temperature and density version of the equations whih determine the state of the system: the three equations of

state (6), (7), (8) and the gap-equation for mπ+
(12). The relevant integrals are given in Appendix A. An observed

smooth variation of the order parameters with the intensive parameter (T , or µB,I,Y ) indiates analyti rossover type
transition. A �rst order phase transition is signaled by the multivaluedness of either one of the three ondensates in a

given range of variation of the intensive parameter. The point where by varying some parameter(s) the nature of the
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FIG. 2: The generi temperature dependene of v3 for a rossover transition: on the l.h.s. µB hanges and µI = 70 MeV, on the

r.h.s. µI hanges while µB = 500 MeV. On both panels the referene urve (ref. urve) refers to the ase µB = µI = µY = 0.

phase transition hanges from rossover to �rst order one orresponds to a seond order phase transition.

The ritial end point (CEP) is a seond order phase transition point on the µB−T plane where by inreasing µB the

phase transition as a funtion of T hanges from rossover to �rst order (µI and µY are kept onstant). At vanishing µI
and µY the CEP is loated in the point (T, µB)CEP = (63.08, 960.8)MeV. The pseudo-ritial temperature at vanishing

hemial potentials is Tc(µB,I,Y = 0) = 157.98 MeV.

Here it is important to note that, with the expliit isospin breaking taken into aount, these values have signi�antly

hanged with respet to those obtained without isospin breaking at all (neither expliit nor spontaneous): (T, µB)CEP =
(74.83, 895.38) MeV and Tc(µB,I,Y = 0) = 154.84 MeV [19℄. At �rst sight this is surprising sine we have seen that at

T = µ = 0 the e�et of the expliit symmetry breaking is minimal. The di�erene is due to the behavior of the v3 with
the temperature. Without expliit isospin symmetry breaking v3 is identially zero for µI = 0. When ǫ3 6= 0 one an see
by looking at the referene urve of Fig. 2 that with inreasing temperature v3 is dereasing signi�antly ompared to its

T = 0 value and reahes a minimum around the phase transition point where the in�uene of v3 beomes the strongest.

The l.h.s. panel of Fig. 2 shows that the baryohemial potential magni�es this e�et, implying that approahing the

CEP the in�uene of v3 is even stronger. Aording to our onjeture made in [19℄ that a smoother rossover at µB = 0
will require a larger value of µB to turn the phase-transition in T into a �rst order one, implying a larger value of

µB,CEP, we an expet that the larger value of µB,CEP in the ase of the expliit isospin breaking ompared to the ase

in whih the isospin breaking is absent orresponds to a higher value of the width of the hiral suseptibility ∆Tc(xχ).
Indeed, by looking at Fig. 3 one an see, that in the ase with expliit isospin symmetry breaking ∆Tc(xχ) inreased
by ∼ 20%, approahing the value of ∆Tc(χψ̄ψ) = 28(5)(1) MeV at at µI = 0. This value was obtained on the lattie

in Ref. [31℄ after the extrapolation in the ontinuum limit was done, though in this lattie investigation the e�et of

 15

 16
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 19

 20

 21

 22

 23

 0  10  20  30  40  50  60  70

∆T
c(

xχ
)[

M
eV

]

µI[MeV]

ε3≠ 0

ε3= 0

FIG. 3: The width of the peak of the hiral suseptibility ∆Tc(xχ) as funtion of the isospin hemial potential with (without)

expliit symmetry breaking external �eld ǫ3 6= 0 (ǫ3 = 0). In the hiral quark model χ = dx/dǫx where x =
p

2/3(v0 − v8) is the

non-strange ondensate, ǫx =
p

2/3(ǫ0 − ǫ8) and as shown in [19℄ χψ̄ψ ∼ xχ.
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FIG. 4: The surfaes swept by the oordinates T
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and µB,CEP of the ritial end point as funtion of µI and µY .

isospin breaking was not taken into aount. It would be interesting to see whether similar e�et is produed on lattie

when mu 6= md.

Varying µI and µY the loation of the CEP in the µB − T plane hanges. Fig. 4 shows the surfaes swept by the

two oordinates of the CEP as funtions of µI and µY . One an see that µY has pratially no in�uene on T
CEP

,

whih dereases very slowly, while with its inrease µB,CEP signi�antly dereases. The inrease of µI pushes the CEP
towards higher values of µB,CEP and lower values of T

CEP

. This behavior is in onordane to what was previously

written on the in�uene of v3 on the CEP at µI = 0, sine by looking at the left hand side of Fig. 2 one sees that at

�nite µI the isospin ondensate v3 inreases even more with the temperature.

One an gain intuition on the way the hemial potentials µI and µY in�uene the oordinates of the CEP by

attempting a simple interpretation of our results in terms of generalized Clausius-Clapeyron equations applied to our

system. The partile number and entropy densities of the two oexisting phases will be determined assuming an

ideal gas of the quasipartile degrees of freedom, whih di�er only in their respetive masses on the two sides of the

phase oexisting urves. The Clausius-Clapeyron equation suessfully desribe the slopes of phase oexistene urves

of strong matter as funtions of various hemial potentials and quark masses [11, 32, 33℄. They are derived from

the Gibbs-Duhem relation whih onnet the variation of the intensive thermodynamial parameters of a marosopi

system:

dp = sdT + nBdµB + nIdµI + nY dµY . (26)

Here nB, nY , nI are the partile number densities and s is the entropy density. Keeping the pressure plus any other

two intensive parameters onstant one �nds the following set of onditions for the phase oexistene when one varies

the remaining two intensive parameters along the oexistene �surfae�:

dT

dµB

∣

∣

∣

∣

µY ,µI

= −∆nB
∆s

,
dT

dµY

∣

∣

∣

∣

µB ,µI

= −∆nY
∆s

,
dT

dµI

∣

∣

∣

∣

µB ,µY

= −∆nI
∆s

,

dµB
dµY

∣

∣

∣

∣

T,µI

= −∆nY
∆nB

,
dµB
dµI

∣

∣

∣

∣

T,µY

= −∆nI
∆nB

. (27)

On the right hand side of the equations above ∆ refers to the di�erene of the values of a given extensive quantity

in the symmetri and broken symmetry phase. In the two oexisting phases the relevant partile number and/or

entropy densities (nG, G = B, I, Y, and s) an be alulated from the partition funtion using the formulas nG =
TV −1∂ lnZ/∂µG and s = V −1∂(T lnZ)/∂T. Our simpli�ed piture of the omposition of the two phases in terms of

non-interating mixtures of 15 quasipartiles is given by

lnZ = V
∑

i

γi(2si + 1)

∫

d3p

(2π)3

[

βωi + ln(1 + αie
−β(ωi−µi)) + ln(1 + αie

−β(ωi+µi))
]

, (28)

where i ∈ π±, π0,K±,K0, η, η′, a±0 , a
0
0, κ

±, κ0, σ, f0, u, d, s, γi = Nc, αi = 1, si = 1/2 for fermions and γi = αi = −1,

si = 0 for bosons, respetively. The energies ωi =
√

p2 +m2
i are alulated with help of the tree-level mass expressions

(4) after substituting into them the order parameter values determined in our �eld theoretial treatment for the two

phases, that is by solving (6), (7), (8), and (12).

The simple model predits that ∆nB,∆nY and ∆s is always positive, while ∆nI is always negative. Moreover, the

following relations are obtained: ∆nB ≈ ∆nY , ∆s > ∆nB and ∆s > |∆nI |. The disontinuity of the partile number

densities is determined by the ontributions of essentially three quasipartiles: u, d, and π±. From our simple and
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transparent model we get the sign and even the magnitude of the shifts of the CEP in agreement with Fig. 4 with the

single exeption of dµI/dT . The ideal gas model does not reprodue the value of this derivative obtained by solving

our model. We interpret this disrepany as a result of the strong oupling between the 〈ūu〉 ∼
√

2/3v0 +
√

1/3v8 + v3
and 〈d̄d〉 ∼

√

2/3v0 +
√

1/3v8 − v3 ondensates not aptured by the ideal gas approximation. As one an hek also

in [13℄ the strong oupling between these ondensates redue the temperature of the CEP when a �nite µI is swithed
on. This is the same tendeny we found in our �eld theoretial alulation. For the other three shifts it is the mass

di�erenes of the lightest quasipartiles of the e�etive model whih exert the strongest in�uene on the variation of

CEP position.

B. Quasi-partile masses

We turn to the study of the dependene of the tree-level masses and the one-loop pole masses on the temperature

and the hemial potentials. The one-loop pole masses are determined as the zeros of the real part of the orresponding

one-loop inverse propagators at vanishing spatial momentum. For example, the equation determining the one-loop π+

mass reads: M2
π+ = ReG−1

π+(p0 =Mπ+ ,p = 0). If there are more than one solutions of this type of equations, then we

follow that solution whih in the vauum lies loser to the physial mass. Usually this solution is lost as the temperature

inreases and some other solution is found.
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FIG. 5: The temperature dependene of the tree-level masses is shown in panels (a) and (b). The µI dependene of the one-loop
pion masses for di�erent values of µB at T = 0 (panel ()) and T 6= 0 (panel (d)).

In Fig. 5(a) and Fig. 5(b) we see that the tree-level masses of π±, π0
and σ learly re�et the restoration of the SU(2)

symmetry at high temperature. This is not shown by the masses of a±0 , a
0
0 and η. We annot go to higher values of the

temperature beause at T ≃ 252 MeV the non-strange ondensate x dereases below the value of v3 and the tree-level

mass of the u quark turns into negative. At this temperature there is still no sign for the tendeny of the SU(3) hiral
partners to beome degenerate.

In Fig. 5() we an see the dependene of the harged and neutral pion masses on the isospin hemial potential.

The harged pions have by far the most signi�ant dependene on µI from all of the harged pseudosalar mesons. At

T = µB = 0 the splitting between π+
and π−

is ontrolled by the bubble diagram involving π+
and π−

respetively

(see Fig. 1) and the splitting point is at µI ≃ mπ. One an see that at T = µB = 0 the mass of π0
depends mildly on
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µI . This dependene intensi�es with the inrease of T and µB, but it remains true that the dependene on µI is less

strong than for the ase of mπ±
. It is interesting to note that for large values of µB , when µu/d > mu/d and the fermion

bubble ontributes to the one-loop self-energies, the shape of the mπ±(µI) urves hanges: mπ+
starts to inrease with

µI and the inrease of mπ−
with µI is slowed down and eventually turned over into a derease in a given interval of µI .

Panel (d) shows that the inrease of the temperature has a similar e�et as µB in that it turns over the µI -dependene
of mπ±

with respet to the behavior at T = µB = 0 starting at a low value of µI .
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FIG. 6: Estimation of the topologial suseptibility through the Witten�Veneziano mass formula using one-loop and tree-level

masses. The T -dependent pion deay onstant (fπ(T )) is approximated with the non-strange ondensate x. The value of the

pseudoritial temperature is Tc = 157.98 MeV. In the inserted �gure ∆/f2

π is plotted based on the tree and one-loop masses.

In Fig. 6 we plot, both at tree and at one-loop level a ombination of the masses and the pion deay onstant

∆ = (m2
η +m2

η′ − 2m2
K)f2

π/6, whih through the Witten�Veneziano mass formula [34, 35℄

2Nf
f2
π

χ
T
= m2

η +m2
η′ − 2m2

K (29)

with Nf = 3, an be onsidered as an estimation of the topologial suseptibility χ
T
(T ), whih plays a ruial role in the

phenomenology of the U(1)A anomaly (see e.g. [36, 37℄ for reent studies in terms of e�etive desriptions). In priniple

χ
T
(T ) an also be omputed diretly in our model if the quantity orresponding to the topologial harge density QT of

the QCD is extrated. This an be done by omparing the four-divergene of the singlet axial vetor urrent, whih in

QCD involves the U(1)A anomaly term with the orresponding urrent of the hiral quark model. Sine the determinant

term of Eq. (1) breaks the U(1)A symmetry, the orrespondene is QT ∼ g(det(M)− det(M †)) = gIm detM .

The derease with T of the estimated χ
T
(T ) seen in Fig. 6 doesn't mean the restoration of the U(1)A symmetry, sine

through fπ(T ), χT
(T ) is dominated by the restoration of the hiral symmetry. In view of (29) this an be also seen on

the inserted �gure of Fig. 6. However, the fat that at T = 0 the estimated χ
T
(T ) is so lose to the value obtained on

the lattie in [38℄ and the urve itself stays within 10% of the lattie points, ould imply that the e�etive restoration

of the U(1)A symmetry, if ontained in the lattie data

1

, ould be implemented in an e�etive desription based on the

hiral quark model. In the NJL model the lattie result on χ
T
(T ) [38℄ is onverted into the temperature-dependene

of the strength of the determinant term, by �tting it with the expliit formula of the suseptibility alulated in [39℄.

IV. CONCLUSIONS

In this paper we studied the in�uene of the isospin and hyperharge hemial potentials on the µB −T hiral phase

diagram of the three �avored hiral onstituent quark model with expliitly broken SU(3)L × SU(3)R symmetry. The

model was parametrized at one-loop level and optimized perturbation theory was used for the resummation of the

perturbative series. Only one ritial end point (CEP) is found for both spontaneous and expliit isospin breaking. In

the latter ase, based on the width of the peak of the hiral suseptibility, the rossover transition at µB,I,Y = 0 is

found to be weaker than in the former ase. Compared to the ase without isospin breaking, in the ase with expliit

isospin breaking, the loation of the CEP moves to a higher value of µB and a lower value of T . For µI = µY = 0

1

Restoration of U(1)A symmetry requires that χ
T
(T ) dereases faster than fπ(T ) with the inrease of T so that χ

T
(T )/f2

π(T ) → 0.
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the oordinates of the CEP are: (T, µB)CEP = (63.08, 960.8) MeV. This value of µB,CEP is about three times larger

than the value found on the lattie [40℄ and inreases (dereases) linearly with µI (µY ), while TCEP is two �fth of the

lattie value and dereases slightly with the inrease of µY and signi�antly with the inrease of µI . Using an ideal

gas piture and the generalized Clausius-Clapeyron equations we ould interpret semiquantitatively with one exeption

the in�uene of µY and µI hemial potentials on the CEP as resulting from the quasipartile masses. We also studied

the dependene of the harged and neutral one-loop pion masses on the isospin hemial potential at di�erent values

of the temperature and the baryon hemial potential. As a ontinuation of the present study, it would be interesting

to investigate at what value of the µI do the harged pions ondensate.
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APPENDIX A: THE FORMALISM OF RELATIVISTIC MANY-BODY THEORY FOR A SYSTEM AT

FINITE DENSITY AND TEMPERATURE

We review below the method of relativisti many-body theory developed in [30℄ for the perturbative alulation of

the self-energy at �nite temperature and density.

First we present the derivation of the tree-level Green's funtions for K−,K+, whih depend both on the isospin

and hyperharge hemial potentials. The �eld operators K−(x) and K+(x) are written in terms of reation and

annihilation operators a+(p), b+(p) and a(p), b(p), respetively, as

K−(x) =

∫

d3p

(2π)3
1

√

2Ep

(

a+(p)eip·x + b(p)e−ip·x
)

∣

∣

∣

p0=Ep

,

K+(x) =

∫

d3p

(2π)3
1

√

2Ep

(

b+(p)eip·x + a(p)e−ip·x
)

∣

∣

∣

p0=Ep

,

(A1)

where Ep =
√

p2 +m2
K± . This means that a+(p) reates a K+

partile, b+(p) reates a K−
partile, et. The

operators have the usual non-zero ommutators

[a(p), a+(k)] = [b(p), b+(k)] = δ(p− k). (A2)

The two point funtions for K−
and K+

are de�ned as

GK−(y − x) := 〈TK−(y)K+(x)〉β = Θ(y0 − x0)〈K−(y)K+(x)〉β +Θ(x0 − y0)〈K+(x)K−(y)〉β ,
GK+(y − x) := 〈TK+(y)K−(x)〉β = Θ(y0 − x0)〈K+(y)K−(x)〉β +Θ(x0 − y0)〈K−(x)K+(y)〉β ,

(A3)

where the average is to be taken over a grand anonial ensemble, that is for an operator O one has

〈O〉β =
Tr [e−βHO]

Tr e−βH
, (A4)

with H = H−µiQi. We make this distintion betweenK+
andK−

propagators beause the partile and its antipartile

feel di�erently the presene of the dense medium, resulting in a di�erent mass dependene on the hemial potential.

In our ase this di�erene in the mass manifests itself �rst at one-loop level.

Substituting (A1) into (A3), taking only the non-interating part of the Hamiltonian H , with the help of the

ommutator relations given in (A2) and the Campbell�Baker�Hausdor� relation one evaluates the expetation values

obtaining

〈a+(p)a(q)〉β = δ(p− q)nK+(Ep), 〈b+(p)b(q)〉β = δ(p− q)n̄K+(Ep), (A5)

where nK+(Ep) =
1

eβ(Ep−µK+ ) − 1
, n̄K+(Ep) =

1

eβ(Ep+µK+ ) − 1
. Note, that n̄K+(Ep) = nK−(Ep). Using (A5) and

the Fourier representation of Θ(t) in (A3) one obtains in momentum spae the K+
and K−

propagators given in (25).

Next, we alulate a one-loop bosoni bubble appearing in Fig. 1. With the standard rules of the perturbation theory,

using the onventions of [41℄ the π+
self-energy is given by

−iΣπ+(y, x) = −4(3G̃2βγ + 4H̃2β,γδvδ)(3G̃1β′γ′ + 4H̃1β′,γ′δ′vδ′)Gπβ′πβ
(y, x)Gσγ′σγ

(y, x). (A6)
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The �rst non-mixing bubble graph in the diagrammati representation of Σπ+ given in Fig. 1 is obtained with the

hoie β = 4, β′ = 5 implying γ = 7, γ′ = 6. Using that G̃156 = G̃247 and H̃15,6δ = H̃24,7δ the ontribution of this graph

is

−iΣK+κ̄0

π+ (y, x) =

�

π+
κ0

x

K−

π−
κ̄0

y

K+

π− π+

= −4
[

3G̃247 + 4H̃24,7δvδ

]2

GK+K−(y, x)Gκ̄0κ0(y, x). (A7)

The labels in the graph denote the �eld operators, e.g. on the left hand side π−
reates a π+

partile.

Going to momentum spae one has

ΣK
+κ̄0

π+ (p) = −4iV 2
π+K−κ0

∫

d4k

(2π)4
GK+(k)Gκ̄0(p− k) = 4V 2

π+K−κ0I
β
B(p,mK+ , µK+ ,mκ̄0 , µκ̄0), (A8)

where the vertex is Vπ+K−κ0 = 4
[

c√
2
+ g2√

3
v0 −

√
2g2

(

v8√
3
− v3

)]

, and GK+(k) ≡ GK+K−(k).

Generally, at �nite hemial potentials and temperature for a bosoni bubble diagram one alulates at vanishing

spatial external momentum (p = 0) an integral of the form:

IβB(p0,m1, µ1,m2, µ2) = −i
∫

d4k

(2π)4
G1(k)G2(p− k)

∣

∣

∣

∣

p=0

=

∫

d3k

(2π)3
1

4E1E2

[

1 + n1 + n2

p0 − E1 − E2
− n1 − n̄2

p0 − E1 + E2
+

n̄1 − n2

p0 + E1 − E2
− 1 + n̄1 + n̄2

p0 + E1 + E2

]

, (A9)

where for the propagators one uses a form similar to that in (25) and to arrive at the seond equality one performs a

ontour integration in the omplex energy plane. The distribution funtions ni ≡ ni(Ei) with Ei =
√

k2 +m2
i ontain

the hemial potential for partile or antipartile whih is reated by the �elds of the vertex in the left hand side.

We rewrite the integral (A9) as:

IβB(p0,m1, µ1,m2, µ2) = Iµ,T=0
B (p0,m1,m2)

+
1

8π2p0

2
∑

i=1

P
∫ ∞

mi

dE
√

E2 −m2
i

[

ni(E)

p0ai − E
+

n̄i(E)

p0ai + E

]

, (A10)

where the remaining integral is evaluated numerially, P stands for prinipal value. The vauum integral

Iµ,T=0
B (p0,m1,m2) is given by the expression (B4) of [19℄, ni = 1/(exp(β(E−µi))−1) is the Bose-Einstein distribution

and ai = [1 + (−1)i−1(m2
1 −m2

2)/p
2
0]/2.

For fermions the method is idential to that used for the bosons. The fermion propagators for the onstituent quarks

u, ū are de�ned as

Du(y − x) := 〈Tu(y)ū(x)〉β = Θ(y0 − x0)〈u(y)ū(x)〉β −Θ(x0 − y0)〈ū(x)u(y)〉β ,
Dū(y − x) := 〈T ū(y)u(x)〉β = Θ(y0 − x0)〈ū(y)u(x)〉β −Θ(x0 − y0)〈u(x)ū(y)〉β ,

(A11)

whih in the momentum spae read

Du(k) =
i( /k +mu)

2Ek

[

1− f+
u (Ek)

k0 − Ek + iǫ
+

f+
u (Ek)

k0 − Ek − iǫ
− 1− f−

u (Ek)

k0 + Ek − iǫ
− f−

u (Ek)

k0 + Ek + iǫ

]

,

Dū(k) =
i( /k +mu)

2Ek

[

1− f−
u (Ek)

k0 − Ek + iǫ
+

f−
u (Ek)

k0 − Ek − iǫ
− 1− f+

u (Ek)

k0 + Ek − iǫ
− f+

u (Ek)

k0 + Ek + iǫ

]

,

(A12)

where f+
u (Ep) =

1

eβ(Ep−µu) + 1
and f−

u (Ep) =
1

eβ(Ep+µu) + 1
are the distribution funtions for u type quarks and

antiquarks.

Then for the fermioni bubble appearing in the π+
self-energy (see Fig. 1) one has

Σud̄π+(p) = −g
2
F

2
NciTr

∫

d4k

(2π)4
γ5Dd̄(k)Du(k + p) =

g2F
2
NcI

β
F (p,md, µd̄,mu, µu). (A13)

Similarly to equation (A9) in ase of fermions we use the integral:

IβF (p0,m1, µ1, µ2,m2) = −iTr
∫

k

γ5D1(k)γ5D2(k + p)

∣

∣

∣

∣

p=0
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=

∫

d3k

(2π)3

[

1

E1
(f+

1 + f−
1 − 1) +

1

E2
(f+

2 + f−
2 − 1)

]

+2(p20 − (m1 −m2)
2)

∫

d3k

(2π)3
1

4E1E2

[

1− f+
1 − f+

2

p0 − E1 − E2
+

f+
1 − f−

2

p0 − E1 + E2
− f−

1 − f+
2

p0 + E1 − E2
− 1− f−

1 − f−
2

p0 + E1 + E2

]

= −2T µ,T=0
F (m1)− 2T µ,T=0

F (m2) + 2(p20 − (m1 −m2)
2)Iµ,T=0

B (p0,m1,m2)

+T T 6=0
F (m1)+T

T 6=0
F (m2)−

p20 − (m1 −m2)
2

4π2p0

2
∑

i=1

P
∫ ∞

mi

dE
√

E2 −m2
i

[

f+
i (E)

p0ai − E
+

f−
i (E)

p0ai + E

]

(A14)

where f±
i = 1/(exp(β(E ∓ µi)) + 1) is the Fermi-Dira distribution.
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